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The constrained optimizationmethod is employed to calculate the colorant values of the multispectral images. Because the spectral
separation from the 31-dimensional spectral reflectance to low dimensional colorant values is very complex, an inverse process
based on spectral Neugebauer model and constrained optimizationmethod is performed. Firstly, the spectral Neugebauer model is
applied to predict the colorants’ spectral reflectance values, and it ismodified by using theYule-Nielsen 𝑛-value and the effective area
coverages.Then, the spectral reflectance rootmean square (RRMS) error is established as the objective function for the optimization
method, while the colorant values are constrained to 0∼1. At last, when the nonlinear constraints and related parameters are set
appropriately, the colorant values are accurately calculated for the multispectral images corresponding to the minimum RRMS
errors. In the experiment, the colorant errors of the cyan, magenta and yellow inks are all below 2.5% and the average spectral error
is below 5%, which indicate that the precision of the spectral separation method in this paper is acceptable.

1. Introduction

The objective of color reproduction is to obtain the same
visual perception of the original images, and it is mainly
implemented based on themetameric reproduction principle
[1, 2]. However, when the illuminants or observers change,
the color consistency between the original and the hard
copy is hardly maintained. Thus, in many high-accuracy
reproduction areas, the originals are represented as multi-
spectral images, not the common 𝑅𝐺𝐵/𝐶𝑀𝑌𝐾 images [3, 4].
If the image’s spectral information is reproduced correctly, the
hard copy will look the same as the original under different
illuminants.

Within the multispectral image reproduction workflow,
after the spectral reconstruction [5–7] and gamut mapping
process [8–10], the image pixel’s spectral values should be
precisely converted into ink values for printing, while the
conversion process is often defined as spectral separation
[11, 12]. For most printers, the primary inks are cyan,
magenta, yellow, and black; hence the input spectral images’

reflectances are transformed to𝐶𝑀𝑌𝐾 values during spectral
separation.

In fact, as most of the multispectral image pixels are
31-dimensional, it is difficult to calculate the colorant val-
ues from the spectral data straightly. Most of the spectral
separation processes are based on the spectral predication
models and iteration methods. The spectral predication
models can be used to calculate different ink combinations’
spectral values. And the iteration of the separation process
will stop when the image pixel’s spectral matches with the
predicated spectral. Several spectral predication models can
be used for spectral separation, such as multiinterpolation
techniques [13], spectral Neugebauer model [14, 15], Yule-
Nielsen model [16, 17], and Kubelka-Munk model [18, 19].
Because the spectral Neugebauer model uses less sample
colors and often generates acceptable accuracy, it is widely
applied to the spectral separation process. However, there are
many factors which influence the separation accuracy. In this
paper, the spectral Neugebauer model is modified and a non-
linear optimization method is analyzed, in order to improve
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the multispectral image’s spectral separation accuracy for
𝐶𝑀𝑌𝐾 printers.

2. Modification of Spectral Neugebauer Model

2.1. The Expression of Spectral Neugebauer Model. The spec-
tral Neugebauer model is a halftone color predication model,
which calculates the spectral reflectance values within the
visual wavelength from printers’ colorant space. In fact it is
developed fromMurray-Davies model which is a monochro-
matic model [20]. When a primary ink is printed on the
paper, if the spectral reflectance of the solid and substrate are
represented as 𝑅𝜆,𝑡 and 𝑅𝜆,𝑠, respectively, and the patch’s dot
area is given, then its reflectance values �̂�𝜆 can be predicted
by using Murray-Davies model as follows:

�̂�𝜆 = 𝑎𝑡𝑅𝜆,𝑡 + (1 − 𝑎𝑡) 𝑅𝜆,𝑠,
(1)

where𝜆 is thewavelength of light within 400 nm–700 nmand
𝑎𝑡 is the fractional dot area of the printed patch.

