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The online traffic signalization for intersection is addressed. A new model for intersection called positive switched system is
presented. Then, based on the dissipativity analysis results for positive switched system, an online state-feedback control strategy
for traffic signal in two-phase intersection section is proposed. A numerical example is provided to illustrate the effectiveness
of our theoretical findings. Finally, in order to extend to more general cases, multiphase intersection is considered, and general
dissipativity-based control is presented.

1. Introduction

Traffic signal control is a long-lasting research problem in
urban transportation network system [1–3].The effectiveness
of a traffic signal system can reduce the incidence of delays,
stops, fuel consumption, emission of pollutants, and acci-
dents.Moreover, due to the rapid growth of traffic congestion,
an effective traffic signalization plays an important role of
relieving the oversaturated situation such as related articles
[1, 4–11] and references cited therein. Most of the signal
control strategies are based on fixed-time signal control
[1, 4–7]. However, since the fixed-time strategies are based
on historical data rather than real-time data, they are only
applicable in undersaturated traffic conditions. In a few
recent papers, some online signalization methods have been
proposed [2, 8–13], which are more adaptive to the real-
time traffic conditions. As for oversaturated condition, some
significant results have been reported. For example, in [9], an
optimal traffic light switching scheme was presented. Gen-
erally, it resorts to a minimization problem over a set of
an extended linear complementarity problem, which is not
an easy task when switching cycles is large. And concerned
with recent notable result [10], a dissipative idea is applied
into traffic signal design problem; a state feedback controller
based on dissipativity-based control is derived. This dissipa-
tive approach provides a new insight on traffic signalization

problem and intersection system. In our paper, we follow
the dissipative idea and further exploit the positivity and
switched properties of intersection system, which leads to
a positive switched system approach into the dissipativity-
based control framework. The particular class of hybrid
system called positive switched system is used to model the
intersection system.

Switched system can be efficiently used to model many
practical systems which are inherently multimodel in the
sense that several dynamical systems are required to describe
their behavior. For more details of the recent results on
the basic problems in stability and stabilization for switched
systems, the reader is referred to survey papers [14–24]
and the references cited therein. Moreover, positive switched
system refers to the variables of system which are always
confined to the positive orthant. Due to the obvious switched
and positive characteristic of intersection system with traffic
signal, the positive switched system is an appropriate model
for it, but as far as we know, there exists no result based on
the model of positive switched system.Thus, in our paper, we
first set up a positive switched system model for two-phase
intersection system, which is shown to be able to be modeled
as a positive switched system with two subsystems. Then,
a dissipativity-based control strategy is proposed by solving
a set of linear programming (LP) problem which can be
efficiently solved with aid of existing software toolbox. Then,
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Figure 1: Intersection with four approaches and two-phase signal.

an extension from two-phase intersection to multiphase
intersection system is presented to meet more general cases.

The rest of this paper is organized as follows. In Section 2
the system model and problem formulation are introduced;
dissipativity analysis for positive switched system is proposed
in Section 3.The dissipativity-based control solution for two-
phase intersection is given in Section 4. In Section 5 the
results are extended to multiphase cases. Conclusions are
given in Section 6.

Notations.Thenotations used in this paper are fairly standard.
The superscript “𝑇” stands for matrix transposition, R𝑛
denotes the 𝑛 dimensional Euclidean space, andN represents
the set of nonnegative integers. In addition, in symmetric
block matrices, we use ∗ as an ellipsis for the terms that are
introduced by symmetry. The notation 𝐴 ≻ 0 (𝐴 ⪰ 0) means
all the elements 𝑎

𝑖𝑗
> 0 (𝑎

𝑖𝑗
≥ 0), where 𝑎

𝑖𝑗
denotes the

element in the (𝑖, 𝑗) position of 𝐴.

2. System Description and
Problem Formulation

2.1. System Description and Modeling. The urban transporta-
tion system is composed of a network of intersections.
Generally, an intersection is operated by a traffic signal that
decides the movements of vehicles to pass the intersections
or to stop to generate the queues. The movement may
include vehicles going straight, turning left, turning right, or
a combination of them.

In order to show our control idea clearly, we first con-
sider the single intersection with four approaches and the
traffic signal which has two phases, which are illustrated
by Figure 1.

It is noted that the movements 1 and 2 are supposed to
have same characteristics, and same consideration holds for
movements 3 and 4.

Considering the transportation status at the time of the
traffic signal turning fromone phase to another, and denoting
the time instant as 𝑘, 𝑘 ∈ N, we are going to model

the intersection system described in Figure 1; several useful
definitions are introduced as follows.

Green Time 𝑔
𝑝
(𝑘). It is the time for the movements for the

successively activated phase 𝑝, 𝑝 ∈ P = {1, 2}, which is the
control input signal required to be determined at each instant
𝑘 for the intersection. It is assumed that there exists a 𝑔

𝑝,max
such that 0 ≤ 𝑔

𝑝
(𝑘) ≤ 𝑔

𝑝,max.

Lost Time 𝐿. Lost time is defined as a period that is not used
effectively in each phase by incoming traffic flow through an
intersection, such as the start-up delay. Lost time is generally
considered constant.

Effective Green Time 𝑔𝑒
𝑝
(𝑘). It is the time actually available for

movement for phase 𝑝. Obviously, we can obtain 𝑔
𝑒

𝑝
(𝑘) + 𝐿 =

𝑔
𝑝
(𝑘), 𝑝 ∈ P = {1, 2}.

