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We propose an inexact Newton method for solving inverse eigenvalue problems (IEP).This method is globalized by employing the
classical backtracking techniques. A global convergence analysis of this method is provided and the R-order convergence property
is proved under some mild assumptions. Numerical examples demonstrate that the proposed method is very effective in solving
the IEP with distinct eigenvalues.

1. Introduction

In the present paper, we consider inverse eigenvalue problems
(IEP) which are defined as follows. Let c = (𝑐

1
, 𝑐
2
, . . . , 𝑐

𝑛
)

⊤
∈

R𝑛 and let {𝐴
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𝑖=0
be a sequence of real symmetric 𝑛 ×
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order 𝜆

1
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numbers {𝜆∗
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which are arranged in increasing order𝜆∗
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∗

2
≤ ⋅ ⋅ ⋅ ≤ 𝜆

∗

𝑛
, the IEP is to find a vector c∗ ∈ R𝑛 such that

𝜆
𝑖
(c∗) = 𝜆

∗

𝑖
, 𝑖 = 1, 2, . . . , 𝑛. (2)

Such vector c∗ is called a solution of the IEP. This type
of inverse problem arises in a variety of applications, for
instance, the inverse Toeplitz eigenvalue problem [1, 2],
inverse Sturm-Liouville’s problem, inverse vibrating string
problem, and the pole assignment problem; see [3–5] and the
references therein for more details on these applications.

Define 𝑓 : R𝑛 → R𝑛 by

𝑓 (c) = (𝜆
1
(c) − 𝜆

∗

1
, 𝜆
2
(c) − 𝜆

∗

2
, . . . , 𝜆

𝑛
(c) − 𝜆

∗

𝑛
)

⊤

. (3)

Then, solving IEP (2) is equivalent to solving the nonlinear
equation 𝑓(c) = 0 on R𝑛. It is clear that c∗ is a solution of
the IEP if and only if c∗ is a solution of the equation 𝑓(c) = 0.
Based on this equivalence, Newton’s method can be applied
to the IEP, and it converges quadratically [6]. As it is
known, each iteration of Newton’s method involves solving
a complete eigenproblem for the matrix 𝐴(c). To overcome
this drawback, different Newton-like methods have been
proposed and studied [7, 8]. To alleviate the over-solving
problem, Bai et al. presented in [9] an inexact Cayley
transform method for solving the nonlinear system 𝑓(c) =

0. To avoid the computation of the approximate Jacobian
equations, Shen and Li proposed in [10, 11] Ulm-likemethods
for solving the IEPs. However, all these numerical methods
for solving the IEP converge only locally.

In this paper, we study the numericalmethodswith global
convergence property for solving the IEP. Since the IEP is a
nonlinear equation, we review some classical work on solving
the general nonlinear equation 𝑓(c) = 0. Among the inexact
Newton-type methods where a line search procedure is used,
an inexact Newton backtracking method was proposed in
[12]. It performed backtracking along the inexact Newton
step, and computational results on a large set of test problems
have shown its robustness and efficiency [13, 14].

The purpose of the present paper is motivated by the
inexact Newton backtracking method proposed in [12],
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to propose an inexact Newton-type method which combines
with the Cayley transform method for solving the IEP. In the
backtracking procedure, we use the Rayleigh quotient instead
of the classical merit function and therefore reduce the
computational cost. Under the classical assumption, which is
also used in [7, 9, 10], that the given eigenvalues are distinct
and the Jacobian matrix 𝐽(c∗) is invertible, we show that
thismethod is globally convergent. Somenumerical examples
are reported to illustrate the effectiveness of the proposed
method with distinct eigenvalues.

The paper is organized as follows. In Section 2, a global
inexact Newton-type algorithm is proposed. The global
convergence analysis is given in Section 3. And finally in
Section 4, some numerical examples are given to confirm
the numerical effectiveness and the good performance of our
algorithm.

2. A Globally Inexact Newton-Like Cayley
Transform Method

In this section, we present our algorithm. Let R𝑛×𝑛 denote
the set of all real 𝑛 × 𝑛 matrices. Let ‖ ⋅ ‖ and ‖ ⋅ ‖

𝐹
denote

the 2-norm and the Frobenius norm in R𝑛, respectively. The
induced 2-norm in R𝑛×𝑛 is also denoted by ‖ ⋅ ‖; that is,

‖𝐴‖ := sup
x∈R𝑛 ,x ̸= 0

‖𝐴x‖
‖x‖
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Then, we have ‖𝐴‖ ≤ ‖𝐴‖
𝐹
for any 𝐴 ∈ R𝑛×𝑛. For x ∈

R𝑛 and a positive number 𝑟, we use B(x, 𝑟) to stand for the
open ball with radius 𝑟 and center x. Let 𝜆
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⊤.
The Cayley transform method for computing approxi-

mately the eigenproblem of the matrix 𝐴(c) was proposed in
[6] and was applied in [9, 10]. We now recall this method and
then apply it to our algorithm. Suppose that c∗ is a solution
of the IEP. Then, there exists an orthogonal matrix 𝑄