When the monochrome Murray-Davies model is
extended to predict color halftones, the spectral Neugebauer
model is generated. Take the cyan, magenta, and yellow
colorants printing, for example; eight possible colors exist
in the halftone patch which are white (bare substrate), cyan,
magenta, yellow, red (magenta + yellow), green (cyan +
yellow), blue (cyan + magenta), and black (cyan + magenta
+ yellow), respectively. These eight halftone colors are
usually defined as Neugebauer primaries. When the spectral
reflectance values of the primaries are measured, the halftone
patch’s overall reflectance can be predicated by using the
spectral Neugebauer model as follows [21]:

�̂�𝜆 =

8

∑

𝑖=1

𝑤𝑖𝑅𝜆,𝑖, (2)

where𝑅𝜆,𝑖 is the 𝑖thNeugebauer primary’s reflectance value at
full colorant coverage, and𝑤𝑖 is the corresponding weighting
factor calculated by the dot areas of the cyan, magenta, and
yellow inks. If 𝑐, 𝑚, and 𝑦 represent the cyan, magenta, and
yellow inks’ area coverage, respectively, the eight Neugebauer
primaries’ weighting factors can be deduced using Demichel
equations, and the full expression of (2) is written as follows:

�̂�𝜆 = (1 − 𝑐) (1 − 𝑚) (1 − 𝑦) 𝑅𝜆,𝑊 + 𝑐 (1 − 𝑚) (1 − 𝑦) 𝑅𝜆,𝐶

+ (1 − 𝑐)𝑚 (1 − 𝑦) 𝑅𝜆,𝑀 + (1 − 𝑐) (1 − 𝑚) 𝑦𝑅𝜆,𝑌

+ (1 − 𝑐)𝑚𝑦𝑅𝜆,𝑅 + 𝑐 (1 − 𝑚) 𝑦𝑅𝜆,𝐺

+ 𝑐𝑚 (1 − 𝑦) 𝑅𝜆,𝐵 + 𝑐𝑚𝑦𝑅𝜆,𝐾.

(3)

When the 𝐶𝑀𝑌 three-color spectral Neugebauer model is
extended to 𝐶𝑀𝑌𝐾 four colors, there are 16 Neugebauer
primaries, and the weighting factors are listed in Table 1 (𝑐,
𝑚, 𝑦, and 𝑘 represent the cyan, magenta, yellow, and black
ink’s area coverage).

Table 1: The respective fractional area coverages of the CMYK
combinations.

Index Weighting factor Fractional area coverage
1 𝑤𝑤 (1 − 𝑐) ∗ (1 − 𝑚) ∗ (1 − 𝑦) ∗ (1 − 𝑘)

2 𝑤𝑐 𝑐 ∗ (1 − 𝑚) ∗ (1 − 𝑦) ∗ (1 − 𝑘)

3 𝑤𝑚 (1 − 𝑐) ∗ 𝑚 ∗ (1 − 𝑦) ∗ (1 − 𝑘)

4 𝑤𝑦 (1 − 𝑐) ∗ (1 − 𝑚) ∗ 𝑦 ∗ (1 − 𝑘)

5 𝑤𝑘 (1 − 𝑐) ∗ (1 − 𝑚) ∗ (1 − 𝑦) ∗ 𝑘

6 𝑤𝑐𝑚 𝑐 ∗ 𝑚 ∗ (1 − 𝑦) ∗ (1 − 𝑘)

7 𝑤𝑐𝑦 𝑐 ∗ (1 − 𝑚) ∗ 𝑦 ∗ (1 − 𝑘)

8 𝑤𝑚𝑦 (1 − 𝑐) ∗ 𝑚 ∗ 𝑦 ∗ (1 − 𝑘)

9 𝑤𝑐𝑚𝑦 𝐶 ∗ 𝑚 ∗ 𝑦 ∗ (1 − 𝑘)

10 𝑤𝑐𝑘 𝑐 ∗ (1 − 𝑚) ∗ (1 − 𝑦) ∗ 𝑘

11 𝑤𝑚𝑘 (1 − 𝑐) ∗ 𝑚 ∗ (1 − 𝑦) ∗ 𝑘

12 𝑤𝑦𝑘 (1 − 𝑐) ∗ (1 − 𝑚) ∗ 𝑦 ∗ 𝑘

13 𝑤𝑐𝑚𝑘 𝑐 ∗ 𝑚 ∗ 𝑦 ∗ (1 − 𝑘)