Input Flow Rate 𝑞
𝑖
. It is the input flow rate for movement 𝑖,

𝑖 ∈ I = {1, 2, 3, 4}.

Saturation Flow Rate 𝑠
𝑖
. It is the saturation flow rate for the

movement 𝑖, 𝑖 ∈ I = {1, 2, 3, 4}, which is defined as the max-
imum number of vehicles being able to use the intersection
without interruption during the effective green time.

The Number of Arrivals 𝐴
𝑖,𝑇
. It is the number of vehicles

joining the movement 𝑖 during the time 𝑇. It can be figured
out as 𝐴

𝑖,𝑇
= 𝑞
𝑖
𝑇.

The Number of Departures 𝐷
𝑖,𝑇
. It is the number of vehicles

departing from the movement 𝑖 during the time 𝑇, which can
be calculated by 𝐷

𝑖,𝑇
= 𝑠
𝑖
𝑇.

Queue Length 𝑥
𝑖
(𝑘). It is the queue length of movement 𝑖,

𝑖 ∈ I, at time instant 𝑘. It is assumed that the value of queue
length 𝑥

𝑖
(number of vehicles) can be measured in real time,

which can be obtained when video detection systems are uti-
lized; otherwise, the local occupancy measurements 𝑜

𝑖
, col-

lected in real time by traditional detector loops, can be trans-
formed into (approximate) numbers of vehicles via suitable
nonlinear functions 𝑥

𝑖
= 𝑓
𝑖
(𝑜
𝑖
) such as in [3].

Moreover, since the congestion situation is not considered
in our model, the queue lengths are always beneath their
capacities, which is denoted by 𝑥

𝑖,max, 𝑖 ∈ I. Thus, queue
length 𝑥

𝑖
belongs to the region of admissible states as 𝑋

𝑖
=

{𝑥 | 0 ≤ 𝑥
𝑖
≤ 𝑥
𝑖,max}.

Based on the above definitions, we are now in the position
to model the intersection system. Since there are two phases,
it is natural that there are two dynamics for Phases 1 and 2,
respectively.

Phase 1. The queue length 𝑥
𝑖
(𝑘) evolves according to 𝑥

𝑖
(𝑘 +

1) = 𝑥
𝑖
(𝑘) + 𝐴

𝑖,𝑔
1

− 𝐷
𝑖,𝑔
1

. For movements 1 and 2 which have
same characteristics, it is obtained that 𝐴

𝑖,𝑔
1

= 𝑞
𝑖
𝑔
1
, 𝑖 = 1, 2,

and 𝐷
𝑖,𝑔
1

= 𝑠
𝑖
𝑔
𝑒

1
= 𝑠
𝑖
(𝑔
1
− 𝐿), 𝑖 = 1, 2; we have the following

equation in Phase 1:

𝑥
𝑖
(𝑘 + 1) = 𝑥

𝑖
(𝑘) + (𝑞

𝑖
− 𝑠
𝑖
) 𝑔
1
+ 𝑠
𝑖
𝐿, 𝑖 = 1, 2. (1)



Discrete Dynamics in Nature and Society 3

And for movements 3 and 4, since the movement is
stopped which implies 𝐴

𝑖,𝑔
1

= 𝑞
𝑖
𝑔
1
, 𝑖 = 3, 4, and 𝐷

𝑖,𝑔
1

= 0,
𝑖 = 3, 4, it is obtained that

𝑥
𝑖
(𝑘 + 1) = 𝑥

𝑖
(𝑘) + 𝑞

𝑖
𝑔
1
, 𝑖 = 3, 4. (2)

Phase 2. Following the same guideline in Phase 1, the follow-
ing evolution equations can be derived:

𝑥
𝑖
(𝑘 + 1) = 𝑥

𝑖
(𝑘) + 𝑞

𝑖
𝑔
2
, 𝑖 = 1, 2,

𝑥
𝑖
(𝑘 + 1) = 𝑥

𝑖
(𝑘) + (𝑞

𝑖
− 𝑠
𝑖
) 𝑔
2
+ 𝑠
𝑖
𝐿, 𝑖 = 3, 4.

(3)

Among the two subsystems concerned with two phases,
there is a switching signal 𝜎(𝑘) determining which subsystem
is activated at each instant 𝑘. Define

𝜂
𝑝
(𝑘) = {

1 𝜎 (𝑡) = 𝑝

0 otherwise.
(4)

Augmenting the dynamics in Phases 1 and 2, the above
equations can be restated as a switched system composed of
two subsystems in state space form

x (𝑘 + 1) =

2

∑

𝑝=1

𝜂
𝑝
(𝑘) [x (𝑘) + B

𝑝
𝑢
𝑝
(𝑘) + C

𝑝
] ,

0 ≤ 𝑢
𝑝
(𝑘) ≤ 𝑔

𝑝,max,

(5)

where

x (𝑘) =
[
[
[

[

𝑥
1
(𝑘)

𝑥
2
(𝑘)

𝑥
3
(𝑘)

𝑥
4
(𝑘)

]
]
]

]

, B
1
=

[
[
[

[

𝑞
1
− 𝑠
1

𝑞
2
− 𝑠
2

𝑞
3

𝑞
4

]
]
]

]

,

B
2
=

[
[
[

[

𝑞
1

𝑞
2

𝑞
3
− 𝑠
3

𝑞
4
− 𝑠
4

]
]
]

]

, C
1
=

[
[
[

[

𝑠
1
𝐿

𝑠
2
𝐿

0

0

]
]
]

]

, C
2
=

[
[
[

[

0

0

𝑠
3
𝐿

𝑠
4
𝐿

]
]
]

]

,

𝑢
1
(𝑘) = 𝑔

1
(𝑘) , 𝑢

2
(𝑘) = 𝑔

2
(𝑘) .