∗
such

that

𝑄

⊤

∗
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∗
= diag {𝜆∗
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∗
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Assume that c, 𝜌, and 𝑃 are the current approximations of
c∗, 𝜆∗, and 𝑄

∗
, respectively. Define 𝑒𝑌 := 𝑃

⊤
𝑄
∗
, where 𝑌 is a

skew-symmetric matrix. Then, (6) can be rewritten as
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Based on (7), we define the new approximation cnew of c∗ by
neglecting the second-order terms in 𝑌:

𝑃

⊤
𝐴 (cnew) 𝑃 = Λ

∗
+ 𝑌Λ

∗
− Λ

∗
𝑌. (8)

By equating the diagonal elements in (8), we have

𝜆

∗
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𝑖
(c)⊤𝐴 (cnew) p

𝑖
(c) , 𝑖 = 1, 2, . . . , 𝑛, (9)

where {p
𝑖
(c)}𝑛
𝑖=1

are the column vectors of 𝑃. Thus, once we
get cnew by solving the Jacobian equation, we can obtain𝑌 by
equating the off-diagonal elements in (8); that is,

[𝑌]𝑖𝑗
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p
𝑖
(c)⊤𝐴 (cnew) p
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In order to update the new approximation 𝑃

new of 𝑄
∗
,

we construct an orthogonal matrix 𝑈 using Cayley’s trans-
form

𝑈 := (I + 1

2

𝑌)(I − 1

2

𝑌)

−1

,
(11)

and set 𝑃new
= 𝑃𝑈; that is, we can obtain 𝑃

new by solving

(I + 1

2

𝑌)𝑃

new
= (I − 1

2

𝑌)𝑃. (12)

Finally, the new approximations of eigenvalues can be ob-
tained by

𝜌

new
𝑖

:= p
𝑖
(cnew)⊤𝐴 (cnew) p

𝑖
(cnew) , 𝑖 = 1, 2, . . . , 𝑛, (13)

where {p
𝑖
(cnew)}𝑛

𝑖=1
are the column vectors of 𝑃new.

Note that (12) can be computed as follows. Compute 𝐻 :=

(𝐼 − (1/2)𝑌)𝑃

⊤ and let h
𝑖
be the 𝑖th column of 𝐻 at first.

Then, solve w
𝑖
, 𝑖 = 1, 2, . . . , 𝑛, iteratively from the 𝑛 linear

systems:

(𝐼 +

1

2

𝑌)w
𝑖
= h
𝑖
, 𝑖 = 1, 2, . . . , 𝑛. (14)

Finally, set 𝑃new
:= [w

1
, . . . ,w

𝑛
]

⊤. Since 𝑃 is an orthogonal
matrix and 𝑌 is skew-symmetric matrix, we see that 𝑃new

must be orthogonal. To maintain the orthogonality of 𝑃new,
(14) cannot be solved inexactly. One could expect that it
requires only few iterations to solve each system of (14). This
is due to the fact that as {c𝑘} converges to c∗, ‖𝑌

𝑘
‖ converges

to zero; see [6, (3.64)]. Consequently, the coefficient matrix
on the left-hand side of (14) approaches the identity matrix in
the limit.

For solving the general nonlinear equation 𝑓(x) = 0,
linesearch techniques [15] are often used to enlarge the
convergence basin of a locally convergent method. They are
based on a globally convergent method for a problem of
the form minx∈R𝑛𝑀(x), where 𝑀 is an appropriately chosen
merit functionwhose globalminimum is a zero of 𝑓. In these
cases, for a given direction s ∈ R𝑛, we have the iteration form
x
𝑘+1

= x
𝑘
+ 𝛼s, where 𝛼 ∈ (0, 1] is such that 𝑀(x

𝑘
+ 𝛼s) <

𝑀(x
𝑘
). The existence of such an 𝛼 is ensured if there exists

an 𝛼
0
> 0 such that 𝑀(x

𝑘
+ 𝛼s) < 𝑀(x

𝑘
) for all 𝛼 < 𝛼

0
.



Journal of Applied Mathematics 3

In typical linesearch strategies, the step length 𝛼 is cho-
sen by using so-called backtracking approach. Among the
backtrackingmethod, inexact Newton backtrackingmethods
(INB) [12] is a globally convergent process where the 𝑘th
iteration of an inexact Newton method is embedded in a
backtracking strategy. The merit function 𝑀 of INB usually
used 𝑀 := ‖𝑓‖; see, for example, [12–14, 16]. Thanks to (3),
this will involve computing 𝜆

𝑖
(c𝑘) of 𝐴(c𝑘) which are costly

to compute. Our intention here is to replace them by the
Rayleigh quotient (see (13)). In Section 3 we will show that
this replacement retain superlinear and global convergence.

