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This paper mainly studies a control problem of finite-time boundedness of time-varying descriptor systems. Firstly, a sufficient
and necessary condition of finite-time stability is given, then a sufficient condition of finite-time boundedness for time-varying
descriptor systems is given. Secondly, we analyze the finite-time boundedness control problem and design the finite-time state
feedback controller; the controller is given based on LMIs for time-varying descriptor systems and time-varying uncertain
descriptor systems, respectively. Finally, a numerical example is given to prove the effectiveness of the method.

1. Introduction

Recently, descriptor systems (which are also known as singu-
lar systems, semistate systems, systems of differential-algebraic
equations, or generalized state space systems.) theory has been
well studied since they are very important from the engineer-
ing point of view. Let the time-varying descriptor systems be
described as 𝐸(𝑡)�̇�(𝑡) = 𝐴(𝑡)𝑥(𝑡) + 𝐵(𝑡)𝑢(𝑡) + 𝐺(𝑡)𝜔(𝑡). They
arise naturally inmany physical applications such as electrical
networks, aircraft and robot dynamics, neutral delay and
large-scale systems, economics and optimization problem,
biology, constrainedmechanics, as result of partial discretiza-
tion of partial differential equation, and so forth. The time-
varying descriptor system has the common properties of
general descriptor system and some special properties. In
control theory, the time-varying descriptor system stability
is mainly Lyapunov stability; however, Lyapunov stability
deals with the whole state performance of the system, but
it does not reflect a transient performance of the system.
The transient performance refers to the system stability in
a short period, but it is different from Lyapunov stability. In
engineering, a whole stability of the system may have a very
bad transient performance, which would cause a bad effect in
the engineering.Therefore, people tend to bemore concerned

about the transient performance of the system [1–5] than the
overall steady state performance of the system.

In order to study the transient performance of the system,
scholars have given the concept of finite-time stability. Finite-
time stability of time-varying descriptor system is a new field;
scholars have mainly studied the finite-time stability of linear
system for years and also made some corresponding results.
For example, [6–10] proposed the definition of finite-time
stability and finite-time boundedness; [5–8] proposed the
sufficient conditions for the finite-time stability of general
linear system; [1, 11] studied the input and output finite-time
stability for time-varying descriptor system.

In addition, a finite-time stability problem with external
disturbance is called finite-time boundedness; the concept
of finite-time boundedness came from finite-time stability.
We have some preliminary research results about the finite-
time boundedness. For example, [12–14] studied the finite-
time bounded problemof the linear time-varying systemwith
impulse; [15–18] proposed the design methods of dynamic
compensators; [19–21] discussed the finite-time control prob-
lems of uncertain system with disturbance. Scholars intro-
duced the definition of finite-time stability and have given the
necessary and sufficient conditions for finite-time stability of
the descriptor system, but the finite-time stability problems
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of time-varying descriptor system have no available research
results, especially when𝐸(𝑡) is time-variant. So, it is necessary
to study finite-time stability of the time-varying uncertain
descriptor system.

The paper is divided into two parts: firstly, we deals with
the problem of finite-time stability of time-varying descriptor
system. We give the necessary and sufficient condition of
finite-time stability and finite-time boundedness of system
with time-varying function matrix 𝐸(𝑡); the unstable system
can be controlled by the state feedback controllers. We also
make the corresponding research for time-varying uncertain
descriptor system. Secondly, we design a finite-time bound-
edness state feedback controller for time-varying uncertain
descriptor system to make the close-loop system finite-time
boundedness.

The paper is organized as follows. In Section 2, we give
some results of finite-time stability and boundedness for
time-varying descriptor system. In Section 3, some results of
time-varying uncertain descriptor system are provided. In
Section 4, a numerical example is presented to illustrate the
efficiency of the proposed result.

2. Finite-Time Control of Time-Varying
Descriptor Systems

2.1. Finite-Time Stable of Time-Varying Descriptor Systems

Definition 1. Time-varying matrix 𝐸(𝑡) is singular on time
interval [0, 𝑇], if there exists a 𝑡 ∈ [0, 𝑇] such that rank𝐸(𝑡) <

𝑛.
Consider the following time-varying descriptor systems

𝐸 (𝑡) �̇� (𝑡) = 𝐴 (𝑡) 𝑥 (𝑡) , (1)

where 𝑥(𝑡) ∈ 𝑅
𝑛 is the state. 𝐴(⋅) is given continuous matrix-

valued function. 𝐸(𝑡) ∈ 𝑅
𝑛 is singular on time interval [0, 𝑇].

