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Making use of a linear operator, which is defined here by means of the Hadamard product (or convolution), we consider two
subclasses F, ,(a, c, A, A, B) and Gp,n(a, ¢, A, A, B) of multivalent analytic functions with negative coeflicients in the open unit disk.
Some modified Hadamard products, integral transforms, and the partial sums of functions belonging to these classes are studied.

1. Introduction

Let A, denote the class of functions of the form

f(z)=2"+ Zakzk, (pneN={1,2,3,..}), ()

k=p+n

which are analytic in the open unit disk U = {z : |z| < 1}.

For functions f(z) and g(z) analyticin U, we say that f(z)
is subordinate to g(z) in U, written f(z) < g(z) (z € U), if
there exists an analytic function w(z) in U such that

f@=gw(), (eU). (2
Furthermore, if the function g(z) is univalent in U, then
f@)<g(z) (zeU)e f(0)=g(0),

fW)cg@).
In terms of the Pochhammer symbol (b),, given by (b),, =

lw(2)] < |zl

©)

bb+1)---(b+n-1)(n € N), we define the function
Ppnla, c;z) by
X (@)
Ppn(a,c2) = 2F + kP ok
k=p+n (C)k*P (4)
(zeU;c¢{0,-1,-2,...})

Corresponding to ¢,,,(a,¢;z), we consider here a linear
operator L, ,(a,c) on A, by the following usual Hadamard
product (or convolution):

L,n(ac) f(2)=9,,(acz)* f(2)

G (5)

for f(z) givenby (1). For p=n=1,L, (a,c)on A, was first
defined by Carlson and Shaffer [1]. Its differential-integral
representation can be found in [2]. We remark in passing that
a much more general convolution operator than the operator
L,(a,c) was introduced by Dziok and Srivastava [3].

Let T, denote the subclass of A, consisting of func-
tions of tﬁe form

Zakz,

k=p+n

f(z)=2F - (=0, p,neN). (6

We now consider the following two subclasses of the class

T
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Definition 1. A function f(z) € T, is said to be in the class
F,q(a,c, A, A, B) if and only if

L,,(@c) f(2) ) (L, (@c) f(2))

(1-4)

zP pzP1 @)
1+ A
2 (zeu),
1+ Bz
where
a>0, ¢>0, A>0, -1<B<0, B<A<I1 (8

Definition 2. A function f(z) € T, is said to be in the class
Gp,n(a, ¢, A, A, B) if and only if

zf' ()
p

€F,,(ac, L AB). 9)

For functions f;(z) € T, given by

o0
fj (2) = zF - Z ak,]-zk, (ak‘j >0;j= 1,2), (10)
k=p+n

we denote by (f; - f,)(z) the modified Hadamard (or quasi-
Hadamard) product of f;(z) and f,(z); that is,

(i )@ =2"- Y ana,=(f f)@. @

k=p+n
The class

F,, (1, LA- 2-“,-1) = F, (A 0),
P (12)

Az200<a<p)

with n = 1 was introduced and studied earlier by Lee et al. [4]
(and was further investigated by Aouf and Darwish [5], Aouf
etal. [6], and Yaguchi et al. [7]). The class

Gy (1, LA1- 2—“,—1) =G, (m ) a),
p (13)

A>0,0<a<p)

with n = 1 was studied by Aouf [8] and Aouf et al. [6].
Recently, Aouf [9] investigated the modified Hadamard pro-
ducts of several functions in the classes Fp(n, A, ) and
G,(n, Aa) forn € N.

In the present paper, we prove a number of theorems
involving the modified Hadamard products, integral trans-
forms, and the partial sums of functions in the classes
Fp,n(a, ¢, A, A, B) and Gp,,,(a, ¢, A, A, B). Some of our results
are generalizations of the corresponding results in [4-9].

In proving our main results, we need the following
lemmas.

Lemma 3 (see [10, 11]). A function f(z) € Tp,,, defined by (6)
is in the class F, ,(a, ¢, A, A, B) if and only if

= (@) A-
X (pr(k-p)X) i < b g

k=p+n

(14)
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Lemma 4 (see [10, 11]). A function f(z) € Tp,n defined by (6)
is in the class G, ,(a, c, A, A, B) if and only if

(@Di—p . 2A-B
Oy <P g (15

3 k(p+(k-p)2)

k=p+n

Making use of Lemmas 3 and 4, we can show the following
two results.