The details of our algorithm for solving the IEP are
specified as Algorithm 1. In Step 7, the following sufficient
decrease in the merit function ‖𝜌(c) − 𝜆

∗
‖ based on the

Rayleigh quotient is provided:

󵄩
󵄩
󵄩
󵄩
󵄩

𝜌 (c𝑘 + Δc𝑘) − 𝜆∗󵄩󵄩󵄩
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𝑘
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󵄩
󵄩

. (15)

The while loop in Step 7 is also called backtracking loop
below. Note that if we set

𝜂

1

𝑘
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󵄩
󵄩
󵄩
󵄩
󵄩
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2
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󵄩
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󵄩
󵄩
󵄩
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𝜌 (c𝑘−1) − 𝜆∗󵄩󵄩󵄩
󵄩

,
(16)

when c𝑘 is away from an accumulation point c∗, then 𝜂

1

𝑘
> 1

or 𝜂2
𝑘
> 1 may be possible. Accordingly, the forcing term 𝜂

𝑘

given in (20) guarantees that 𝜂
𝑘
∈ [0, 1) for each 𝑘.

3. Convergence Analysis

In this section, we analyze the global behavior of Algorithm 1.
We will show that if the given eigenvalues are distinct and if
there exists an accumulation point c∗ of {c𝑘} such that the
Jacobian matrix 𝐽(c∗) is invertible, then the iterations are
guaranteed to remain near c∗ and 𝜌(c∗)−𝜆∗ = 0, c𝑘 → c∗ as
𝑘 → ∞. Furthermore, for 𝑘 sufficiently large, we have the
equality c𝑘+1 = c𝑘 + Δc𝑘. Thus, we obtain that the ultimate
rate of convergence is 𝛽 which depends on the choices of
the 𝜂

𝑘
given in (20).

Algorithm 1 (Inexact Newton-Like Backtracking Cayley
Transform Method for IEP). For any c0 ∈ R𝑛, 𝜂max ∈ [0, 1),
𝜉 ∈ (0, 1), 0 < 𝜃min < 𝜃max < 1. Compute the orthonormal
eigenvectors {q

𝑖
(c0)}𝑛
𝑖=1

and the eigenvalues {𝜆
𝑖
(c0)}𝑛
𝑖=1

of
𝐴(c0). Let

𝑃
0
:= [p
1
(c0) , p

2
(c0) , . . . , p

𝑛
(c0)]

= [q
1
(c0) , q

2
(c0) , . . . , q

𝑛
(c0)] ,

𝜌 (c0) := [𝜌
1
(c0) , 𝜌

2
(c0) , . . . , 𝜌

𝑛
(c0)]
⊤

= [𝜆
1
(c0) , 𝜆

2
(c0) , . . . , 𝜆

𝑛
(c0)]
⊤

.

(17)

For 𝑘 = 0, 1, 2, . . . until convergence do the following.

Step 1. Form [𝐽
𝑘
]
𝑖𝑗
= p
𝑖
(c𝑘)⊤𝐴

𝑗
p
𝑖
(c𝑘) for 1 ≤ 𝑖, 𝑗 ≤ 𝑛.

Step 2. Solve Δc𝑘 inexactly from the approximate Jacobian
equation:

𝐽
𝑘
Δc𝑘 + 𝜌 (c𝑘) − 𝜆∗ = 0 (18)

such that
󵄩
󵄩
󵄩
󵄩
󵄩

𝐽
𝑘
Δc𝑘 + 𝜌 (c𝑘) − 𝜆∗󵄩󵄩󵄩

󵄩
󵄩

≤ 𝜂

𝑘

󵄩
󵄩
󵄩
󵄩
󵄩

𝜌 (c𝑘) − 𝜆∗󵄩󵄩󵄩
󵄩
󵄩

, (19)

where 𝜂

0
∈ (0, 1) and

𝜂

𝑘
:= min

{

{

{

󵄩
󵄩
󵄩
󵄩
󵄩

𝜌(c𝑘) − 𝜆∗󵄩󵄩󵄩
󵄩
󵄩

𝛽

󵄩
󵄩
󵄩
󵄩

𝜆
∗󵄩
󵄩
󵄩
󵄩

𝛽
,

󵄩
󵄩
󵄩
󵄩
󵄩

𝜌(c𝑘) − 𝜆∗󵄩󵄩󵄩
󵄩
󵄩

𝛽

󵄩
󵄩
󵄩
󵄩

𝜌(c𝑘−1) − 𝜆∗󵄩󵄩󵄩
󵄩

𝛽
, 𝜂max

}

}

}

,

𝛽 ∈ (1, 2] , 𝑘 = 1, 2, . . . .

(20)

Step 3. Set Δc𝑘 = Δc𝑘 and 𝜂
𝑘
= 𝜂

𝑘
.