(6)

Obviously, since the phases work in turns in the intersection
system model, the switching signal 𝜎(𝑘) is defined as

𝜎 (𝑘) = 𝑝 if 𝜎 (𝑘 − 1) = 𝑞, where 𝑝 ̸= 𝑞, 𝑝, 𝑞 = 1, 2,

(7)

which implies that the switching occurs at each instant 𝑘.

The most reported model is considered to have a fixed
cycle (one repetition of the basic series of signal phases com-
binations at a junction), which has to be prespecified appro-
priately, and an inappropriate choice of cycle could lead to a
bad control performance. On the other hand, there is no cycle
time constraint in our switched system model, or no cycle
time has to be designed previously; only controllable green
time needs to be considered.

2.2. Control Problem Formulation. The purpose of our con-
trol is to relieve the oversaturated queue by the traffic signal.
With the controllable green time 𝑔

𝑝
, 𝑝 ∈ P = {1, 2}, we are

going to design a state feedback controller in the form of

𝑢
𝑝
(𝑘) =

2

∑

𝑝=1

𝜂
𝑝
(𝑘)K
𝑝
x (𝑘) , 0 ≤ 𝑢

𝑝
(𝑘) ≤ 𝑔

𝑝,max, (8)

where K
𝑝
, 𝑝 ∈ P, is the feedback gains needed to be

determined. Substituting state feedback controller (8) into
system model (5), the closed loop of intersection system is
expressed as

x (𝑘 + 1) =

2

∑

𝑝=1

𝜂
𝑝
(𝑘) [A

𝑝
x (𝑘) + C

𝑝
] ,

0 ≤ K
𝑝
x (𝑘) ≤ 𝑔

𝑝,max,

(9)

where A
𝑝

= I + B
𝑝
K
𝑝
. Under the control of (8), our design

objective is to render the system (9) nonaccumulative with
flux supply rate.

At first, the lengths of queue 𝑥
𝑖
(𝑘), ∀𝑘 ∈ N, are supposed

to be nonnegative in the evolution according to the system
dynamics given any initial 𝑥

𝑖
(0) ≥ 0. Thus, to ensure the

availability of designed state feedback controller, the positiv-
ity of x(𝑘) has to be preserved during the time; that is,

x (𝑘) ⪰ 0, ∀𝑘 ∈ N. (10)

Then, to make the system nonaccumulative, a particular
copositive storage function indicating the total lengths of the
movement stored in the system is introduced as

𝑆 (𝑘) = e𝑇x (𝑘) , (11)

where e𝑇 = [1 1 1 1]. The flow of vehicles supplied to the
system is the total arrivals in each phase described by

𝐴
𝑝
(𝑘) = 𝑔

𝑝
(𝑘)

4

∑

𝑖=1

𝑞
𝑖
= K
𝑝
x (𝑘)

4

∑

𝑖=1

𝑞
𝑖
, 𝑝 ∈ P. (12)

And the total of departures in Phase 1 is 𝐷
1
= (𝑠
1
+ 𝑠
2
)(𝑔
1
−

𝐿) = (𝑠
1
+ 𝑠
2
)𝑔
1
− (𝑠
1
+ 𝑠
2
)𝐿 and 𝐷

2
= (𝑠
3
+ 𝑠
4
)(𝑔
2
− 𝐿) =

(𝑠
3
+𝑠
4
)𝑔
2
−(𝑠
3
+𝑠
4
)𝐿 is for Phase 2.Thus, the flow of vehicles

extracted from the system is

𝐷
𝑝
(𝑘) = 𝑑

𝑝
𝑔
𝑝
− 𝑑
𝑝
𝐿 = 𝑑

𝑝
K
𝑝
x (𝑘) − 𝑑

𝑝
𝐿, 𝑝 ∈ P, (13)

where 𝑑
1
= 𝑠
1
+ 𝑠
2
and 𝑑

2
= 𝑠
3
+ 𝑠
4
. The flux supply rate in

each phase can be defined as

𝜃 (𝑘) =

2

∑

𝑝=1

𝜂
𝑝
(𝑘) 𝜃
𝑝
(𝑘) =

2

∑

𝑝=1

𝜂
𝑝
(𝑘) [𝐴

𝑝
(𝑘) − 𝐷

𝑝
(𝑘)] ; (14)

that is,

𝜃 (𝑘) =

2

∑

𝑝=1

𝜂
𝑝
(𝑘) 𝜃
𝑝
(𝑘) =

2

∑

𝑝=1

𝜂
𝑝
(𝑘) [𝛼

𝑝
x (𝑘) + 𝛽

𝑝
] , (15)
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where 𝛼
𝑝

= K
𝑝
(∑
4

𝑖=1
𝑞
𝑖
− 𝑑
𝑝
) and 𝛽

𝑝
= 𝑑
𝑝
𝐿. To achieve

a nonaccumulative system with storage function 𝑆(𝑘) and
supply rate 𝜃(𝑘), the following condition has to be satisfied:

Δ𝑆 (𝑘) = 𝑆 (𝑘 + 1) − 𝑆 (𝑘) ≤ 𝜃 (𝑘) , (16)

which implies that the variation in the total queue length of
the system is always less than or equal to the input fluxminus
the output flux. In this case the system with feedback con-
troller (8) is nonaccumulative with respect to the flux supply
rate 𝜃(𝑘).

