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This paper presents a novel fuzzy enhancement technique using simulated ergodic fuzzy Markov chains for low contrast brain
magnetic resonance imaging (MRI). The fuzzy image contrast enhancement is proposed by weighted fuzzy expected value. The
membership values are then modified to enhance the image using ergodic fuzzy Markov chains. The qualitative performance of the
proposed method is compared to another method in which ergodic fuzzy Markov chains are not considered. The proposed method

produces better quality image.

1. Introduction

Fuzzy set theory is useful in managing various uncertainties
in computer vision and image processing applications. Fuzzy
image processing is a collection of different fuzzy methods
to image processing that can comprehend, characterize, and
process the images. It has two main phases, namely, image
fuzzification and modification of membership values.

Image enhancement for brightness transformation valid
in many practical cases can be position brightness correction
and gray-scale transformation. Position brightness correction
adjusts the pixel brightness by taking into account the pixel
position in the image. Gray-scale transformation changes the
pixel brightness, but it does not take into account the position
of the pixels in the image. Gray-scale transformation is just a
transformation of the gray scale to another scale to increase
the contrast. The purpose of the transformation is to improve
the visual appearance of an image.

There are many research works on image enhancement
[1, 2], but in this paper we focus on ergodic fuzzy Markov
chains for image enhancement.

Avrachenkov and Sanchez [3] introduced fuzzy Markov
chains with a transition possibility measure and a general
state space. Also, Kalenatic et al. [4] presented a simulation
study on fuzzy Markov chains to identify some character-
istics about their behavior, based on matrix analysis. All

the aforementioned investigations show that fuzzy Markov
chains have a periodic behavior. We improved behavior of
fuzzy Markov chains using Halton sequences and simulated
ergodic fuzzy Markov chains [5]. In this paper, we apply
our technique of simulating ergodic fuzzy Markov chains for
generating membership values of pixels. Enhancement using
ergodic fuzzy Markov chains will improve the quality of the
image and provide a clear image to the human observer.

The overall approach of the paper follows. We consider
a low quality fuzzy image with M x N pixels (x;;; i =
0,1---M —-1,j = 0,1---N — 1). We then obtain the value
of threshold T of the fuzzy image. The main and novel idea
to enhance the image contrast is to consider a pixel as a new
image and subdivide it to n x n pixels. To simulate these nx n
pixels we employ the ergodic fuzzy Markov chains and their
transition matrix. For a particular pixel, its related n x n
matrix entries represent membership values of gray levels of
the pixel. To increase the image contrast of each pixel using
subdivided pixel we use the weighted fuzzy expected value
approach based on transition matrix entries of ergodic fuzzy
Markov chain. We show that proposed method produces
better quality images compared to the fuzzy expected value
method given in [1].

In Section2, we discuss the fuzzy image contrast
enhancement. In Section 3, we define the similarity measure
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FIGURE 1: Brain MRI and its histogram of gray levels.

and distance measure, and then in Section 4 we review
ergodic fuzzy Markov chains. The main result of this paper
is presented in Section 5 followed by a simulation study in
Section 6. Section 7 shows the performance of our new results
based on fuzzy image contrast enhancement using simulated
ergodic fuzzy Markov chains. Comparison of our result with
original MR image is also presented.

2. Image as a Fuzzy Set, Threshold Technique,
and Fuzzy Image Contrast Enhancement

The application of fuzzy set theory in image processing took
formal shape only in the 1980s with the pioneering research
carried out by Pal et al. [6] and Pal and Rosenfeld [2].

2.1. Image as a Fuzzy Set. The pixel values, which establish
an image, may not be accurate and there is basically an
intrinsic imprecision or uncertainty embedded in a digital
image. While trying to design automated systems for scene
analysis and explanation, it may be a good idea to consider
the fact that a computer vision system is usually embedded
with uncertainty and vagueness, which needs to be taken care
of suitably. Proper modeling of this imprecision appearing
in a physical phenomenon is an important mission in many
applications of image processing.

Let A be an image of size M x N having L levels
and x;; the gray level at the pixel position value of the
pixels of the image A with 0 < p,(x;) < 1, where
#4(x;;) = 1 denotes full membership and p, (x;;) = 0 denotes
nonmembership. Intermediate degrees are graded accord-
ingly. Membership values represent the information, say, for
example, the brightness, of the pixel at position (i, j). In fuzzy
set theory, an image can be represented as [7]

M-1N-1

' Z [0t (x)]

i=0 j=0 (1)
inj €A, i=0,1,2,...,M-1,j=0,1,2,...,N- 1

Equation (1) interprets the characteristics of an image
with M x N pixels. The double summations in (1) just refer to
a collection of pixels and their membership values not a crisp
mathematical summation.