Corollary 5. Let

0<a <ay, 0<¢g<c, 0<A <A,
(16)
~1<B <By<A,<A <1, B,<0.
Then
Fy (9,6, Aoy A By) € Fp (a5 0101, Ay, By) -
17

G (a9,60s Los Ags By) € Gy (15615 A1, Ay By ).

Corollary 6. Let f(2) € T,,. Then f(z) € F,,(ay,cy Ao, A,
B) (G,,.(ag; 6 Ay, A, B)) if and only if (f = g)(2) € F,,(a,
¢ A A B) (Gyolan oAy A B)), where Ay > 0, Ay >
0, a;>0 andc; >0 (j=0,1), and

@ (p+ (k- p)Ao) )y (e)s
z)=2z"+ u Pk,
9@= ) Tk DI @) (@),

(18)

If we let

2
a=c=1, Azl—;‘x, 0O<a<p, B=-1, (19)

then Lemmas 3 and 4 reduce to the following result.

Corollary 7. Let f(z) € T, be defined by (6). Then
(i) f(2) is in the class F,(n, A, ) if and only if

Y (p+k-p)Na<p-a. (20)

k=p+n

(ii) f(z) is in the class Gp(n, A, &) if and only if

ik(P+(k—p)A)akSp(p—oc)- (21)

k=p+n

2. Modified Hadamard Products

Hereafter in this paper we assume that (8) is satisfied:

0<a<p, O0<ga;<p,

J

Bj<Ajsl,

-1<B;<0,
(22)
(j=12,....,m).

Theorem 8. Let fj(z) € Fp,n(a,c,/\,Aj,Bj) (j=12,...,m)
anda > c > 0. Then

(fl'fz""'fm)(z)er,n(a’c>A’A(B):B)> (23)
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wherem > 2 and
p(©), )m_l & (Aj - Bj)
AB)=B+(1-B)| ——*— '
= pt )<(P+M)(a),, g 1- B,
(24)

The result is sharp; that is, A(B) cannot be decreased for each
B e [-1,0].

Proof. By (24) we have B < A(B) < 1fora >c¢ > 0. Let
O k
— P
fiz)=2"- Z @z €F,, (a,c,/l,Aj,Bj)
k=p+n (25)

(ap; 205 j=1,2,...,m).

Then Lemma 3 gives

( 1-B, ) $ (p+(k=p)A) @y,

4-B)5 POe, Y
<1 (j=12,....,m),

and hence

[

j=1 Aj—B;

y i((w(k—p)k)(a)k_p "

) 192 " K

k=p+n p(c)k—p
= o (p+(k=p)L -
<17 ( ) 3 (p+(k-p) )(a)kpak,j
j=1 ~Bj ) ko POk
<1
(27)
Also, using Lemma 3,
h@)=(fi for- f) @)
3 K (28)
_ Z G Gky Gem? € Fpy (a,c, A, A, B)
k=p+n
it and only if

ak’lak’z cee ak’m < 1.

1- (p+(k-p)A) (@),
<A B> Z p(c)k_p
(29)

To prove the result of Theorem 8, it follows from (27) and
(29) that we need to find the smallest A such that

(p+(k=p)A) @y, 1-B)
P(©)ip (A B)

() G

) (30)

(kzp+mm=2);

3
that is, that
P(C)k_P >m 1
A>B+(1-B
o )((p+ (k=p) V) (@rp
m B (31)
XH( : ]> (k=p+mm=>2).
=
Since
(C)k+1_P (C)k_P .
(@ks1-p = (@rp (k=p+ma=c>0), (32)

we see that the right-hand side of (31) is a decreasing function
of k. Consequently, taking k = p + n in (31), we have h(z) €
Fyp (asc, A, A(B), B), where A(B) is given by (24).

Furthermore, by considering the functions f;(z) defined
by:

P(©)n (Aj B Bj) 2P

(2)=2" -
& (p+n))(a),(1-B;) (33)
(=120 cum),
we have fj(z) €F,, (ac /\,Aj,Bj) and
(fi-fore f) @
_ p(©), >’”m< - )W (34)
‘ ((p+n)t)(a) H o
Noting that
(@), p(0), (A - B
o Gt 1)
(p +nA)(a), D B; 5)
A(B)-B
Y 1-B

we conclude that A(B) cannot be decreased for each B. [

By using Lemma 4 instead of Lemma 3, the following
theorem can be proved on the lines of the proof of Theorem 8.
We omit the details involved.