Definition 2. The time-varying descriptor system (1) is said
to be finite-time stable with respect to (𝑐

1
, 𝑐
2
, 𝑇, 𝑅(𝑡)) with

positive definite matrix 𝑅(𝑡), and given three positive scalars
𝑐
1
, 𝑐
2
, 𝑇, with 𝑐

1
< 𝑐
2
, if 𝑥𝑇(0)𝐸𝑇(0)𝑅(0)𝐸(0)𝑥(0) ≤ 𝑐

1
, then

𝑥
𝑇

(𝑡)𝐸
𝑇

(𝑡)𝑅(𝑡)𝐸(𝑡)𝑥(𝑡) < 𝑐
2
, for all 𝑡 ∈ [0, 𝑇].

Theorem 3. The following statements are equivalent:

(i) system (1) is FTS respect to (𝑐
1
, 𝑐
2
, 𝑇, 𝑅(𝑡)).

(ii) For all 𝑡 ∈ [0, 𝑇], Φ
𝑇

(𝑡, 0)𝐸
𝑇

(𝑡)𝑅(𝑡)𝐸(𝑡) <

(𝑐
2
/𝑐
1
)𝐸
𝑇

(0)𝑅(0)𝐸(0), where Φ(𝑡, 0) is the state tran-
sition matrix and 𝑅(𝑡) is positive definite matrix.

(iii) For all 𝑡 ∈ [0, 𝑇], the differential Lyapunov inequality,
with terminal and initial conditions

(a) 𝑀(𝑡) < 0, where

𝑀(𝑡) = 𝐴
𝑇

(𝑡) 𝑃 (𝑡) 𝐸 (𝑡) + 𝐸
𝑇

(𝑡) 𝑃 (𝑡) 𝐴 (𝑡)

+ �̇�
𝑇

(𝑡) 𝑃 (𝑡) 𝐸 (𝑡) + 𝐸
𝑇

(𝑡) �̇� (𝑡) 𝐸 (𝑡)

+ 𝐸
𝑇

(𝑡) 𝑃 (𝑡) �̇� (𝑡) ,

(2)

(b) 𝑅(𝑡) ≤ 𝑃(𝑡) ≤ 𝑃(0) < (𝑐
2
/𝑐
1
)𝑅(0), 𝑅(𝑡) is positive

definite matrix, admits a piecewise continuously
differentiable symmetric solution 𝑝(⋅).

Proof. (ii) ⇒ (i) Let 𝑥𝑇(0)𝐸𝑇(0)𝑅(0)𝐸(0)𝑥(0) ≤ 𝑐
1
; assume

𝑥(𝑡) = Φ(𝑡, 0)𝑥(0), have

𝑥
𝑇

(𝑡) 𝐸
𝑇

(𝑡) 𝑅 (𝑡) 𝐸 (𝑡) 𝑥 (𝑡)

= 𝑥
𝑇

(0)Φ
𝑇

(𝑡, 0) 𝐸
𝑇

(𝑡) 𝑅 (𝑡) 𝐸 (𝑡) 𝑥 (0)

<
𝑐
2

𝑐
1

𝐸
𝑇

(0) 𝑅 (0) 𝐸 (0)

< 𝑐
2
.

(3)

Therefore, system (1) is FTS.
(i) ⇒ (ii) by contradiction. Let us assume ∃𝑡, 𝑥

𝑥
𝑇

(𝑡)Φ
𝑇

(𝑡, 0) 𝐸
𝑇

(𝑡) 𝑅 (𝑡) 𝐸 (𝑡)Φ (𝑡, 0) 𝑥 (𝑡)

≥
𝑐
2

𝑐
1

𝑥
𝑇

(0) 𝐸
𝑇

(0) 𝑅 (0) 𝐸 (0) 𝑥 (0) .