2.2. Fuzzy Threshold Technique. Thresholding is an operation
that involves tests against a function T' of the form

T =T ju(j), £ f)) 2)

where f (i, j) is the gray level of pixel (i, ) and u(i, j) denotes
some local property of this point. A threshold image g(i, j) is
defined as

a1 i f( ) > T
g(”])‘{o if £(i,j)<T. 3)

Thus, pixels label 1 (or any other gray level) correspond to
objects. However pixels label 0 (or any other gray level not
assigned to objects) correspond to the background. When T
depends only on f(i, j) (that is, only on gray level values)
the threshold is called global. If T depends on both f(i, j)
and u(i, j), the threshold is called local. If, in addition, T
depends on the spatial coordinates i and j, the threshold is
called dynamic or adaptive [7].

Figure 1 captures an MR image, which is not transparent.
Its histogram drawn in MATLAB by using pixels properties
and their gray levels is also given in this figure. Figures 2 and 3
demonstrate tumor and abdomen images and their related
histograms, respectively. As shown in the histograms, in all
the cases the ratio of bright pixels to dark ones is low [8, 9].

2.3. Fuzzy Image Contrast Enhancement. Fuzzy image con-
trast enhancement is established on gray level mapping from
a gray plane into a fuzzy plane using a membership value.
It uses the principle of contrast stretching where the image
gray levels are transformed in such a way that dark pixels
appear much darker and bright pixels appear much brighter.
The principle of contrast stretching depends on the selection
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FIGURE 2: Tumor image and its histogram of gray levels.
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FIGURE 3: Abdomen image and its histogram of gray levels.

of threshold, T, so that the gray levels below the threshold
T are reduced and the gray levels above the threshold T are
increased in a nonlinear manner. This stretching operation
induces saturation at both ends (gray levels):

1-b)x x>t
CONT (x) = 3 x x=t, (4)
(1+a)x x<t.

CONT(x) is an intensifier stretching that transforms a gray
level x to an intensified level. a, b are the levels between 0 and
1 that decide the percentage stretching of gray level x for a
certain threshold “t”

Fuzzy methods for contrast enhancement employ mem-
bership values u(x) to know the degree of brightness or
darkness of the pixels in an image. So, ergodic fuzzy Markov
chains are used to find the membership values of the pixels in
an image that lies in the interval [0, 1] using any membership
value. Then, elements of transition possibility matrix of
ergodic fuzzy Markov chains are applied on the membership

values to generate new membership values of the pixels in the
image [1].

3. Fuzzy Similarity and Distance Measure

In this section, fuzzy distance measure is described using
fuzzy set theory. Fuzzy distance measure is studied by many
authors [10, 11]. We consider a universal set X and F(X) to
be a fuzzy set. Let P(X) be the class of all crisp sets of X.
Also, consider two fuzzy sets, A and B, such that A, B € F(X).
The properties of distance measure between two fuzzy sets A
and B with membership values p14 (x) and pg(x) are given as
follows [10].

3.1 Distance Measure. A function D : F(X)* — [0, 00] is
called a distance measure if it satisfies the following proper-
ties.

(1) One has D(A, B) = D(B, A), VA, B € F(X).



(2) For three fuzzy sets A,B,C VA,B,C € F(X),if A ¢
B ¢ Cthen D (A,B) < D (A,C) and D(B,C) <
D(A,C).

(3) One has D(A, A) =0, VA € F(X).

(4) One has D(C,C) = max gepx)D(A, B), VC €
P(X).

For example, consider two fuzzy sets A and B in a finite
X = {xy,x5,...,x,} with p, (x) and pp(x) as the membership
value of sets A and B, respectively. The distance measures are
as follow.

Hamming Distance. The Hamming distance between two
fuzzy sets A and B is given as

d(A,B) =) | (x;) = pp ()] (5)

i=1

Euclidean Distance. The Euclidean distance between two
fuzzy sets A and B is given as

d(A,B) = \ji(.‘"A (x;) - (x7))’. (6)

i=1

4. Ergodic Fuzzy Markov Chains

Let S = {1,2,...,n}. A finite fuzzy set on S is defined by
a mapping x from S to [0, 1] represented by a vector x =
{x1, %5, ..,x,}, with 0 < x; < 1,7 € S. Here, x; is the
membership function that a state i has regarding a fuzzy set
S,i € S. A fuzzy transition possibility matrix P is defined in
a metric space S x S by a matrix {[/l,j}:j:l with 0 < p;; < 1,
i, j € S. ;; is the membership value [5].