3. Dissipativity Analysis for
Positive Switched System

In this section, wewill investigate the dissipativity of switched
positive system,which plays the key role in solving the control
problem for intersection system.

Consider the following switched positive system com-
posed by 𝑃 subsystems:

x (𝑘 + 1) =

𝑃

∑

𝑝=1

𝜂
𝑝
(𝑘) [A

𝑝
x (𝑘) + C

𝑝
] , (17)

where x(𝑘) ∈ R𝑛 is the state vector, A
𝑝
and C

𝑝
are constant

matrices with appropriate dimensions, and the switching law
among subsystems is considered arbitrary.

Definition 1. System (1) is said to be positive if and only if, for
any initial condition x(0) ⪰ 0, the corresponding trajectory
x(𝑘) ⪰ 0 holds for all 𝑘 ∈ N.

Lemma 2. System (1) is positive if and only ifA
𝑝
≻ 0 andC

𝑝
⪰

0, ∀𝑝 ∈ P.

Proof. The sufficient part is obvious. We consider the neces-
sity. Denote

x (𝑘) = [𝑥
1
(𝑘) 𝑥

2
(𝑘) ⋅ ⋅ ⋅ 𝑥

𝑛
(𝑘)]
𝑇

,

A
𝑝
=

[
[
[
[

[

𝑎
1,1

𝑎
1,2

⋅ ⋅ ⋅ 𝑎
1,𝑛

𝑎
2,1

𝑎
1,2

⋅ ⋅ ⋅ 𝑎
2𝑛

...
... d

...
𝑎
𝑛,1

𝑎
𝑛,2

⋅ ⋅ ⋅ 𝑎
𝑛,𝑛

]
]
]
]

]

, C
𝑝
=

[
[
[
[

[

𝑐
1

𝑐
2

...
𝑐
𝑛

]
]
]
]

]

;

(18)

we have

𝑥
𝑖
(𝑘 + 1) = 𝑎

𝑖,1
𝑥
1
(𝑘) + ⋅ ⋅ ⋅ + 𝑎

𝑖,𝑛
𝑥
𝑛
(𝑘) + 𝑐

𝑖
,

∀𝑖 = 1, 2, . . . , 𝑛.

(19)

Since system (17) is positive, we can obtain

𝑎
𝑖,𝑚

≥ 0, ∀𝑚 = 1, 2, . . . , 𝑛, ∀𝑖 = 1, 2, . . . , 𝑛,

𝑐
𝑖
≥ 0, ∀𝑖 = 1, 2, . . . , 𝑛.

(20)

Hence, A
𝑝
⪰ 0 and C

𝑝
⪰ 0, ∀𝑝 ∈ P.

Definition 3. System (1) with supply rate 𝜃(𝑘) =

∑
𝑃

𝑝=1
[𝛼
𝑝
x(𝑘) + 𝛽

𝑝
], where 𝛼

𝑝
are vectors with appropriate

dimensions and 𝛽
𝑝
are scalars, is said to be dissipative

(strictly dissipative) if there exists a nonnegative function 𝑆 :

R𝑛 → R+ with 𝑆(0) = 0, called the storage function such that
Δ𝑆(𝑘) ≤ 𝜃(𝑘) (Δ𝑆(𝑘) < 𝜃(𝑘)).

Remark 4. In strictly dissipative case, Δ𝑆(𝑘) < 𝜃(𝑘) can be
expressed as Δ𝑆(𝑘) ≤ −𝜌𝑆(𝑘) + 𝜃(𝑘), where 𝜌 > 0 provides
a degree of freedom in choosing the quantity that we wish to
dissipate. And if we enforce 𝜌 = 0, it becomes the dissipative
case. Hence, in the rest of paper, we consider the general
dissipative performance satisfying Δ𝑆(𝑘) ≤ −𝜌𝑆(𝑘) + 𝜃(𝑘),
where 𝜌 ≥ 0.

For switched positive system, the switched copositive
function 𝑆(𝑘) = x𝑇(𝑘)∑𝑃

𝑝=1
𝜂
𝑝
(𝑘)h
𝑝
, where h

𝑝
⪰ 0, ∀𝑝 ∈ 𝑃,

can serve as a storage function. Then, the following theorem
can be derived for the dissipativity of switched positive
system (17) with respect to the particular supply rate 𝜃(𝑘) =

∑
𝑃

𝑝=1
𝜂
𝑝
(𝑘)[𝛼
𝑝
x(𝑘) + 𝛽

𝑝
].

Theorem 5. Consider switched positive system (17), given a
scalar 𝜌 ≥ 0. If there exists a set of vectors h

𝑝
⪰ 0, ∀𝑝 ∈ 𝑃,

such that the following condition holds:

h𝑇
𝑞
A
𝑝
− (1 − 𝜌) h𝑇

𝑝
+ 𝛼
𝑝
⪯ 0, ∀ (𝑝, 𝑞) ∈ P ×P,

h𝑇
𝑞
C
𝑝
− 𝛽
𝑝
≤ 0, ∀ (𝑝, 𝑞) ∈ P ×P,

(21)

then switched positive system (17) is dissipative with respect to
a supply rate 𝜃(𝑘) = ∑

𝑃

𝑝=1
𝜂
𝑝
(𝑘)[𝛼
𝑝
x(𝑘) + 𝛽

𝑝
].