Step 4. Form the skew-symmetric matrix 𝑌
𝑘
by (10) with

cnew = c𝑘 + Δc𝑘.
Step 5. Compute matrix 𝑃

𝑘
:= [p
1
(c𝑘+Δc𝑘), . . . , p

𝑛
(c𝑘+Δc𝑘)]

by solving (12).

Step 6. Compute𝜌(c𝑘+Δc𝑘) = (𝜌
1
(c𝑘+Δc𝑘), . . . , 𝜌

𝑛
(c𝑘+Δc𝑘))⊤

by (13).

Step 7. While ‖𝜌(c𝑘 +Δc𝑘) −𝜆∗‖ > (1 − 𝜉(1 − 𝜂
𝑘
))‖𝜌(c𝑘) −𝜆∗‖

do the following:

choose 𝜃 ∈ [𝜃min, 𝜃max] ,

then update Δc𝑘 ←󳨀 𝜃Δc𝑘, 𝜂
𝑘
←󳨀 1 − 𝜃 (1 − 𝜂

𝑘
) .

(21)

Step 8. Set c𝑘+1 = c𝑘+Δc𝑘. As Steps 4–6, compute, respectively,
the new approximations 𝑃

𝑘+1
:= [p
1
(c𝑘+1), . . . , p

𝑛
(c𝑘+1)] and

𝜌(c𝑘+1) := (𝜌
1
(c𝑘+1), . . . , 𝜌

𝑛
(c𝑘+1))⊤.

It is worth noting that if {c𝑘} has no accumulation point,
{c𝑘} has one or more accumulation points and the Jacobian
matrix is singular at each of them, or the vectorΔc𝑘 computed
by solving the Jacobian equation (18) is such that Δc𝑘 = 0,
then our algorithm fails.

It is clear that if 𝜌(c𝑘)−𝜆∗ → 0 as 𝑘 → ∞ and c∗ is an
accumulation point of {c𝑘}, then 𝜌(c∗) − 𝜆∗ = 0. Let {𝑃

𝑘
} be

generated by Algorithm 1 (see Step 7) and define 𝐸
𝑘
:= 𝑃
𝑘
−

𝑄

∗ for each 𝑘 = 0, 1, . . .. The following lemma is taken from
[17, Lemma 2].

Lemma 2 (see [17]). For any c, c ∈ R𝑛, one has

‖𝐴 (c) − 𝐴 (c)‖ ≤ 𝐿 ‖c − c‖ , (22)

where 𝐿 := (∑

𝑛

𝑖=1
‖𝐴
𝑖
‖

2
)

1/2.

Based on Lemma 2, the following lemma is a straightfor-
ward application of [9, Lemma 4].
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Lemma 3. Assume that c∗ is an accumulation point of {c𝑘}.
Let the given eigenvalues {𝜆∗

𝑖
}

𝑛

𝑖=1
be distinct. Then

󵄩
󵄩
󵄩
󵄩
󵄩

𝜌 (c𝑘) − 𝜆∗󵄩󵄩󵄩
󵄩
󵄩

≤ √𝑛𝐿

󵄩
󵄩
󵄩
󵄩
󵄩

c𝑘 − c∗󵄩󵄩󵄩
󵄩
󵄩

+ 𝜇
2

󵄩
󵄩
󵄩
󵄩

𝐸
𝑘

󵄩
󵄩
󵄩
󵄩

, (23)

for any 𝑘 ∈ N, where 𝜇
2
:= 2√𝑛 ⋅ ‖𝐴(c∗)‖.

As shown in [18,Theorem 2.3], in the case when the given
eigenvalues {𝜆∗

𝑖
}

𝑛

𝑖=1
are distinct, the eigenvalues of 𝐴(c) are

distinct too for any point c in some neighborhood of c∗.
It follows that the function 𝑓(⋅) defined in (3) is analytic
in the same neighborhood. However, if c is not near the
solution c∗, the analyticity of the function 𝑓(⋅) cannot be
guaranteed.

For any symmetric matrix 𝑋 ∈ R𝑛×𝑛, set Λ(𝑋) :=

diag(𝜆
1
(𝑋), . . . , 𝜆

𝑛
(𝑋)), where 𝜆

𝑖
(𝑋), 𝑖 = 1, 2, . . . , 𝑛 are

the eigenvalues of 𝑋. As proved by D. Sun and J. Sun [19,
Theorem 4.7], Λ(⋅) is a strongly semismooth function. Based
on this result, for any c ∈ R𝑛 and 𝜀 > 0, there exists 𝛿 > 0

sufficiently small such that

󵄩
󵄩
󵄩
󵄩

𝜌 (c) − 𝜌 (c) − 𝐽 (c) (c − c)󵄩󵄩󵄩
󵄩

≤ 𝜀‖c − c‖2, for any c ∈ B (c, 𝛿) .
(24)

The following lemma says that the backtracking loop in
Step 7 of Algorithm 1 terminates after a finite number of steps.