14 𝑤𝑐𝑦𝑘 𝑐 ∗ (1 − 𝑚) ∗ 𝑦 ∗ 𝑘

15 𝑤𝑚𝑦𝑘 (1 − 𝑐) ∗ 𝑚 ∗ 𝑦 ∗ 𝑘

16 𝑤𝑐𝑚𝑦𝑘 𝑐 ∗ 𝑚 ∗ 𝑦 ∗ 𝑘

In fact, the spectral Neugebauer model is also suitable for
multi-ink color systems. If𝑝 colorants are included as follows:

𝑐 = [𝑐1, . . . , 𝑐𝑗, . . . , 𝑐𝑝]

𝑇

𝑐𝑗 ∈ [0, 1] for 𝑗 ∈ {1, . . . , 𝑝} , (4)

there will be 2𝑝 Neugebauer primaries, and their weighting
factors can be determined by the following equation [11, 22]:

𝑤𝑖 =

𝑝

∏

𝑗=1

{
{

{
{

{

𝑐𝑗;

if colorant 𝑗 is part of
the 𝑖th Neugebauer primary,

(1 − 𝑐𝑗) ; else.
(5)

It can be concluded that the primaries’ area coverages are
expressed as fractions of the total area, and they satisfy the
constraint ∑2

𝑝

𝑖=1
𝑤𝑖 = 1.

Because there are only eightNeugebauer primaries within
the spectral Neugebauer model for three-color printers, the
predication accuracy is very limited. In order to employ
more measured halftone patches as Neugebauer primaries,
the cellular spectral Neugebauer model is frequently used
in which the colorant space is divided into more cellular
subdomains [23]. For example, when the individual ink’s area
coverages are partitioned into two parts with three points
[0%, 50%, and 100%], the𝐶𝑀𝑌 colorant space will be divided
into eight cellular subdomains.

2.2. The Optimization of Spectral Neugebauer Model. There
are actually several reasons which decrease the predica-
tion accuracy of the spectral Neugebauer model, such as
the dot gain, light scattering and penetration, and nonlin-
earity between the summed and the individual primaries’
reflectances. For the purpose of reducing the influence
of these factors, some optimization approaches should be
performed.
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2.2.1. Calculating the Effective Area Coverage Values. Within
the spectral Neugebauer model, the colorants’ area coverages
are employed to calculate the primaries’ weighting factors;
thus the spectral predication accuracy is highly dependent
on these area coverage values, and it is significant to obtain
their optimal values. For halftone color reproduction images,
the change in dot diameter is the critical factor for the print
image transfer, and these changes usually lead to tonal and
color shifts. For a monochrome halftone patch, its spectral
reflectance is usually calculated from the remitted light
reflectance of solid and halftone areas as follows:

𝑎𝑡 =

𝑅𝜆,𝑚 − 𝑅𝜆,𝑠

𝑅𝜆,𝑡 − 𝑅𝜆,𝑠

, (6)

where 𝑎𝑡 is the predicted area coverage and 𝑅𝜆,𝑚 is the
measured reflectance values of the halftone patch. Because
the reflectance values change with the wavelength, the min-
imum reflectance value within 400 nm∼700 nm is usually
used. Actually in conventional printing techniques, a widely
adopted form of area coverage is deduced from the optical
density values and (6) is written as

𝑎𝑡 =

1 − 10
−𝐷𝑟

1 − 10
−𝐷𝑡
, (7)

where 𝐷𝑡 is the optical density of solid tone, and 𝐷𝑟 is the
halftone optical density.

When the halftone patch ismeasuredwith a densitometer,
it is not the geometrical area coverage (the ratio between dots
and white paper on the measuring patch), but the “optically
effective area coverage.” The difference between geometric
and optically effective area coverage is due to the fact of light
penetration and trapping. For example, as shown in Figure 1,
part of the arriving light penetrates into the paper between
the dots at the unprinted areas and are trapped under the
dots during reflection; thus this light seems to be absorbed
(as shown in Figure 1) [24].