Proof. Given a set of vectors h
𝑝

⪰ 0, ∀𝑝 ∈ P, the following
switched copositive function is constructed:

𝑆 (𝑘) = x𝑇 (𝑘)
𝑃

∑

𝑝=1

𝜂
𝑝
(𝑘) h
𝑝
. (22)

By the definition of dissipativity and supply rate 𝜃(𝑘) =

∑
𝑃

𝑝=1
𝜂
𝑝
(𝑘)[𝛼
𝑝
x(𝑘) + 𝛽

𝑝
], we have to demonstrate the follow-

ing inequality:
𝑃

∑

𝑝=1

{𝜂
𝑝
(𝑘 + 1) h𝑇

𝑝
x (𝑘 + 1) − 𝜂

𝑝
(𝑘)

× [(1 − 𝜌) h𝑇
𝑝
x (𝑘) − 𝛼

𝑝
x (𝑘) + 𝛽

𝑝
]} ≤ 0,

(23)

which ensures Δ𝑆(𝑘) ≤ −𝜌𝑆(𝑘) + 𝜃(𝑘). As this has to be
satisfied for arbitrary switching signals, it follows that (23) has
to hold for any special configuration

𝜂
𝑝
(𝑘) = 1, 𝜂

𝑙 ̸=𝑝
(𝑘) = 0,

𝜂
𝑞
(𝑘 + 1) = 1, 𝜂

𝑙 ̸=𝑞
(𝑘 + 1) = 0,

(24)

∀𝑘 ∈ N and for all nonzero x(𝑘) ∈ R𝑛. Hence (23) means

h𝑇
𝑞
x (𝑘 + 1) − (1 − 𝜌) h𝑇

𝑝
x (𝑘) + 𝛼

𝑝
x (𝑘) − 𝛽

𝑝
≤ 0,

∀ (𝑝, 𝑞) ∈ P ×P.

(25)



Discrete Dynamics in Nature and Society 5

Using the system model as x(𝑘 + 1) = A
𝑝
x(𝑘) + C

𝑝
, one has

[h𝑇
𝑞
A
𝑝
− (1 − 𝜌) h𝑇

𝑝
+ 𝛼
𝑝
] x (𝑘) + h𝑇

𝑞
C
𝑝
− 𝛽
𝑝
≤ 0,

∀ (𝑝, 𝑞) ∈ P ×P.

(26)

From (21), it is easy to see that (26) is satisfied, which implies
Δ𝑆(𝑘) ≤ −𝜌𝑆(𝑘)+𝜃(𝑘) and the dissipativity of system (17).

Theorem 5 provides us with a switched copositive func-
tion method in search for a set of vectors h

𝑝
, 𝑝 ∈ P. If we

particularly choose a common vector h = h
𝑝
, ∀𝑝 ∈ P, the

following corollary can be obtained.

Corollary 6. Consider switched positive system (17), given a
scalar 𝜌 ≥ 0. If there exists a vector h ⪰ 0 such that the
following condition holds:

h𝑇A
𝑝
− (1 − 𝜌) h𝑇 + 𝛼

𝑝
⪯ 0, ∀𝑝 ∈ P,

h𝑇C
𝑝
− 𝛽
𝑝
≤ 0, ∀𝑝 ∈ P,

(27)

then switched positive system (17) is dissipative with respect to
supply rate 𝜃(𝑘) = ∑

𝑃

𝑝=1
𝜂
𝑝
(𝑘)[𝛼
𝑝
x(𝑘) + 𝛽

𝑝
].

Proof. Let h = h
𝑝
, ∀𝑝 ∈ P in Theorem 5; Corollary 6 can be

proved.

Remark 7. It is obvious to see that conditions in Theorem 5
are less conservative than Corollary 6 due to the explicit
fact that a common storage function yields more con-
servative results than multiple storage function. But, in
order to meet the actual intersection system, a com-
mon storage function 𝑆(𝑘) = e𝑇x(𝑘), where e𝑇 =

[1 1 1 1], is particularly chosen to describe the total
lengths of the movement stored in the system; thus
Corollary 6 will be used to solve the control problem
for intersection system.

4. Control Solution for
Two-Phase Intersection

Now, based on the formulated control problem and anal-
ysis results in previous section, considering the two-phase
intersection system, the feedback controller (8) has to be
designed in which the state feedback gains K

𝑝
, 𝑝 ∈ P,

are the feedback gains needed to be determined. As what
is discussed, to achieve a nonaccumulative closed loop with
an available feedback controller, the design objective can be
summarized as the following three points should be satisfied.

(1) Positivity. To ensure the availability of the feedback control
in actual applications, we have that x(𝑘) ⪰ 0 holds for all 𝑘 ∈

N and any x(0) ⪰ 0, that is, preserving the positivity of closed
loop.

(2) Dissipativity. Given the storage function 𝑆(𝑘) = e𝑇x(𝑘),
where e𝑇 = [1 1 1 1], the closed loop should be dissipative
with respect to supply rate 𝜃(𝑘) = ∑

2

𝑝=1
𝜂
𝑝
(𝑘)[𝛼
𝑝
x(𝑘) + 𝛽

𝑝
],

where 𝛼
𝑝
and 𝛽

𝑝
are defined in (15), which makes the

intersection system nonaccumulative.