(4)

Let 𝑥𝑇(0)𝐸𝑇(0)𝑅(0)𝐸(0)𝑥(0) = 𝑐
1
, ∃𝜆, such that 𝑥(𝑡) = 𝜆𝑥(0);

then (4) implies that

𝑥
𝑇

(0)Φ
𝑇

(𝑡, 0) 𝐸
𝑇

(𝑡) 𝑅 (𝑡) 𝐸 (𝑡)Φ (𝑡, 0) 𝑥 (0) ≥ 𝑐
2
; (5)

therefore

𝑥
𝑇

(𝑡) 𝐸
𝑇

(𝑡) 𝑅 (𝑡) 𝐸 (𝑡) 𝑥 (𝑡)

= 𝑥
𝑇

(0)Φ
𝑇

(𝑡, 0) 𝐸
𝑇

(𝑡) 𝑅 (𝑡) 𝐸 (𝑡)Φ (𝑡, 0) 𝑥 (0)

≥ 𝑐
2
.

(6)

Obviously, it contradicts the initial assumption that system (1)
is FTS.

(iii) ⇒ (i) Let𝑉(𝑡, 𝑥) = 𝑥
𝑇

(𝑡)𝐸
𝑇

(𝑡)𝑃(𝑡)𝐸(𝑡)𝑥(𝑡), �̇�(𝑡, 𝑥) =

𝑥
𝑇

(𝑡)𝑀(𝑡)𝑥(𝑡).
Then (a) implies that �̇�(𝑡, 𝑥) is negative definite along the

trajectories of system (1).
Now 𝑥

𝑇

(0)𝐸
𝑇

(0)𝑅(0)𝐸(0)𝑥(0) ≤ 𝑐
1
, then for a generic 𝑡,

such that

𝑥
𝑇

(𝑡) 𝐸
𝑇

(𝑡) 𝑅 (𝑡) 𝐸 (𝑡) 𝑥 (𝑡)

≤ 𝑥
𝑇

(𝑡) 𝐸
𝑇

(𝑡) 𝑃 (𝑡) 𝐸 (𝑡) 𝑥 (𝑡)

< 𝑥
𝑇

(0) 𝐸
𝑇

(0) 𝑃 (0) 𝐸 (0) 𝑥 (0)

≤
𝑐
2

𝑐
1

𝑥
𝑇

(0) 𝐸
𝑇

(0) 𝑅 (0) 𝐸 (0) 𝑥 (0)

≤ 𝑐
2
.

(7)

(i) ⇒ (iii) By contradiction. Because system (1) is FTS. Let
𝑧 = 𝜖𝑥 for a small 𝜖 > 0, for all 𝑡 ∈ [0, 𝑇], such that

𝑥
𝑇

(0) 𝐸
𝑇

(0) 𝑃 (0) 𝐸 (0) 𝑥 (0) ≤ 𝑐
1

⇒ 𝑥
𝑇

(𝑡) 𝐸
𝑇

(𝑡) 𝑅 (𝑡) 𝐸 (𝑡) 𝑥 (𝑡) + ‖𝑧‖
2

2
< 𝑐
2
.

(8)



Mathematical Problems in Engineering 3

Let 𝑃(⋅) be the solution of

𝑀(𝑡) = 𝜖
2

𝐼, (9)

𝑅 (𝑡) = 𝑃 (𝑡) . (10)

And assume that ∃𝑥, such that

𝑥
𝑇

(𝑡) 𝐸
𝑇

(𝑡) 𝑃 (0) 𝐸 (𝑡) 𝑥 (𝑡)≥
𝑐
2

𝑐
1

𝑥
𝑇

(𝑡) 𝐸
𝑇

(𝑡) 𝑅 (0) 𝐸 (𝑡) 𝑥 (𝑡) .

(11)

Now let 𝑥𝑇(0)𝐸𝑇(0)𝑅(0)𝐸(0)𝑥(0) = 𝑐
1
, ∃𝜆, such that 𝑥(𝑡) =

𝜆𝑥(0).
Then (11) implies

𝑥
𝑇

(0) 𝐸
𝑇

(0) 𝑅 (0) 𝐸 (0) 𝑥 (0) ≥ 𝑐
2
; (12)

from (9) we obtain that

𝑑

𝑑𝑡
𝑥
𝑇

(𝑡) 𝐸
𝑇

(𝑡) 𝑃 (𝑡) 𝐸 (𝑡) 𝑥 (𝑡) = −𝜖
2

𝑥
𝑇

(𝑡) 𝑥 (𝑡) . (13)

Integrating (13) from 0 to 𝑡 we have

𝑥
𝑇

(𝑡) 𝐸
𝑇

(𝑡) 𝑃 (𝑡) 𝐸 (𝑡) 𝑥 (𝑡) − 𝑥
𝑇

(0) 𝐸
𝑇

(0) 𝑅 (0) 𝐸 (0) 𝑥 (0)

= −𝜖
2

‖𝑥‖
2

2
.