Theorem 9. Let fj(z) € Gp)n(a, C,A,Aj,Bj) (j=12,...,m)
anda > c > 0. Then

(fl 'jé ""'j;a)(z) € (;pm

wherem > 2 and

(a,c,A\,A(B),B), (36)

PZ (C)n )Wll
(p+n)(p+nA)(a),

A(B)=B+(1—B)(
(37)




The result is sharp for the functions f ;(z) defined by

PZ(C)H (Aj _Bj> pn
(p+n)(p+nA)(a)n(1—Bj) (38)

er,n(a)Ca/\)AjaBj) (j=l,2,...,m).

fj(Z)ZZP—

Theorem 10. Letfj(z) € Fp)n(a, c, /\,Aj, Bj) (Gj=1,2,...,m)
witha >c¢ > 0and A > 1. Then

(fl'fZ""'fm)(z)EGp,n(a’Q)L’A(B)’B)’ (39)

where m > 2 and

~ LY p(c), e
AB =Bl B)( P ><(p+nk)(a)n>

m [ A.—B,
J J
X .
H(1_3j>

j=1

(40)

The result is sharp for the functions fi(z) (j = 1,2,...,m)
defined by (33).

Proof. Obviously, B < A(B) < 1form > 2,a > ¢ > 0, and
A > 1. By applying Lemma 4, we know that

(fl'fz‘---'fm)(z)

(o]
=z - Z g\ Ggy - A2 € Gpn(ac, A A B),
k=p+n
(41)

if and only if

ak)lak)z cee le)m <1.

< 1—B> i k(p+(k-p)A) (@,
A-B k=p+n pz (C)k*P
(42)

Proceeding as in the proof of Theorem 8, we need to find the
smallest A such that

k P(C)k—p )Wl—l
A>B 1-B)—
=B+ H(@+w—mwmnp

xﬁ(Alj__BBj) (k2 pin).

Defining the function ¢(x) by

X

(p+(x-p) )"

¢ (x) = (xzp+n), (49

we see that
/ pA—-A)—(m-2)Ax
(x) = m
Y (p+ (- p) D)

form > 2 and A > 1. Hence, the right-hand side of (43) is a
decreasing function of k. Thus, we arrive at (f,-f,-.. . f,,)(2) €
Gp,n(a, ¢, A, A(B), B), where A(B) is given by (40). O

<0 (x=p+n), (45)

Sharpness can be verified easily.
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By putting

20

a=c=1, AB)=1-—, B=-1,
p

(46)

2ocj )
AJ.=1—?, Bi=-1 (j=12,...,m).

Theorem 10 reduces to the following.

Corollary 11. Letfj(z) € Fp(n,)\, ocj) (j=1,2,...,m) . Then
(fi- forei f)2) € G,(n, A «), wherem > 2, A > 1, and

Y L » (Y
a=p p(p+m)m4g(p a;) (47)

The result is sharp for the functions

.
fiz)=2" - LZPM €F n,A,w)

Theorem 12. Let fj(z) € Fp’n(a,c,)L,Aj,Bj) (G =12...,
m),

gj(z) € F,, (a, C,)L,Cj,Dj),
(49)
(-1<D;<0;D;<C;<1; j=1,2,...,m)

and a > ¢ > 0. Then one has

i) Z;’;l(fj . gj)(z) —(m-1)zf € Fp,n(a, ¢, A, A(B), B),
where
mp(c), (A, — By) (Cy — Dy)

AB) = BB ) @, (1 B,) (1-Dy)’

Ag= max {A;}, By = min {B;}, (50)
Co= max {C;}, Dy = min {Dj},

provided that A(B) < 1.
(i) (1/m) Z;”:l(fj -g;)(2) € F,,(a,c, A, A(B), B), where
A(B)=B+(1-B)

p(©), (Ag - By) (Co — Dy) 51 (51)
(p+n))(@),(1-By)(1-D,)

Proof. It is clear that -1 < By < B; < A; < A; < 1, B, <
0,-1<Dy<D;<C;<Cy<1,D,<0,