The above phenomenon is called “light gathering,” and
it causes the dots to appear optically larger than they are in
reality. For this reason, the optically effective area coverage
consists of the geometric area coverage and the optical area
gain.The optical area gain is usually defined as dot gain value
increase, and it is calculated from the area coverage of the film
as a master for platemaking and the tone value printed on the
substrate via the printing form. The area coverage of the film
(or the pixel values after color separation for Computer-to-
Plate techniques) is called theoretical value 𝑎𝑡, and the printed
halftone’s area coverage is the effective value 𝑎eff; thus the dot
gain 𝑍 is 𝑍 = 𝑎eff − 𝑎𝑡. In fact, dot gain essentially depends
on the paper’s surface and its absorption/ink setting behavior,
the ink rheology, the blanket, printing pressure, and so on.

In order to acquire the real area coverage for the spectral
Neugebauer model, all the spectral reflectance values within
the visual wavelength are considered during the effective area
coverage calculation. By using the least squares analysis, (6)
is described into a spectral form:

𝑎eff = (𝑅𝜆,𝑚 − 𝑅𝜆,𝑠) (𝑅𝜆,𝑡 − 𝑅𝜆,𝑠)
𝑇

× [(𝑅𝜆,𝑡 − 𝑅𝜆,𝑠) (𝑅𝜆,𝑡 − 𝑅𝜆,𝑠)
𝑇
]

−1

.

(8)

Ink

Paper

Figure 1: Light gathering in the area of the inked paper surface.

As we measure the reflectance from 400 nm to 700 nm with
the interval of 10 nm, all the reflectance terms above are 1
× 31 row vectors, while the superscripts 𝑇 and −1 indicate
matrix transpose and inverse, respectively. Because most of
the reflectances within 400nm–700nm are involved during
effective area coverage calculation in (8), it is usually more
precise than (6) and (7), and we use this equation for spectral
predication in the experiment.

2.2.2. Calculating the Optimal 𝑛-Values. As a result of light
penetration and scattering effect, the relationship between
measured and predicted reflectance is nonlinear for the
Murray-Davies and spectralNeugebauermodels. An effective
solution for this problem is to add an exponent 1/𝑛 to the
reflectance values, which is developed by Yule and Nielsen
[25]. Taking the Murray-Davies model, for example, the
modified form can be described as follows:

�̂�𝜆 = [𝑎eff𝑅
1/𝑛

𝜆,𝑡
+ (1 − 𝑎eff) 𝑅

1/𝑛

𝜆,𝑠
]

𝑛

, (9)

where 𝑎eff is the effective area coverage value and 𝑛 is a
parameter accounting for light spreading in paper, and it
is referred to as the Yule-Nielsen 𝑛-value. Generally, the
modified Yule-Nielsen model is more accurate than the
original Murray-Davies model. Likewise, the Yule-Nielsen
model can be extended to the spectral Neugebauer model,
which is called Yule-Nielsen spectral Neugebauer (YNSN)
model as follows:

�̂�𝜆 = [

8

∑

𝑖=1

𝑤𝑖𝑅
1/𝑛

𝜆,𝑖
]

𝑛

. (10)

Because the 𝑛-value is not a constant, it is significant to
acquire the optimal value for the specific halftone patches.
Pearson [26] recommended using 𝑛 = 1.7 by testing a variety
of substrates, halftone screens, and area coverages, and most
of his experiment results showed that using 𝑛 = 1.7 always
improved performance over using 𝑛 = 1. However, Wyble
and Berns have noted that values of 𝑛 greater than 2 are often
required for modern, high-resolution printers [27]. Arney et
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Figure 2: Diagram of spectral separation process based on optimization method.

al. [28] analyzed the process of light spreading in paper and
approximated 𝑛-value as

𝑛 = 2 − 𝑒
−𝐴𝑘

V
𝑝
, (11)

where𝐴 is a constant relating to dot geometry, 𝑘𝑝 is a constant
relating to modulation transfer function, and V is the halftone
dot frequency in dots per millimeter. In addition, Shiraiwa
andMizuno interpreted the 𝑛-value in another form [29], and
(9) is modified as follows based on it:

�̂�𝜆 = [𝑎eff(𝑅𝜆,𝑠𝑇
𝑛

𝜆
)
1/𝑛
+ (1 − 𝑎eff) 𝑅

1/𝑛

𝜆,𝑠
]

𝑛

, (12)

where the solid ink’s reflectance 𝑅𝜆,𝑡 is replaced by the term
𝑅𝜆,𝑡𝑇
𝑛

𝜆
and 𝑇𝜆 is the ink transmittance. It should be noted

that this model is valid only for integer values of 𝑛-value, and
the overall effect of this is to make the predicted reflectance
lower, which is consistent with the fact that the Murray-
Davies model overpredicts reflectance values.