We note that it does not need elements of each row of the
matrix P to sum up to one. This fuzzy matrix P allows defining
all relations among the m states of the fuzzy Markov chain at
each time instant ¢, as follows [3].

At each instant ¢, t = 1,2---], the state of system is
described by the fuzzy set x*). The transition law of a fuzzy
Markov chain is given by the fuzzy relational matrix P at
instant¢,¢ = 1,2-- -1, as follows:

(t+1) _ . 0 .
X; —q)easx{mln{xj ,yij}}, jeS,

(7)

XD _ 0 p
where i and j, i,j = 1,2,...,n, are the initial and final states
of the transition and x' is the initial distribution. Also,
t . t—1 ..
Hyj = max {mln {Mz’kh"lkj H’> hj€s,

(8)
P'=po.p,

Thomason in [12] shows that the powers of a fuzzy matrix
are stable over the max-min operator. More information
about powers of a fuzzy matrix can be found in [13]. Now, a
stationary distribution of a fuzzy matrix is defined as follows.
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Definition 1. Let the powers of the fuzzy transition matrix
P converge in 7 steps to a nonperiodic solution; then the
associated fuzzy Markov chain is called aperiodic fuzzy
Markov chain and P* = P7 is its stationary fuzzy transition
matrix.

Definition 2. A fuzzy Markov chain is called strong ergodic if
itisaperiodic and its stationary transition matrix has identical
rows.

A fuzzy Markov chain is called weakly ergodic if it is
aperiodic and its stationary transition matrix is stable with
no identical rows.

We simulated ergodic fuzzy Markov chains using Halton
sequences [5] and make use of them to simulate fuzzy image
enhancement. Elements of transition possibility matrix of
ergodic fuzzy Markov chains are applied on the membership
values to generate new membership values of the pixels in
the image. For example y,s = 0.5 in transition possibility
matrix of ergodic fuzzy Markov chains corresponding to
image means that the membership value of gray pixel (4, 5)
is 0.6.

Note. Every pixel x;; in (1) is considered again as an image
with n x n pixels and is simulated by using transition matrix
of ergodic fuzzy Markov chains. For examples the matrix of a
pixel is shown as follows.

In Figure 4 we have 8 x 8 pixels represented by 8 x 8
matrix.

5. Fuzzy Image Contrast Enhancement Using
Ergodic Fuzzy Markov Chains

In recent years, many researchers have applied various fuzzy
methods for contrast enhancement [1]. In this paper, we
discuss fuzzy expected value method. Fuzzy expected value
replaces the mean and median value when treating fuzzy sets.
Instead of calculating the average value of a set of numbers,
we evaluated a more representative value of a set. This value
would indicate a typical grade of membership of a fuzzy set.

Consider a fuzzy set A in a finite set X = {x;,x,...,x,}
with a membership value p4 : [0,1].

Let & = {x | pa(x) = T}, 0 < T < 1, represent a
subset whose elements are above or equal to the value of the
threshold T [7]. Then the fuzzy measure defined on the fuzzy
subset is

{number of elements x : p, (x) > T} )

v (§r) = N >

where N is the number of elements in a set. The fuzzy
expected value of i, (x) over the fuzzy set is

fuzzy expected value = FEV = sup {min {T,v (&;)}}.
0<T<1
(10)

But FEV does not generate a typical value in some
cases. We suggested weighted fuzzy expected value [14] using
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0 0.071 0.142 0.214 0.285 0.357 0.428 0.500
0.071 0.142 0.214 0.285 0.357 0.428 0.500 0.571
0.142 0.214 0.285 0.357 0.428 0.500 0.571 0.642
0.214 0.285 0.357 0.428 0.500 0.571 0.642 0.714
0.285 0.357 0.428 0.500 0.571 0.642 0.714 0.785
0.357 0.428 0.500 0.571 0.642 0.714 0.785 0.857
0.428 0.500 0.571 0.642 0.714 0.785 0.857 0.928
0.500 0.571 0.642 0.714 0.785 0.857 0.928 1
FIGURE 4
TABLE 1 with x,,, = F(x,)(s,,;, = F(s,)), where x, = FEV. This
Pixel number " WEFEV is used for image enhancement, and when applied
- a on the gray level represents the most typical gray level. For
' # i ;> we use ergodic fuzzy Markov chains, which in the last
J H; M simulated by Halton sequences in [5] and use their fuzzy

ergodic fuzzy Markov chains, which gives most typical value
of the membership value y, where weights are applied. The
weight is calculated as follows.

Consider the two pixels in Table 1, where g, is the mem-
bership value of the kth gray level and 1 is the frequency of
occurrence of kth gray level.