1-B. —
i 5 1-Bo

A;-B; = Ay-B,

> 0,
LD (52)
j S 1-D,

C,-D; ~ Cy-D,

>0,
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for j=1,2,...,m. Let
fiz) = zf - Z ak)jzk €F,, (a, c,)L,Aj,Bj)
k=p+n
- 53
gj(x)=2"- Y b ;2" €F,,(a.c)\C;,D;), ©3)
k=p+n
(j=12,....,m)
Then Lemma 3 gives
2. (fi9;) @)~ (m-1)2*
=1
(54)
Z (Zak]bk )zk €F,,(acAADB),
k=p+n
if and only if
_ © +(k-p)A)(a)
( 1-B ) z; < (P ( P) k-p ) Eiakjkkj
A-B k=p+n PO -p
<1
(55)

Also, by Lemma 3 and (52), we deduce that
( 1-B, )( 1-D, >
Ao—-B,/\C,-D,

@ ((p+(k=p)A) @,
XZ( POy M>%%

k=p+n

. ( 1-B, ) i (p+(k-p)A) (a)k_pakj
Af N Bf k=p+n p(c)k—P ’

1-D;\ & (p+(k-p)A) (@),
X{<Cj_Dj) Z P(©i—p bk’j}

k=p+n

<1 (j=12,....,m),
(56)

and hence
l( 1 -B, )( 1-D, >
m \ Ay — By C, - D,
© (p+(k—p),\) (a)k—p )2 .
k=p+n {( p(c)k—p JZlak,] k,j

(57)

To prove Theorem 12(i), it follows from (55) and (57) that
we need to find the smallest A such that

mp(c)i_p
AzB+(1 —B)((p+(k—p))t)(a)k-p)

AO_BO><CO_DO>
><<1_BO o) kzpem),

for a > ¢ > 0. This leads to the assertion of Theorem 12(i).
Analogously, we can prove Theorem 12(ii). O

(58)

In the special case when

2 2x
a=c=1, AB)=1-2% A®=-1-2,
p p
20
B=-1, Aj=Cj=1——], 9)
B]=D]=_l (j:l,Z,...,WI),

Theorem 12 reduces to the following.
Corollary 13. Let fj(z) € Fp(n, )L,“j) (j=12,...

(@) Z;’il(fj f)(z) —(m—1)zF € F,(n, A, «), where

,m). Then

2
m
“zp_P+nA<p 13231{“1'})’ (60)

provided that « > 0.
(i) (1/m) Z;":l(fj - f)(2) € F,(n, A, @), where

_ 1 2
a=p- p+n)t<p 1I<I}1<Irln{af}> € [0,p). (61)

Replacing Lemma 3 by Lemma 4 in the proof of Theorem 12,
one can prove the following.

Theorem 14. Let fj(z) € Gp,n(a,c,A,Aj,Bj) (G =12...,
m),

9; (2) € Gon (a, c A,Cj,Dj),
(62)
(-1<D;<0;D;<C; <L j=1,2,...,m)

anda >c > 0. Then

W Y 9)@ -

where

(m — ].)ZP € Gp,n(a’ C, A’ A(B)) B))

mPZ(C)n (Ag - By) (Cy - Dy)

(p+n)(p+nd)(a),(1-By)(1-Dy)’
(63)

A(B)=B+(1-B)

and A, By, Cy, and Dy, are given as in Theorem 12,
provided that A(B) < 1.



(i) (1/m) Z;":l(fj -g9;)(2) € G (a,c, M, A(B), B), where
A(B)=B+(1-B)

« Pz(c)n (Aq - By) (Cy— Dy)
(n+p) (p+nk) (@), (1-B,)(1-Dy)

€ (B,1).
(64)

As a special case of Theorem 14, one has the following.
Corollary 15. Let fj(z) € Gp(n, A, ocj) (j=1,2,...,m). Then

i) Y (f; [)(2) = (m=1)zF € Gy(n, A, o), where

o mp . ’
*=p anﬂpﬂdxp QQJ%D> (65)

provided that « > 0.
(i) (1/m) Z}'ll(fj - f)(2) € G,(n, A, &), where

p 2
P P ) <00 @

3. Integral Operator
Theorem 16. Let
0<A <A,

0<¢ <ay 0<a <¢g

(67)
(or0<a; <ayand 0< ¢ <¢).