(14)

Therefore

𝑥
𝑇

(𝑡) 𝐸
𝑇

(𝑡) 𝑅 (𝑡) 𝐸 (𝑡) 𝑥 (𝑡)

≥ 𝑥
𝑇

(𝑡) 𝐸
𝑇

(𝑡) 𝑃 (𝑡) 𝐸 (𝑡) 𝑥 (𝑡)

= 𝑥
𝑇

(0) 𝐸
𝑇

(0) 𝑃 (0) 𝐸 (0) 𝑥 (0) − 𝜖
2

‖𝑥‖
2

2

≥ 𝑐
2
− ‖𝑧‖
2

2
,

(15)

which contradicts (8).

2.2. Finite-Time Boundedness of Time-Varying Descriptor Sys-
tems. Consider the following time-varying descriptor sys-
tems

𝐸 (𝑡) �̇� (𝑡) = 𝐴 (𝑡) 𝑥 (𝑡) + 𝐺 (𝑡) 𝜔 (𝑡) , (16)

where 𝑥(𝑡) ∈ 𝑅
𝑛 is the state and 𝜔(𝑡) ∈ 𝑅

𝑙 is exogenous input.
𝐴(𝑡) ∈ 𝑅

𝑛×𝑛, 𝐺(𝑡) ∈ 𝑅
𝑛×𝑙 are given constant matrices. 𝐸(𝑡) ∈

𝑅
𝑛×𝑛 is a singular function matrix, and rank 𝐸(𝑡) = 𝑞 < 𝑛.
The exogenous disturbance 𝜔(𝑡) is time varying and

satisfies the constraint

∫

𝑇

0

𝜔
𝑇

(𝑡) 𝜔 (𝑡) 𝑑𝑡 ≤ 𝑑, 𝑑 ≥ 0. (17)

Definition 4. The system (16) subject to an exogenous dis-
turbance 𝜔(𝑡) satisfies (17) and is said to be finite-time
bounded with respect to (𝑐

1
, 𝑐
2
, 𝑇, 𝑅(𝑡), 𝑑) with positive def-

inite matrices 𝑅(𝑡), and given three positive scalars 𝑐
1
, 𝑐
2
, 𝑇,

with 𝑐
1

< 𝑐
2
, if 𝑥

𝑇

(0)𝐸
𝑇

(0)𝑅(0)𝐸(0)𝑥(0) ≤ 𝑐
1
, then

𝑥
𝑇

(𝑡)𝐸
𝑇

(𝑡)𝑅(𝑡)𝐸(𝑡)𝑥(𝑡) < 𝑐
2
.

Theorem 5. The time-varying descriptor system (16) is finite-
time bounded, if there exist two positive definite nonsingular
matrices 𝑃(𝑡) ∈ 𝑅

𝑛×𝑛, 𝑄 ∈ 𝑅
𝑙×𝑙, such that

[
𝑀 (𝑡) 𝐸

𝑇

(𝑡) 𝑃 (𝑡) 𝐺 (𝑡)

𝐺
𝑇

(𝑡) 𝑃
𝑇

(𝑡) 𝐸 (𝑡) 𝑄
] < 0, (18)

𝑅 (𝑡) ≤ 𝑃 (𝑡) ≤ 𝑃 (0) ≤ 𝑅 (0) , (19)

𝑐
1
+ 𝑑𝜆max (𝑄) < 𝑐

2
(20)

hold, where 𝜆max(⋅) denote the maximum eigenvalue of the
argument,

𝑀(𝑡) = 𝐴
𝑇

(𝑡) 𝑃 (𝑡) 𝐸 (𝑡) + 𝐸
𝑇

(𝑡) 𝑃 (𝑡) 𝐴 (𝑡)

+ �̇�
𝑇

(𝑡) 𝑃 (𝑡) 𝐸 (𝑡) + 𝐸
𝑇

(𝑡) �̇� (𝑡) 𝐸 (𝑡)

+ 𝐸
𝑇

(𝑡) 𝑃 (𝑡) �̇� (𝑡) .