Suppose a variational sampling ( (5211;;22’:;3) ) is given,
Wi = pa(x;), i = 1,2,...,n are the membership values of
some fuzzy set A C X, w(x) is a nonnegative monotonically
decreasing function defined over the interval [0, 1], and A >
1 is a real number. Consider the following equation with
respect to s:

s= (e (lw = sl)m) + e (|1, - s|)m;

teet an(lll/ln - Sl) ””2)
(11)

X (w (Jus = 5)) mi” +w(|uy —s]) mé‘

+otw(|u, - s|)mﬁ)_1.

The solution of (11) is called the weighted fuzzy expected
value (WFEV) of order A with the attached weight function w
of membership values (4, 4, . .. u,,). The parameter A meas-
ures the dependence of frequencies of population pixels on
the WEEV.

Now, we apply WFEV and simulated ergodic fuzzy
Markov chains corresponding to image. Each element of tran-
sition possibility matrix of ergodic fuzzy Markov chains is ;.

Suppose that the WFEV for w(|y; — s|) = el ) =2,
so = FEV is given by the following form:

L1 (lsl), A
_ zi:O uie e mi (12)
L-1  (—|y.— i
ST oClish

wherei =0,1,2,...,L — 1is the gray levels. The equation for

« »

s” is in the form x = F(x) and is solved iteratively starting

transition matrix corresponding to each pixel of the image.
We note that elements of fuzzy transition possibility matrix
are membership values of gray levels.

If y is a simulated gray level corresponding to the WFEV
or the FEV and g; is the gray level, then the distance measure
between y and gray level g; is given by

D; = \(y)’ - (g)". (13)
The new gray level g/ is computed as
max (0,y — D;), gi<v,i=0,1,2,...,y-1

min(L-Ly+D;), g >y, i=y+1,...,L—-1
14 otherwise

g =
(14)

where g/ are the final contrast enhanced image using WFEV
and ergodic fuzzy Markov chains.

5.1. Algorithm. The algorithm of our approach is as follows.

(1) Read the original image.
(2) Represent image as a fuzzy set using (1).
(3) Represent each pixel x;; as a n x n matrix.

(4) Simulate the membership values, that is, matrix
entries y;, by using ergodic fuzzy Markov chains
implemented in [5].

(5) Obtain the value of threshold T using [15].
(6) Compute FEV; then set s, := FEV.

(7) Put s, = F(s,), in which F(s,) =
Zf‘;ol Mie(’l.‘"i’snl)m?/ Zf‘;@l e(*|}4i’5n|)ml{\’ (WFEV)

(8) Obtain w(&;) using (9).
(9) Using (13) simulate the new gray level g;.
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FIGURE 5: Contrast enhancement of brain MRI using FEV and its histogram.
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FIGURE 6: Contrast enhancement of brain MRI using WFEV and ergodic fuzzy Markov chains and its histogram.
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FIGURE 7: Contrast enhancement of tumor image using FEV and its histogram.
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FIGURE 8: Contrast enhancement of tumor image using WFEV and ergodic fuzzy Markov chains and its histogram.
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FIGURE 9: Contrast enhancement of abdomen image using FEV and its histogram.
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FI1GURE 10: Contrast enhancement of abdomen image using WFEV and ergodic fuzzy Markov chains and its histogram.

6. Simulation

Consider a low contrast image. We apply FEV and WFEV
methods to improve the image contrast. These methods are
presented in the last section. In our proposed approach,
considering each pixel as a new image and simulating
membership values of pixel using the transition matrix of

ergodic fuzzy Markov chain and applying WFEV method,
we would enhance the image contrast. Figure5 and its
related histogram depict the contrast enhancement of the
image using FEV method. Figure 6 also shows the same
improvement in image contrast using WFEV and ergodic
fuzzy Markov chains. As shown in histograms, the number
of dark pixels in Figure 5 is less than those in Figure 2, and



the number of dark pixels in Figure 6 is less than those in
Figure 5, exhibiting that using ergodic fuzzy Markov chain
along with employing WFEV method is a superior approach
compared to the others. The same inference results from
Figures 7 and 8 as well as Figures 9 and 10. We have employed
MATLAB software to implement this approach.

7. Conclusion

In this paper, using simulated ergodic fuzzy Markov chains
given in [5] and WFEV method we not only enhance
the (MRI) low image in Figures 6, 8, and 10 but we also
obtain better results than those resulted from FEV approach
without considering ergodic fuzzy Markov chains for u;.
This can be seen from simulation study of Section 6. As
we subdivide pixels to smaller pixels and treating each new
smaller pixel as an image and employing the simulation phase
for the image, we would improve the quality of the original
image. We hope to employ ergodic fuzzy Markov chains for
contrast improvement using an intensification operator (INT
approach).
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