In this paper, we use a spectral-error-comparing method
to find the optimal 𝑛-value. Firstly, the YNSN model is
established with the 𝑛-value initialized from 1, and then a
certain number of testing patches are selected to calculate the
YNSN model’s spectral error. We set 𝑛-value ranging from 1
to 5 with the increment Δ𝑛 = 0.1; thus when all the spectral
errors of different 𝑛-values are obtained and compared, the
optimal value is determined corresponding to the minimal
spectral error.

3. Spectral Separation Based on
Constrained Optimization Method

For 𝐶𝑀𝑌𝐾 printers, it is very difficult to convert the 31-
dimensional spectral reflectances into the 4-dimensional
𝐶𝑀𝑌𝐾 colorant values. However, as the 31-D spectral
reflectance can be precisely predicted from 𝐶𝑀𝑌𝐾 values by
spectral Neugebauer model, it is more feasible to convert the
spectral separation process into the constrained optimization
process based on the spectral predication model. Actually,
the spectral separation is an iteration process, where the
optimal 𝐶𝑀𝑌𝐾 values are continually searched until the
predicated spectral values match well with the given spectral
reflectances. Generally, the spectral separation workflow
based on constrained optimization method can be described
as in Figure 2.

It can be seen from the separation workflow that the
objective function and the nonlinear constraints should be
accurately defined for the optimization problem. Because
the major purpose for printing multispectral images is to
reproduce the same spectral reflectance values, the objective
function is defined as the spectral reflectance error:

Δ𝑅𝜆 =






�̂�𝜆,𝐶𝑀𝑌𝐾 − 𝑅𝜆,image






, (13)

where �̂�𝜆,𝐶𝑀𝑌𝐾 is predicated reflectance values using YNSN
model and 𝑅𝜆,image is the multispectral image’s reflectance
values. The iteration process in Figure 2 will stop when
the difference of (13) is smaller than a threshold value 𝜀
predefined.

In addition, as the colorant values have the specific scale
range, the nonlinear constraints can be defined as follows:

0 ≤ 𝑎eff ≤ 1, ∑𝑎eff ≤ 𝑎limit, (14)

where 𝑎 = {𝑐,𝑚, 𝑦, 𝑘}, and 𝑎limit represents the limit of the
total ink amount. Thus, the nonlinear optimization process
for spectral separation is described as

min 




�̂�𝜆,𝐶𝑀𝑌𝐾 − 𝑅𝜆,image







s.t. 𝑎eff ∈ [0, 1] ,

∑𝑎eff ≤ 𝑎limit.

(15)

It should be noted that the use of an optimization
technique may lead to a nonoptimal solution (e.g., a local
minimum will stop the iteration process) as Mahy and
Delabastita presented [30]. Thus, Gerhardt and Hardeberg
[11] analyzed the parameters which determined the right
colorant combination obtained, including the limitations on
the minimum difference between the desired value and its
estimation, difference between colorant values in successive
iterations, and initial guess values to start the iterative search.

4. Experiment and Analysis

In the experiment, the cyan, magenta, and yellow inks are
used to print the multispectral images, and the three-color
spectral Neugebauer model is employed for spectral pred-
ication. The halftone patches are printed with a HP digital
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Table 2: The colorant and spectral reflectance error for 50 testing halftone samples.

ΔC ΔM ΔY Δ𝐸
𝑐𝑚𝑦

RRMS
Avg. (error) 1.43 2.26 2.21 3.85 0.0047
Std. (error) 0.98 1.54 2.00 2.13 0.0030
Max. (error) 4.54 6.07 7.23 9.86 0.0128
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Figure 3: Spectral reflectance data of eight Neugebauer primaries.

printer, and the spectral reflectance values are measured
with an X-Rite 530 spectrophotometer with geometry (𝑑: 10∘)
under aD65 illuminant. Take the eight Neugebauer primaries
of 𝐶𝑀𝑌 space, for example, the spectral reflectances within
400 nm–700 nm are illustrated as in Figure 3.