(21)

Proof. Let 𝑉(𝑡, 𝑥) = 𝑥
𝑇

(𝑡)𝐸
𝑇

(𝑡)𝑃(𝑡)𝐸(𝑡)𝑥(𝑡).
We have

�̇� (𝑡, 𝑥) = 𝑥
𝑇

(𝑡)𝑀 (𝑡) 𝑥 (𝑡) + 𝜔
𝑇

(𝑡) 𝐺
𝑇

(𝑡) 𝑃
𝑇

(𝑡) 𝐸 (𝑡) 𝑥 (𝑡)

+ 𝑥
𝑇

(𝑡) 𝐸
𝑇

(𝑡) 𝑃 (𝑡) 𝐺 (𝑡) 𝜔 (𝑡)

= (𝑥
𝑇

(𝑡) , 𝜔
𝑇

(𝑡))

× [
𝑀 (𝑡) 𝐸

𝑇

(𝑡) 𝑃 (𝑡) 𝐺 (𝑡)

𝐺
𝑇

(𝑡) 𝑃
𝑇

(𝑡) 𝐸 (𝑡) 𝑄
]

× (
𝑥 (𝑡)

𝜔 (𝑡)
) − 𝜔

𝑇

(𝑡) 𝑄𝜔 (𝑡)

< 0.

(22)

Therefore,

�̇� (𝑡, 𝑥) < 𝜔
𝑇

(𝑡) 𝑄𝜔 (𝑡) ; (23)

integrating from 0 to 𝑡, with 𝑡 ∈ [0, 𝑇], we have

𝑉 (𝑡, 𝑥) < 𝑉
0
+ 𝑑𝜆max (𝑄) . (24)

From (19), we have

𝑥
𝑇

(𝑡) 𝐸
𝑇

(𝑡) 𝑅 (𝑡) 𝐸 (𝑡) 𝑥 (𝑡)

≤ 𝑉 (𝑡, 𝑥) < 𝑉 (0, 𝑥) + 𝑑𝜆max (𝑄)

< 𝑥
𝑇

(0) 𝐸
𝑇

(0) 𝑅 (0) 𝐸 (0) 𝑥 (0) + 𝑑𝜆max (𝑄)

< 𝑐
1
+ 𝑑𝜆max (𝑄)

< 𝑐
2
.

(25)

Therefore, system (16) is FTB. The proof is completed.
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2.3. Finite-Time Bounded Control of Time-Varying Descriptor
Systems. Consider the following time-varying descriptor sys-
tems

𝐸 (𝑡) �̇� (𝑡) = 𝐴 (𝑡) 𝑥 (𝑡) + 𝐵 (𝑡) 𝑢 (𝑡) + 𝐺 (𝑡) 𝜔 (𝑡) , (26)

where 𝑥(𝑡) ∈ 𝑅
𝑛 is the state; 𝑢(𝑡) ∈ 𝑅

𝑚 is control input; 𝜔(𝑡) ∈

𝑅
𝑙 is exogenous input. 𝐴(𝑡) ∈ 𝑅

𝑛×𝑛

, 𝐵(𝑡)) ∈ 𝑅
𝑛×𝑚

𝐺(𝑡) ∈ 𝑅
𝑛×𝑙

are given continuous matrix-valued functions. 𝐸(𝑡) ∈ 𝑅
𝑛×𝑛 is

a singular function matrix, and rank 𝐸(𝑡) < 𝑛.
Find a state feedback control law

𝑢 (𝑡) = 𝐾 (𝑡) 𝑥 (𝑡) , (27)

where 𝐾(𝑡) ∈ 𝑅
𝑚×𝑛. Let 𝐴

𝑐
(𝑡) = (𝐴(𝑡) + 𝐵(𝑡)𝐾(𝑡)). Then the

closed-loop system is given by

𝐸 (𝑡) �̇� (𝑡) = 𝐴
𝑐
(𝑡) 𝑥 (𝑡) + 𝐺 (𝑡) 𝜔 (𝑡) . (28)

Theorem 6. The time-varying descriptor system (19) is finite-
time bounded, if there exist a symmetric positive definitematrix
𝑃(𝑡) ∈ 𝑅