Lemma 4. There exists 𝜂min
𝑘

∈ [0, 1) such that, for any 𝜂
𝑘
∈

[𝜂

min
𝑘

, 1), there is Δc𝑘 satisfying

󵄩
󵄩
󵄩
󵄩
󵄩

𝜌 (c𝑘 + Δc𝑘) − 𝜆∗󵄩󵄩󵄩
󵄩
󵄩

≤ [1 − 𝜉 (1 − 𝜂
𝑘
)]

󵄩
󵄩
󵄩
󵄩
󵄩

𝜌 (c𝑘) − 𝜆∗󵄩󵄩󵄩
󵄩
󵄩

. (25)

Proof. By using the strong semismoothness of all eigenvalues
of a real symmetric matrix [19], for any given 𝜀 > 0, there
exists 𝛿 > 0 sufficiently small such that

󵄩
󵄩
󵄩
󵄩
󵄩

𝜌 (c𝑘 + Δc) − 𝜌 (c𝑘) − 𝐽
𝑘
Δc󵄩󵄩󵄩

󵄩
󵄩

≤ 𝜀 ‖Δc‖ (26)

whenever ‖Δc‖ ≤ 𝛿. Choose

𝜀 =

(1 − 𝜉) (1 − 𝜂

𝑘
)

󵄩
󵄩
󵄩
󵄩
󵄩

𝜌 (c𝑘) − 𝜆∗󵄩󵄩󵄩
󵄩
󵄩

󵄩
󵄩
󵄩
󵄩
󵄩

Δc𝑘󵄩󵄩󵄩
󵄩
󵄩

, (27)

and set

𝜂

min
𝑘

:= max{𝜂
𝑘
, 1 −

(1 − 𝜂

𝑘
) 𝛿

󵄩
󵄩
󵄩
󵄩
󵄩

Δc𝑘󵄩󵄩󵄩
󵄩
󵄩

} . (28)

For any 𝜂
𝑘
∈ [𝜂

min
𝑘

, 1), let Δc𝑘 := ((1−𝜂
𝑘
)/(1−𝜂

𝑘
))Δc𝑘.Then,

by the definition of 𝜂min
𝑘

given in (28), we have

󵄩
󵄩
󵄩
󵄩
󵄩

Δc𝑘󵄩󵄩󵄩
󵄩
󵄩

=

1 − 𝜂
𝑘

1 − 𝜂

𝑘

󵄩
󵄩
󵄩
󵄩
󵄩

Δc𝑘󵄩󵄩󵄩
󵄩
󵄩

≤

1 − 𝜂

min
𝑘

1 − 𝜂

𝑘

󵄩
󵄩
󵄩
󵄩
󵄩

Δc𝑘󵄩󵄩󵄩
󵄩
󵄩

≤

(1 − 𝜂

𝑘
) 𝛿

󵄩
󵄩
󵄩
󵄩
󵄩

Δc𝑘󵄩󵄩󵄩
󵄩
󵄩

⋅

1

1 − 𝜂

𝑘

󵄩
󵄩
󵄩
󵄩
󵄩

Δc𝑘󵄩󵄩󵄩
󵄩
󵄩

= 𝛿.

(29)

On the other hand, by (19), one gets that

󵄩
󵄩
󵄩
󵄩
󵄩

𝜌 (c𝑘) − 𝜆∗ + 𝐽
𝑘
Δc𝑘󵄩󵄩󵄩

󵄩
󵄩

≤

𝜂
𝑘
− 𝜂

𝑘

1 − 𝜂

𝑘

󵄩
󵄩
󵄩
󵄩
󵄩

𝜌 (c𝑘) − 𝜆∗󵄩󵄩󵄩
󵄩
󵄩

+

1 − 𝜂
𝑘

1 − 𝜂

𝑘

󵄩
󵄩
󵄩
󵄩
󵄩

𝜌 (c𝑘) − 𝜆∗ + 𝐽
𝑘
Δc𝑘󵄩󵄩󵄩

󵄩
󵄩

≤

𝜂
𝑘
− 𝜂

𝑘

1 − 𝜂

𝑘

󵄩
󵄩
󵄩
󵄩
󵄩

𝜌 (c𝑘) − 𝜆∗󵄩󵄩󵄩
󵄩
󵄩

+

1 − 𝜂
𝑘

1 − 𝜂

𝑘

⋅ 𝜂

𝑘

󵄩
󵄩
󵄩
󵄩
󵄩

𝜌 (c𝑘) − 𝜆∗󵄩󵄩󵄩
󵄩
󵄩

= 𝜂
𝑘

󵄩
󵄩
󵄩
󵄩
󵄩

𝜌 (c𝑘) − 𝜆∗󵄩󵄩󵄩
󵄩
󵄩

.