(3) Control Constraint. The constraint on the green time has
to be satisfied to avoid unacceptable stop time for drivers
in other approaches. By 0 ≤ 𝑔

𝑝
(𝑘) ≤ 𝑔

𝑝,max and 𝑔
𝑝
(𝑘) =

𝑢
𝑝
(𝑘) = K

𝑝
x(𝑘), the following constraint must be satisfied

0 ≤ K
𝑝
x(𝑘) ≤ 𝑔

𝑝,max.
Considering the closed loop system (9), the first point

concernedwith positivity can be solved through Lemma 2 for
the switched positive system; that is, A

𝑝
⪰ 0, ∀𝑝 ∈ P, and

C
𝑝

⪰ 0, ∀𝑝 ∈ P, should be satisfied. Obviously C
𝑝

⪰ 0,
∀𝑝 ∈ 𝑃, is automatically satisfied for two-phase intersection
system since 𝑠

𝑝
> 0, ∀𝑝 ∈ P and 𝐿 > 0. Moreover, A

𝑝
⪰ 0

can be rewritten as
I + B
𝑝
K
𝑝
⪰ 0, ∀𝑝 ∈ P, (28)

to preserve positivity of feedback closed loop system.
Then, the second point on dissipativity can be solved by

Corollary 6 where the common vector is chosen as e𝑇 =

[1 1 1 1]. Firstly, we have

e𝑇C
1
− 𝛽
1
= [1 1 1 1] [𝑠

1
𝐿 𝑠
2
𝐿 0 0]

𝑇

− (𝑠
1
+ 𝑠
2
) 𝐿 = 0,

e𝑇C
2
− 𝛽
2
= [1 1 1 1] [0 0 𝑠

3
𝐿 𝑠
4
𝐿]
𝑇

− (𝑠
3
+ 𝑠
4
) 𝐿 = 0.

(29)

Thus, it yields that e𝑇C
𝑝
− 𝛽
𝑝

≤ 0, ∀𝑝 ∈ P, is satisfied for
intersection system.

Moreover, to ensure dissipativity, the following condition
has to be satisfied:

e𝑇 (I + B
𝑝
K
𝑝
) − (1 − 𝜌) e𝑇 + 𝛼

𝑝
⪯ 0, ∀𝑝 ∈ P, (30)

where 𝛼
𝑝
= K
𝑝
(∑
4

𝑖=1
𝑞
𝑖
− 𝑑
𝑝
), 𝑑
1
= 𝑠
1
+ 𝑠
2
, and 𝑑

2
= 𝑠
3
+ 𝑠
4
.

At last, the constraint on the feedback is considered. Note
that queue length 𝑥

𝑖
belongs to the region of admissible states

asX
𝑖
= {𝑥 | 0 ≤ 𝑥

𝑖
≤ 𝑥
𝑖,max}; we denote setX = {x | 0 ⪯ x ⪯

xmax}, where xmax = [𝑥
1,max 𝑥

2,max 𝑥
3,max 𝑥

4,max]
𝑇. Given

any x
1
, x
2
∈ X and 0 ≤ 𝛼 ≤ 1, we have 0 ⪯ 𝛼x

1
+ (1 − 𝛼)x

2
⪯

xmax, soX is a convex set with 16 vertices which are denoted
as v
1
, v
2
, . . . , v

16
.

Furthermore, the constraint set on the green time can be
expressed by set U

𝑝
= {x | 0 ≤ K

𝑝
x(𝑘) ≤ 𝑔

𝑝,max, x ∈ X}.
Since X is convex, we only need to check that the vertices
V
1
, V
2
, . . . , V

16
are included in control constraint 𝑈

𝑝
; that is,

0 ≤ K
𝑝
v
𝑖
≤ 𝑔
𝑝,max, ∀𝑝 ∈ P, ∀𝑖 = 1, 2, . . . , 16. (31)

Summarizing above discussion, a solution for nonaccu-
mulative feedback control is presented as follows.

Proposition 8. Consider the two-phase intersection system
(5), given a scalar 𝜌 ≥ 0. If there exist two feedback gains K

1

and K
2
such that

I + B
𝑝
K
𝑝
⪰ 0, ∀𝑝 ∈ P,

e𝑇 (I + B
𝑝
K
𝑝
) − (1 − 𝜌) e𝑇 + 𝛼

𝑝
⪯ 0, ∀𝑝 ∈ P,

0 ≤ K
𝑝
v
𝑖
≤ 𝑔
𝑝,max, ∀𝑝 ∈ P, ∀𝑖 = 1, 2, . . . , 16,

(32)
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Figure 2: Evolution of queues within dissipative closed loop system.

where vectors𝛼
𝑝
and v
𝑖
are defined in (15) and (31), respectively,

the green times chosen as 𝑔
𝑝
(𝑘) = K

𝑝
x(𝑘), 𝑝 ∈ P, can

guarantee the nonaccumulative performance of the closed loop
system (9).

Remark 9. In actual applications, a lower boundary for the
effective green time has to be selected as 𝑔

𝑝,min, thus the
operation of the controller for each 𝑘 is considered in the
following form:

𝑔
𝑝
(𝑘) = {

K
𝑝
x (𝑘) if 𝑔

𝑝
(𝑘) > 𝑔

𝑝,min
𝑔
𝑝,min if 𝑔

𝑝
(𝑘) ≤ 𝑔

𝑝,min.
(33)

Here, it should be noted that since x(𝑘) decrease along with
the time to relieve the oversaturated queue, 𝑔

𝑝
(𝑘) will finally

converge to 𝑔
𝑝,min. Thus, 𝑔

𝑝,min can be often chosen as an
appropriate time for undersaturated situations.