𝑛×𝑛, and a nonsingular matrix 𝑄 ∈ 𝑅
𝑙×𝑙, such that

inequality (19), (20) and the following condition hold:

[
𝑀 (𝑡) 𝐸

𝑇

(𝑡) 𝑃 (𝑡) 𝐺 (𝑡)

𝐺
𝑇

(𝑡) 𝑃
𝑇

(𝑡) 𝐸 (𝑡) −𝑄
𝑇

] < 0. (29)

Moreover, the state feedback control law is given by

𝐾 (𝑡) = 𝐵
−1

(𝑡) 𝐺 (𝑡) 𝑄
−1

(𝑡) 𝐺
𝑇

(𝑡) 𝑃
𝑇

(𝑡) 𝐸 (𝑡) , (30)

where 𝜆max(⋅) denote the maximum eigenvalue of the argu-
ment,

𝑀(𝑡) = 𝐴
𝑇

(𝑡) 𝑃 (𝑡) 𝐸 (𝑡) + 𝐸
𝑇

(𝑡) 𝑃 (𝑡) 𝐴 (𝑡)

+ �̇�
𝑇

(𝑡) 𝑃 (𝑡) 𝐸 (𝑡) + 𝐸
𝑇

(𝑡) �̇� (𝑡) 𝐸 (𝑡)

+ 𝐸
𝑇

(𝑡) 𝑃 (𝑡) �̇� (𝑡) .

(31)

Proof. From Theorem 5, the conditions for FTB is that there
exist a nonsingular matrix 𝑄 such that (19), (20) and the
following matrix inequality hold:

[
𝑀 (𝑡) 𝐸

𝑇

(𝑡) 𝑃 (𝑡) 𝐺 (𝑡)

𝐺
𝑇

(𝑡) 𝑃
𝑇

(𝑡) 𝐸 (𝑡) 𝑄
] < 0, (32)

where

𝑀(𝑡) = (𝐴 (𝑡) + 𝐵 (𝑡)𝐾 (𝑡))
𝑇

𝑃 (𝑡) 𝐸 (𝑡)

+ 𝐸
𝑇

(𝑡) 𝑃 (𝑡) (𝐴 (𝑡) + 𝐵 (𝑡)𝐾 (𝑡))

+ �̇�
𝑇

(𝑡) 𝑃 (𝑡) 𝐸 (𝑡) + 𝐸
𝑇

(𝑡) �̇� (𝑡) 𝐸 (𝑡)

+ 𝐸
𝑇

(𝑡) 𝑃 (𝑡) �̇� (𝑡) .

(33)

According to Schur’s theorem, it is easy to see that (32) can be
rewritten as

𝑀(𝑡) − 𝐸
𝑇

(𝑡) 𝑃 (𝑡) 𝐺 (𝑡) 𝑄
−1

(𝑡) 𝐺
𝑇

(𝑡) 𝑃
𝑇

(𝑡) 𝐸 (𝑡) < 0.

(34)

Using (30), (34), we have

𝑀(𝑡) + 𝐸
𝑇

(𝑡) 𝑃 (𝑡) 𝐺 (𝑡) 𝑄
−𝑇

(𝑡) 𝐺
𝑇

(𝑡) 𝑃 (𝑡) 𝐸 (𝑡) < 0.

(35)

Since 𝑃(𝑡) is symmetric, then

𝑀(𝑡) + 𝐸
𝑇

(𝑡) 𝑃 (𝑡) 𝐺 (𝑡) 𝑄
−𝑇

(𝑡) 𝐺
𝑇

(𝑡) 𝑃
𝑇

(𝑡) 𝐸 (𝑡) < 0.

(36)

By Schur’s theorem, (36) is equivalent to (29). The proof is
completed.

2.4. Finite-Time Bounded Control of Time-Varying Uncertain
Descriptor Systems. Consider the following time-varying
descriptor systems

𝐸 (𝑡) �̇� (𝑡) = (𝐴 (𝑡) + Δ𝐴 (𝑡) 𝑥 (𝑡))

+ (𝐵 (𝑡) + Δ𝐵 (𝑡)) 𝑢 (𝑡) + 𝐺 (𝑡) 𝜔 (𝑡) ,

(37)

where 𝑥(𝑡) ∈ 𝑅
𝑛 is the state; 𝑢(𝑡) ∈ 𝑅

𝑚 is control input; 𝜔(𝑡) ∈

𝑅
𝑙 is exogenous input. 𝐴(𝑡) ∈ 𝑅

𝑛×𝑛, 𝐵(𝑡) ∈ 𝑅
𝑛×𝑚, 𝐺(𝑡) ∈ 𝑅

𝑛×𝑙

are given continuous matrix-valued functions. 𝐸(𝑡) ∈ 𝑅
𝑛×𝑛 is

a singular function matrix, and rank 𝐸(𝑡) < 𝑛.