Besides, 50 testing halftone patches are selected to test the
spectral separation method in the paper. Firstly, the testing
patches are printed with the defined ink values 𝐶1𝑀1𝑌1,
and then the spectral reflectance values 𝑅𝜆,1 are measured.
Secondly, by using the spectral separation method described
in Sections 2 and 3, new ink values 𝐶2𝑀2𝑌2 are calculated
from the measured spectral reflectance 𝑅𝜆,1. At last, when
these 𝐶2𝑀2𝑌2 values are printed and measured, new spectral
reflectance values 𝑅𝜆,2 are obtained. The difference of 𝐶𝑀𝑌
values between 𝐶1𝑀1𝑌1 and 𝐶2𝑀2𝑌2 and the spectral error
between 𝑅𝜆,1 and 𝑅𝜆,2 are calculated to test the separation
accuracy [23, 31].The𝐶𝑀𝑌 ink difference and the reflectance
error are expressed as follows:

Δ𝐸𝐶𝑀𝑌 =
√
Δ𝐶
2
+ Δ𝑀

2
+ Δ𝑌
2
, (16)

where Δ𝐶 = |𝐶1 −𝐶2|, Δ𝑀 = |𝑀1 −𝑀2|, and Δ𝑌 = |𝑌1 −𝑌2|.
While for the spectral errors, the reflectance rootmean square
(RRMS) difference is represented as

RRMS = √
∑
𝜆
[𝑅𝜆,1 − 𝑅𝜆,2]

2

𝑁

,
(17)

where 𝑁 is the dimensionality of spectral reflectance, 𝑅𝜆,1
is the input and given reflectance values, and 𝑅𝜆,2 is newly
predicted 𝐶𝑀𝑌 inks’ reflectance values, and they are both
scaled to 0∼1. The RRMS error reveals the matching degree
of two spectral reflectance values, so it may favorably evaluate
the precision of spectral separation method.

In Table 2 the errors in the form of Δ𝐶, Δ𝑀, Δ𝑌, and
RRMS are listed, where the Avg(Error) represents the average
of the errors, Std(Error) is the standard deviation of the
errors, and Max(Error) is the maximum of the errors.

From Table 2, it can be seen that the differences of ink
values are about 2%, and most of the spectral reflectance
errors are below 5%, which indicates that the accuracy of the
spectral separationmethod in this paper is acceptable. For all
the 50 testing halftone patches, the colorant errors of cyan,
magenta, and yellow inks are shown in Figure 4.

The spectral reflectance error is depicted in Figures 5 and
6. In Figure 5, the distribution of RRMS errors for 50 halftone
patches is listed, while, in Figure 6, the original and newly
separated spectral reflectance values are compared, and it can
be seen that these two figures match very well.

5. Conclusions

The spectral separation algorithm is significant for the multi-
spectral image printing devices, which can calculate the accu-
rate colorant values. In the traditional printing process, the
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Figure 4: Colorant errors of cyan, magenta, and yellow inks.
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(b) New reflectance values by spectral separation

Figure 6: Comparison of the original and newly separated spectral values of the 50 testing samples.

multispectral images are firstly converted into the CIE color
values under specific illuminant, and then the colorant values
are calculated from the CIE colors. Because the connection
space is the 3-dimentional CIEXYZ or CIELAB under one
illuminant, the original and reproducedmultispectral images
cannot keep same color appearance under different observing
circumstances. In this paper, the spectral separation method
is employed to calculate the spectral reflectance’s colorant
values and the purpose of which is to generate the identical
spectral values of the input multispectral images. Thus, the
original and reproduced images reveal the same visual colors
under different illuminants. The accuracy of the spectral
separation method is evaluated in the experiment. The
experiment results show that the colorants errors of three
inks are about 2%, and the average spectral error is below
5%,which can guarantee the spectral consistence between the
original and the printed multispectral images.
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