Remark 10. Proposition 8 is an LP problem, which can be
numerically solved by the LP optimal toolbox.

Example 11. Consider a two-phase intersection as 𝑠
1

=

0.4 veh/s, 𝑠
2

= 0.6 veh/s, 𝑠
3

= 0.7 veh/s, and 𝑠
4

= 0.6 veh/s,
𝑞
1

= 0.2 veh/s, 𝑞
2

= 0.1 veh/s, 𝑞
3

= 0.15 veh/s, and 𝑞
4

=

0.25 veh/s, and 𝑔
𝑝,max = 100 s, 𝑔

𝑝,min = 50 s. Given an
initial oversaturated queue x𝑇(0) = [90 80 110 70], the
simulation results are shown in Figure 2.

From the simulation results in Figure 2, we see that the
oversaturated situation can be relieved by state feedback con-
trol, and we see that, after 𝑘 = 30, the intersection runs in an
undersaturated situation.

5. Extension to Multiphase Intersection

In this section, the results in previous section based on
dissipativity and positivity of positive switched system will

be generalized to multiphase intersection. At first, the sys-
tem model for multiphase intersection will be presented as
follows.

It is assumed that there exist 𝑃 phases for the intersection
with 𝑛movements. Hereby, the following sets are defined. For
each phase 𝑝 ∈ P, concerned with movements, we define
I = {1, 2, . . . ,𝑀}, the activated movement set I

𝑎
, and

unactivated movement setI
𝑎
; similarly we haveI

𝑎
∩I
𝑎
=

⌀ andI
𝑎
∪I
𝑎
= I.

In accordance with the modeling procedure for two-
phase intersection, in each phase 𝑝 ∈ P, the queue length
of movements 𝑥

𝑖
(𝑘), 𝑖 ∈ I, evolves according to

𝑥
𝑖
(𝑘 + 1) = 𝑥

𝑖
(𝑘) + 𝐴

𝑖,𝑔
𝑝

− 𝐷
𝑖,𝑔
𝑝

. (34)

Similar to the derivation of two-phase intersectionmodel,
we have

𝐴
𝑖,𝑔
𝑝

= 𝑞
𝑖
𝑔
𝑝
, 𝑖 ∈ I

𝑎
∪I
𝑎
= I

𝐷
𝑖,𝑔
𝑝

= {
𝑠
𝑖
(𝑔
𝑝
− 𝐿) 𝑖 ∈ 𝐼

𝑎

0 𝑖 ∈ 𝐼
𝑎
.

(35)

Thus, the evolution of movement 𝑖 ∈ I in phase 𝑝 ∈ P is
described as follows:

𝑥
𝑖
(𝑘 + 1) = {

𝑥
𝑖
(𝑘) + (𝑞

𝑖
− 𝑠
𝑖
) 𝑔
𝑝
+ 𝑠
𝑖
𝐿 𝑖 ∈ I

𝑎

𝑥
𝑖
(𝑘) + 𝑞

𝑖
𝑔
𝑝

𝑖 ∈ I
𝑎
.

(36)

With a switching signal 𝜎(𝑘) among subsystems 𝑝 ∈ P,
define 𝜂

𝑝
(𝑘) same as in (4). The above equations can be

restated in state space form

x (𝑘 + 1) =

𝑃

∑

𝑝=1

𝜂
𝑝
(𝑘) [x (𝑘) + B

𝑝
𝑢
𝑝
(𝑘) + C

𝑝
] ,

0 ≤ 𝑢
𝑝
(𝑘) ≤ 𝑔

𝑝,max,

(37)

where

x (𝑘) =

[
[
[
[

[

𝑥
1
(𝑘)

𝑥
2
(𝑘)

...
𝑥
𝑛
(𝑘)

]
]
]
]

]

, B
𝑝
=

[
[
[
[

[

𝑏
1

𝑏
2

...
𝑏
𝑛

]
]
]
]

]

,

𝑏
𝑖
= {

𝑞
𝑖
− 𝑠
𝑖

𝑖 ∈ I
𝑎

𝑞
𝑖

𝑖 ∈ I
𝑎
,

C
𝑝
=

[
[
[
[

[

𝑐
1

𝑐
2

...
𝑐
𝑛

]
]
]
]

]

,

𝑐
𝑖
= {

𝑠
𝑖
𝐿 𝑖 ∈ I

𝑎

0 𝑖 ∈ I
𝑎
,

𝑢
𝑝
(𝑘) = 𝑔

𝑝
(𝑘) .

(38)

Thephases areworking in turns in the intersection system
model; the switching signal 𝜎(𝑘) is defined as

𝜎 (𝑘) = 𝑝 if 𝜎 (𝑘 − 1) = 𝑞, where 𝑝 ̸= 𝑞, 𝑝, 𝑞 ∈ P,

(39)

which implies that the switching occurs at each instant 𝑘.
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With the aid of state feedback control as

𝑢
𝑝
(𝑘) =

𝑃

∑

𝑝=1

𝜂
𝑝
(𝑘)K
𝑝
x (𝑘) , 0 ≤ 𝑢

𝑝
(𝑘) ≤ 𝑔

𝑝,max, (40)

the closed loop of intersection system is expressed as follows:

x (𝑘 + 1) =

𝑃

∑

𝑝=1

𝜂
𝑝
(𝑘) [A

𝑝
x (𝑘) + C

𝑝
] ,

0 ≤ K
𝑝
x (𝑘) ≤ 𝑔

𝑝,max,

(41)

where A
𝑝
= I + B

𝑝
K
𝑝
.