(30)

This together with (26) and (27) yields that

󵄩
󵄩
󵄩
󵄩
󵄩

𝜌 (c𝑘 + Δc𝑘) − 𝜆∗󵄩󵄩󵄩
󵄩
󵄩

≤

󵄩
󵄩
󵄩
󵄩
󵄩

𝜌 (c𝑘 + Δc𝑘) − 𝜌 (c𝑘) − 𝐽
𝑘
Δc𝑘󵄩󵄩󵄩

󵄩
󵄩

+

󵄩
󵄩
󵄩
󵄩
󵄩

𝜌 (c𝑘) − 𝜆∗ + 𝐽
𝑘
Δc𝑘󵄩󵄩󵄩

󵄩
󵄩

≤ 𝜀

󵄩
󵄩
󵄩
󵄩
󵄩

Δc𝑘󵄩󵄩󵄩
󵄩
󵄩

+ 𝜂
𝑘

󵄩
󵄩
󵄩
󵄩
󵄩

𝜌 (c𝑘) − 𝜆∗󵄩󵄩󵄩
󵄩
󵄩

= 𝜀

1 − 𝜂
𝑘

1 − 𝜂

𝑘

󵄩
󵄩
󵄩
󵄩
󵄩

Δc𝑘󵄩󵄩󵄩
󵄩
󵄩

+ 𝜂
𝑘

󵄩
󵄩
󵄩
󵄩
󵄩

𝜌 (c𝑘) − 𝜆∗󵄩󵄩󵄩
󵄩
󵄩

= (1 − 𝜉) (1 − 𝜂
𝑘
)

󵄩
󵄩
󵄩
󵄩
󵄩

𝜌 (c𝑘) − 𝜆∗󵄩󵄩󵄩
󵄩
󵄩

+ 𝜂
𝑘

󵄩
󵄩
󵄩
󵄩
󵄩

𝜌 (c𝑘) − 𝜆∗󵄩󵄩󵄩
󵄩
󵄩

= [1 − 𝜉 (1 − 𝜂
𝑘
)]

󵄩
󵄩
󵄩
󵄩
󵄩

𝜌 (c𝑘) − 𝜆∗󵄩󵄩󵄩
󵄩
󵄩

,

(31)

and the proof is completed.

Next, we give sufficient conditions for Algorithm 1 not to
break down in the backtracking loop in Step 7.

Lemma 5. If 𝜌(c𝑘) − 𝜆∗ ̸= 0 and there exists Γ > 0 for which

󵄩
󵄩
󵄩
󵄩
󵄩

Δc𝑘󵄩󵄩󵄩
󵄩
󵄩

≤ Γ (1 − 𝜂
𝑘
)

󵄩
󵄩
󵄩
󵄩
󵄩

𝜌 (c𝑘) − 𝜆∗󵄩󵄩󵄩
󵄩
󵄩

, (32)

then the backtracking loop terminates.

Proof. For constant Γ in (32) and the given 𝜉 ∈ (0, 1),
choosing 𝜀 = (1 − 𝜉)/Γ, there exists 𝛿 > 0 sufficiently small
such that (26) holds whenever ‖Δc‖ ≤ 𝛿. We choose 𝜂

𝑘
∈

[𝜂

𝑘
, 1] satisfying

1 − 𝜂
𝑘
<

𝛿

Γ

󵄩
󵄩
󵄩
󵄩

𝜌 (c𝑘) − 𝜆∗󵄩󵄩󵄩
󵄩

. (33)

It follows that

󵄩
󵄩
󵄩
󵄩
󵄩

Δc𝑘󵄩󵄩󵄩
󵄩
󵄩

≤ Γ (1 − 𝜂
𝑘
)

󵄩
󵄩
󵄩
󵄩
󵄩

𝜌 (c𝑘) − 𝜆∗󵄩󵄩󵄩
󵄩
󵄩

< 𝛿, (34)

which gives c𝑘 + Δc𝑘 ∈ B(c𝑘, 𝛿). Thus, we have

󵄩
󵄩
󵄩
󵄩
󵄩

𝜌 (c + Δc𝑘) − 𝜌 (c𝑘) − 𝐽
𝑘
Δc𝑘󵄩󵄩󵄩

󵄩
󵄩

≤

1 − 𝜉

Γ

󵄩
󵄩
󵄩
󵄩
󵄩

Δc𝑘󵄩󵄩󵄩
󵄩
󵄩

. (35)
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This together with (19) gives that
󵄩
󵄩
󵄩
󵄩
󵄩

𝜌 (c𝑘 + Δc𝑘) − 𝜆∗󵄩󵄩󵄩
󵄩
󵄩

≤

󵄩
󵄩
󵄩
󵄩
󵄩

𝜌 (c𝑘) − 𝜆∗ + 𝐽
𝑘
Δc𝑘󵄩󵄩󵄩

󵄩
󵄩

+

󵄩
󵄩
󵄩
󵄩
󵄩

𝜌 (c𝑘 + Δc𝑘) − 𝜌 (c𝑘) − 𝐽
𝑘
Δc𝑘󵄩󵄩󵄩

󵄩
󵄩

≤ 𝜂
𝑘

󵄩
󵄩
󵄩
󵄩
󵄩

𝜌 (c𝑘) − 𝜆

∗󵄩󵄩
󵄩
󵄩
󵄩

+ (1 − 𝜉) (1 − 𝜂
𝑘
)