If f(2) € F,,(ag, ¢y Ao, A, B), then the function 1(z) defined
by

+p (% .
10=-2F [ vrwar (w>-p) (@)
z¢ o
belongs to F,, ,(a,, ¢;, A1, C(D), D), where =1 < D < 0 and
C(D)=D+(1-D)

(p+nd)(a),(c), (u+p)(A-B)  (69)
(p+nko) (a),(a), (u+p+n)(1-B)

The result is sharp; that is, the number C(D) cannot be
decreased for each D.

Proof. Note that D < C(D) < 1. For

f@=2"- ) a7 €F,, (a1 AB),  (70)
k=p+n

it follows from (68) that

(]

12)=2"- Y Z:iakzk

(zeUsp>-p). (71)
k=p+n
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To prove the result of Theorem 16, we need to find the
smallest C such that
C>=D+(1-D)
(p+ (k= P)A) @), (@)e (4 + P) (A - B)
X
(p+ (k= P) o) (@) (), (- K) (1= )

(k=p+n),
(72)

where we have used Lemma 3. In view of (67), it is easy to
know that the right-hand side of (72) is a decreasing function
of k. Therefore, we conclude that

I(2) € F,,(a),¢,1,,C(D), D), (73)

where C(D) is given by (69).
Furthermore, it can easily be verified that the result is
sharp, with the extremal function

), (A-B)
(p +nhy) (ao)n (1-B) (74)

x zP™ ¢ E,, (ag, cp»Ag» A, B) .

fz)=2"

O

With the aid of Lemma 4 (instead of Lemma 3) and using
the same steps as in the proof of Theorem 16, we can prove
the following.

Theorem 17. Let (67) in Theorem 16 be satisfied. If f(z) €
Gp)n(ao,co,)tO,A, B), then the function 1(z) defined by (68)
belongs to Gp‘n(al, ¢, Ay, C(D), D), where C(D) (-1 < D <0)
is the same as in Theorem 16. The result is sharp for the function

B P*(«), (A~ B)
(p+n)(p+ndy)(a),(1~-B) (75)
x 2" € G, (a9, ¢ Ag» A, B) .

fe)=2"

If we let

Gy=¢=a,=¢ =1, A=A, =120,

A=1—2?“, B=D=-1, C(D)zl_Zﬁ(a)’
(76)

then Theorem 17 yields the following.

Corollary 18. Let f(z) € Gp(n, A, ). Then the function 1(z)
defined by (68) belongs to G ,(n, A, B(«)), where

a(p+p)+np
p+pt+n

B(a) = (77)

The number 3(«) cannot be increased for each « € [0, p).
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4. Partial Sums

In this section, we let f(z) € T, be given by (6) and define
the partial sums s, (z) and s,,(z) by

51 (2) = 27,

(meN\{1}).
Also we make the notation simple by writing

_(p+(k-p)A) (@), (1-B)
o P(S)—p (A~ B) (79)

(k=p+np+n+1,...).

Theorem 19. Let f(z) € F,, (a,c,A,A,B)anda = c > 0.
Then for z € U, one has thej{)llowing.

f @) 1
Re Sm (2) Z e ﬁp+n+m—1 &N, (80)
S (Z) /3p+n+m—1
e F@ T+ By (meN). (81)

The results are sharp for each m € N.

Proof. Leta > ¢ > 0 and fB; be given by (79). Then S, >
B = 1for k > p + n, and so it follows from Lemma 3 that

pn+m=2 %)

Z A+ /3P+n+m—1 : Z 23

k=p+n k=p+n+m-1

(82)

(o9
< Y a1 (m=2),
k=p+n

for f(z) € Fp,n(a, ¢ A A, B).
If we put

9 )

Sm (2)

P (Z) =1+ /3p+n+m—1 (

ke
1 /3p+n+m—1 ’ Z:(:)p+n+m—l a2 r (83)

ptntm=2
1- Zk=p+n

akzk_‘D
(zeUym=2),
then p(0) = 1 and

pi(z2)-1
pi(z2)+1

0
< /3p+n+m—1 ’ Zk:p+n+m—1 A (84)
- ptntm=2 [}

2-2 Zk:p.m a — ﬁp+n+m—1 : Zk=p+n+m—1 A

<1 (zeU;m=2)

because of (82). Hence, we have Re p;(z) > 0forz € U,
which implies that (80) holds true for m > 2.
Similarly, by setting

5 (2)

P (2) = (1 + ﬁp+n+m—1) f(2) - [’)p+n+m—1 (zeU),

(85)
it follows from (82) that

pa(2) -1

pa(z)+1

(1 + /3p+n+m—1) : ZI(zzp+n+m—1 A

= +tm=2
2-2 Zi:;+:1 a — (/3p+n+m—l - 1) : thézp+n+m_l A

<1 (zeU;m=2).