Furthermore, following philosophy of positive and dissi-
pative control for intersection in previous section, the posi-
tivity, dissipativity, and control constraint are guaranteed by
the following steps.

Positivity. Based on Lemma 2, it is easy to see that the
following condition is required to ensure the positivity:

I + B
𝑝
K
𝑝
⪰ 0, ∀𝑝 ∈ P. (42)

Dissipativity. Since the storage function is 𝑆(𝑘) = e𝑇x(𝑘),
where e𝑇 = [1 1 ⋅ ⋅ ⋅ 1], and supply rate is

𝜃 (𝑘) =

𝑃

∑

𝑝=1

𝜂
𝑝
(𝑘) 𝜃
𝑝
(𝑘) =

𝑃

∑

𝑝=1

𝜂
𝑝
(𝑘) [𝐴

𝑝
(𝑘) − 𝐷

𝑝
(𝑘)] , (43)

where 𝐴
𝑝
(𝑘) = 𝑔

𝑝
(𝑘)∑
𝑃

𝑖=1
𝑞
𝑖
= K
𝑝
x(𝑘)∑𝑃

𝑖=1
𝑞
𝑖
and 𝐷

𝑝
(𝑘) =

∑
𝑖∈I
𝑎

𝑠
𝑖
(𝑔
𝑝
− 𝐿) = ∑

𝑖∈I
𝑎

𝑠
𝑖
[K
𝑝
x(𝑘) − 𝐿]. Furthermore, by

letting 𝛼
𝑝
= K
𝑝
(∑
𝑃

𝑖=1
𝑞
𝑖
−𝑑
𝑝
), 𝛽
𝑝
= 𝑑
𝑝
𝐿, where 𝑑

𝑝
= ∑
𝑖∈I
𝑎

𝑠
𝑖
,

we get 𝜃(𝑘) = ∑
𝑃

𝑝=1
𝜂
𝑝
(𝑘)[𝛼
𝑝
x(𝑘) + 𝛽

𝑝
].

By e𝑇C
𝑝

− 𝛽
1

= [1 1 ⋅ ⋅ ⋅ 1] [𝑐
1

𝑐
2

⋅ ⋅ ⋅ 𝑐
𝑛
]
𝑇

−

𝐿∑
𝑖∈I
𝑎

𝑠
𝑖
= 0, we can obtain e𝑇C

𝑝
− 𝛽
𝑝

≤ 0, ∀𝑝 ∈ P, for
multiphase intersection. Then, on the basis of Corollary 6,
given a scalar 𝜌 ≥ 0, the following condition should be
satisfied to ensure the dissipativity:

e𝑇 (I + B
𝑝
K
𝑝
) − (1 − 𝜌) e𝑇 + 𝛼

𝑝
⪯ 0, ∀𝑝 ∈ P. (44)

Control Constraint. Each movement 𝑥
𝑖
belongs to X

𝑖
= {𝑥 |

0 ≤ 𝑥
𝑖
≤ 𝑥
𝑖,max}, and define convex set as X = {x | 0 ⪯ x ⪯

xmax}, where xmax = [𝑥
1,max 𝑥

2,max ⋅ ⋅ ⋅ 𝑥
𝑛,max]
𝑇; it is easy to

see that there are 𝑁 = 𝑛
2 vertices ofX which are denoted as

v
1
, v
2
, . . . , v

𝑁
. From the constraint set on the green time by

set U
𝑝

= {x | 0 ≤ K
𝑝
x(𝑘) ≤ 𝑔

𝑝,max, x ∈ X}, the following
condition has to be satisfied:

0 ≤ K
𝑝
v
𝑖
≤ 𝑔
𝑝,max, ∀𝑝 ∈ P, ∀𝑖 = 1, 2, . . . , 𝑁. (45)

Summarizing the above steps, the nonaccumulative feed-
back control solution multiphase intersection is presented as
follows.

Proposition 12. Consider the 𝑃-phase intersection system
(37), given a scalar 𝜌 ≥ 0. If there exist 𝑝 feedback gains K

𝑝
,

𝑝 ∈ P, such that

I + B
𝑝
K
𝑝
⪰ 0, ∀𝑝 ∈ P,

e𝑇 (I + B
𝑝
K
𝑝
) − (1 − 𝜌) e𝑇 + 𝛼

𝑝
⪯ 0, ∀𝑝 ∈ P,

0 ≤ K
𝑝
v
𝑖
≤ 𝑔
𝑝,max, ∀𝑝 ∈ P, ∀𝑖 = 1, 2, . . . , 𝑁,

(46)

where vectors 𝛼
𝑝
and v

𝑖
are defined in (44) and (45), respec-

tively, the green times chosen as 𝑔
𝑝
(𝑘) = K

𝑝
x(𝑘), 𝑝 ∈ P, can

guarantee the nonaccumulative performance of the closed loop
system (41).

6. Conclusions

By modeling the intersection into positive switched system,
a dissipativity-based control strategy is proposed for online
traffic signalization in this paper. Through fulfilling the
positivity, dissipativity, and control constraint, an LP problem
based design method is presented. A numerical example is
provided to illustrate our results, and, furthermore, the two-
phase intersection results are extended to multiphase inter-
section. The positive switched system approach provides us
with a new insight on modeling intersection; introducing
other advanced control schemes from positive switched sys-
tem to intersection system is our future work.
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