󵄩
󵄩
󵄩
󵄩
󵄩

𝜌 (c𝑘) − 𝜆∗󵄩󵄩󵄩
󵄩
󵄩

= (1 − 𝜉 (1 − 𝜂
𝑘
))

󵄩
󵄩
󵄩
󵄩
󵄩

𝜌 (c𝑘) − 𝜆∗󵄩󵄩󵄩
󵄩
󵄩

.

(36)

It follows that the backtracking loop terminates. This com-
pletes the proof.

The next lemma gives condition under which (32) is
satisfied.

Lemma 6. Assume that the Jacobian matrix 𝐽
𝑘
is invertible

and set 𝑀
𝑘
:= ‖𝐽

−1

𝑘
‖. Then there exists Γ such that (32) holds.

Proof. By using condition (19), one has that
󵄩
󵄩
󵄩
󵄩
󵄩

Δc𝑘󵄩󵄩󵄩
󵄩
󵄩

≤

󵄩
󵄩
󵄩
󵄩
󵄩

𝐽

−1

𝑘

󵄩
󵄩
󵄩
󵄩
󵄩

󵄩
󵄩
󵄩
󵄩
󵄩

𝐽
𝑘
Δc𝑘󵄩󵄩󵄩

󵄩
󵄩

≤ 𝑀
𝑘
(

󵄩
󵄩
󵄩
󵄩
󵄩

𝜌 (c𝑘) − 𝜆∗󵄩󵄩󵄩
󵄩
󵄩

+

󵄩
󵄩
󵄩
󵄩
󵄩

𝜌 (c𝑘) − 𝜆∗ + 𝐽
𝑘
Δc𝑘󵄩󵄩󵄩

󵄩
󵄩

)

≤ 𝑀
𝑘
(1 + 𝜂

𝑘
)

󵄩
󵄩
󵄩
󵄩
󵄩

𝜌 (c𝑘) − 𝜆∗󵄩󵄩󵄩
󵄩
󵄩

= 𝑀
𝑘

1 + 𝜂
𝑘

1 − 𝜂
𝑘

(1 − 𝜂
𝑘
)

󵄩
󵄩
󵄩
󵄩
󵄩

𝜌 (c𝑘) − 𝜆∗󵄩󵄩󵄩
󵄩
󵄩

≤ 𝑀
𝑘

1 + 𝜂max
1 − 𝜂max

(1 − 𝜂
𝑘
)

󵄩
󵄩
󵄩
󵄩
󵄩

𝜌 (c𝑘) − 𝜆∗󵄩󵄩󵄩
󵄩
󵄩

.

(37)

We finish the proof by taking Γ := 𝑀
𝑘
(1 + 𝜂max)/(1 −

𝜂max).

Lemmas 5 and 6 yield the result below.

Corollary 7. Assume that 𝜌(c𝑘) − 𝜆∗ ̸= 0 and 𝐽
𝑘
are invert-

ible. Set 𝑀
𝑘
:= ‖𝐽

−1

𝑘
‖ and Γ := 𝑀

𝑘
(1+𝜂max)/ (1−𝜂max). Then,

the backtracking loop in Step 7 of Algorithm 1 terminates with

1 − 𝜂
𝑘
≥ min{1 − 𝜂

𝑘
,

𝛿𝜃min
Γ

󵄩
󵄩
󵄩
󵄩

𝜌 (c𝑘) − 𝜆∗󵄩󵄩󵄩
󵄩

} , (38)

for any 𝛿 > 0 small enough such that (26) holds whenever
‖Δc‖ ≤ 𝛿.

Proof. Suppose that 𝜂
𝑘
is the final value determined by the

while-loop. If 𝜂
𝑘

= 𝜂

𝑘
, then (38) is trivial. Assume that

𝜂
𝑘

̸= 𝜂

𝑘
; that is, the body of the while-loop has been executed

at least once. Denoting the penultimate value by 𝜂

−

𝑘
, then it

follows from (33) that 1 − 𝜂

−

𝑘
≥ 𝛿/Γ‖𝜌(c𝑘) − 𝜆∗‖. Thus, we

have

1 − 𝜂
𝑘
= 𝜃 (1 − 𝜂

−

𝑘
) ≥ 𝜃min (1 − 𝜂

−

𝑘
) ≥

𝛿𝜃min
Γ

󵄩
󵄩
󵄩
󵄩

𝜌 (c𝑘) − 𝜆∗󵄩󵄩󵄩
󵄩

. (39)

This completes the proof.