(86)

Therefore, we see that Re p,(z) > 0 for z € U, that is, that
(81) holds for m > 2.
For m = 1, replacing (82) by

Boin Z a < Z Brag < 1 (87)

k=p+n k=p+n

and proceeding as the above, we know that (80) and (81) are
also true.
Furthermore, by taking the function

ptn+m—1
fle)=2" - ——, (88)
p+n+m—1
we find that s,,(z) = 27,
4 1
Ref( ) — 1l-— asz—1,
Sm (Z) ﬁp+n+m—l

S (Z) . ﬁp+n+m—1

R
¢ f(Z) 1+ ﬁp+n+m—l

i
asz—»exp(—).
n+m-—1

(89)
The proof of Theorem 19 is thus completed. O

By virtue of Theorem 19 and Definition 2, we easily have
the following.

Corollary 20. Let f(z) € Gpa(ac, MA,B)anda > ¢ > 0.
Then we have

f () 1 .
Re 7 @) >1- /3p+n+m—1 (zeU;meN),
5 (90)
S;Cn (Z) p+n+m—1 X
ef' @ > T+ By (zeU;meN).

The results are sharp for each m € N.



Theorem 21. Let f(z) € Fp’n(a, ¢ A A B)witha > c > 0and
A > 1. Then one has

! —
Rel B o PENEMIL U meN), (1)

S (2) PBpinim-r

S:n (2) Pﬁp+n+m—1
Ref,(Z)>p+n+m_1+pﬁp+n+m—l (ZGU,WIGN),
(92)

The results are sharp for each m € N.

Proof. Leta > ¢ > 0, A > 1 and 3 be given by (79). Then it is
easy to verify that

B (k>p+n), (93)

and hence we deduce from Lemma 3 that

ptntm=2 ﬁ 00
Z a + _ Ppintmml Z kay,
k=p+np ptn+m-1 k= p+ nt+ m-1
(94)
(o]
< Y a1 (m=22),
k=p+n
for f(z) € F,.(ac, A A, B).
Defining the function g, (z) by
pﬂp+n+m—1 f’ (Z)
q,(z) =1+ prntm-1 (5;1(:4) 1) (z€eU), (95)

it follows from (94) that

q,(z) -1
q,(z2) +1

[oe)
R
ptn+m-—1 k=pt+n+m-1

ptntm-=2
pﬁp+n+m—1 (96)
2p—-2 kag - ————
* < p Z % p+tn+m-1

k=p+n

-1
[oe)
Z kﬂk
k=p+n+m-1

<1 (zeU;m=2).

This leads to the inequality (91) for m > 2.
Similarly, for the function g,(z) defined by

Pﬁp+n+m—1 5:,1 (2) B pﬁp+n+m—1
p+n+m-1) f'(z) p+n+m-1
(97)

Q2(Z)=(1+

Abstract and Applied Analysis

we deduce from (94) that

q,(z) -1
q,(2) +1

< <1 " pﬁp+n+m—1 > . Z kak
ptnt+tm-1 k=p+n+m-1

ptntm-2
pﬁp+n+m—l
X<2P‘2 2 kay ‘<m1)

k=p+n

k=p+n+m-1

<1 (zeU;m=2).

(98)
This yields the inequality (92) for m > 2.
For m = 1, replacing (94) by
ﬁP‘F" i kak < i [))kak < 1, (99)
P + nk:p+n k=p+n

we know that (91) and (92) are also true.
Furthermore, the bounds in (91) and (92) are the best
possible for the function f(z) defined by (88). O

Finally, Theorem 21 yields the following.

Corollary 22. Let f(z) € Gp’n(a, A A B)witha >c¢c >0
and A > 1. Then

e @@

p+n+m-1

Sin (z) + ZS::, (2) pﬁp+n+m—1
(zeU;meN),
(100)
S:n (Z) + ZS;:I (Z) > Pﬂp+n+m—1
ef’(z)+zf”(z) P+n+m_1+pﬁp+n+mfl
(zeU; meN).

The results are sharp for each m € N.
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