[Δ𝐴 (𝑡) Δ𝐵 (𝑡)] = 𝐻𝐹 [𝐸
1
(𝑡) 𝐸

2
(𝑡)] , (38)

where 𝐹 ∈ 𝑅
𝑞×𝑠 is unknown and satisfies

𝐹
𝑇

𝐹 ≤ 𝐼. (39)

Theorem 7. The time-varying descriptor system (37) is finite-
time bounded, if there exist a symmetric positive definitematrix
𝑃(𝑡) ∈ 𝑅

𝑛×𝑛, and a nonsingular matrix 𝑄 ∈ 𝑅
𝑙×𝑙, such that

inequality (19), (20), and (32) hold, and the state feedback
control law is given by

𝐾 (𝑡) = (𝐵 (𝑡) + 𝐻𝐹𝐸
2
(𝑡))
−1

× (𝐺 (𝑡) 𝑄
−1

(𝑡) 𝐺
𝑇

(𝑡) 𝑃
𝑇

(𝑡) 𝐸 (𝑡) − 𝐻𝐹𝐸
1
(𝑡)) ,

(40)

where

𝑀(𝑡) = [𝐴 (𝑡) + Δ𝐴 (𝑡) + (𝐵 (𝑡) + Δ𝐵 (𝑡))𝐾 (𝑡)]
𝑇

× 𝑃 (𝑡) 𝐸 (𝑡) + 𝐸
𝑇

(𝑡) 𝑃 (𝑡)

× [𝐴 (𝑡) + Δ𝐴 (𝑡) + (𝐵 (𝑡) + Δ𝐵 (𝑡))𝐾 (𝑡)]

+ �̇�
𝑇

(𝑡) 𝑃 (𝑡) 𝐸 (𝑡) + 𝐸
𝑇

(𝑡) �̇� (𝑡) 𝐸 (𝑡)

+ 𝐸
𝑇

(𝑡) 𝑃 (𝑡) �̇� (𝑡) .

(41)

Proof. Applying (40) to (34), and 𝑃(𝑡) is symmetric, then the
proof is completed.
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3. Numerical Example

Consider a time-varying descriptor system (26) with

𝐸 = [
𝑡 0

0 0
] , 𝐴 = [

𝑡 0

0 −1
] , 𝐵 = [

1 0

0 𝑡
] ,

𝐺 = [
1

−𝑡
] .

(42)

Let 𝑅(𝑡) = 𝑃(𝑡), 𝑄 = 𝑡, 𝑇 = 1. Exist 𝑃(𝑡) = [
−𝑡 0

0 𝑡
], such that

𝑀(𝑡) = [
−2𝑡
3

− 3𝑡
2

0

0 0
] , 𝐸

𝑇

(𝑡) 𝑃 (𝑡) 𝐺 (𝑡) = [
−𝑡
2

0
] ,

𝐺
𝑇

(𝑡) 𝑃
𝑇

(𝑡) 𝐸 (𝑡) = [−𝑡
2

0] .

(43)

So, condition (29), (19), (20) hold. the system (32) is finite-
time bounded and the state feedback controller with

𝐾 (𝑡) = 𝐵
−1

(𝑡) 𝐺 (𝑡) 𝑄
−1

(𝑡) 𝐺
𝑇

(𝑡) 𝑃
𝑇

(𝑡) 𝐸 (𝑡) = [
−𝑡 0

1 0
] .

(44)

4. Conclusions

In this paper, we have studied the finite-time stability and
given a sufficient and necessary condition of the finite-time
stability; the state feedback controller was designed, then
we studied the finite-time boundedness of time-varying
descriptor systems, and a sufficient and necessary condition
of the finite-time boundedness is given and a state feedback
controller was designed. In the end, a numerical example is
given to prove the effectiveness of the method.
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