Lemma 8. Assume that c∗ is an accumulation point of {c𝑘}
such that there exists a constant Γ independent of 𝑘 for which

󵄩
󵄩
󵄩
󵄩
󵄩

Δc𝑘󵄩󵄩󵄩
󵄩
󵄩

≤ Γ (1 − 𝜂
𝑘
)

󵄩
󵄩
󵄩
󵄩
󵄩

𝜌 (c𝑘) − 𝜆∗󵄩󵄩󵄩
󵄩
󵄩

, (40)

whenever c𝑘 is sufficiently near c∗ and 𝑘 is sufficient large.Then
c𝑘 → c∗ as 𝑘 → ∞.

Proof. Suppose that c𝑘 󴀀󴀂󴀠 c∗. Then, there exists 𝛿 > 0

sufficiently small such that there are infinitely many 𝑘 for
which c𝑘 ∉ B(c∗, 𝛿) and (40) hold whenever c𝑘 ∈ B(c∗, 𝛿)
for 𝑘 sufficiently large.

Since c∗ is an accumulation point of {c𝑘}, there exists
subsequence {c𝑘𝑖} ⊂ {c𝑘} such that c𝑘𝑖 ∈ B(c∗, 𝛿/𝑖) for 𝑖

sufficiently large. Choose ℓ
𝑖
> 0 satisfying 𝑘

𝑖
+ ℓ
𝑖
< 𝑘
𝑖+1

and
c𝑘𝑖+ℓ𝑖 ∉ B(c∗, 𝛿). It follows that
󵄩
󵄩
󵄩
󵄩
󵄩

𝜌 (c𝑘𝑖+𝑗−1) − 𝜆∗󵄩󵄩󵄩
󵄩
󵄩

≤

1

Γ (1 − 𝜂
𝑘
𝑖
+𝑗−1

)

(

󵄩
󵄩
󵄩
󵄩
󵄩

𝜌 (c𝑘𝑖+𝑗−1) − 𝜆∗󵄩󵄩󵄩
󵄩
󵄩

−

󵄩
󵄩
󵄩
󵄩
󵄩

𝜌 (c𝑘𝑖+𝑗) − 𝜆∗󵄩󵄩󵄩
󵄩
󵄩

) ,

𝑗 = 1, . . . , ℓ
𝑖
.

(41)

Then, by (40), we have, for 𝑖 sufficiently large,

𝛿

2

≤

󵄩
󵄩
󵄩
󵄩
󵄩

c𝑘𝑖+ℓ𝑖 − c𝑘𝑖󵄩󵄩󵄩
󵄩
󵄩

≤

𝑘
𝑖
+ℓ
𝑖
−1

∑

𝑘=𝑘
𝑖

󵄩
󵄩
󵄩
󵄩
󵄩

Δc𝑘󵄩󵄩󵄩
󵄩
󵄩

≤

𝑘
𝑖
+ℓ
𝑖
−1

∑

𝑘=𝑘
𝑖

Γ (1 − 𝜂
𝑘
)

󵄩
󵄩
󵄩
󵄩
󵄩

𝜌 (c𝑘) − 𝜆∗󵄩󵄩󵄩
󵄩
󵄩

≤

Γ

𝑡

(

󵄩
󵄩
󵄩
󵄩
󵄩

𝜌 (c𝑘𝑖) − 𝜆∗󵄩󵄩󵄩
󵄩
󵄩

−

󵄩
󵄩
󵄩
󵄩
󵄩

𝜌 (c𝑘𝑖+1) − 𝜆∗󵄩󵄩󵄩
󵄩
󵄩

) .

(42)

Note that c𝑘𝑖 → c∗ as 𝑖 → ∞. It follows that ‖𝜌(c𝑘𝑖)−𝜆∗‖−
‖𝜌(c𝑘𝑖+1) − 𝜆∗‖ → 0, which is a contradiction. Therefore,
c𝑘 → c∗ as 𝑘 → ∞.

Lemma 9. Assume that c∗ is an accumulation point of {c𝑘}
such that 𝐽(c∗) is invertible. Set 𝑀 = ‖𝐽(c∗)−1‖ and let 𝛿

1
be

such that 0 < 𝛿
1
≤ 1/2𝜇

1
𝑀, where 𝜇

1
:= 2𝑛 ⋅ max

1≤𝑗≤𝑛
‖𝐴
𝑗
‖.

Suppose that ‖𝐸
𝑘
‖ ≤ 𝛿
1
for 𝑘 sufficiently large. Then, for all 𝑘

sufficiently large,

󵄩
󵄩
󵄩
󵄩
󵄩

𝐽

−1

𝑘

󵄩
󵄩
󵄩
󵄩
󵄩

≤

󵄩
󵄩
󵄩
󵄩
󵄩

𝐽(c∗)−1󵄩󵄩󵄩
󵄩
󵄩

1 − 𝜇
1
𝛿
1

󵄩
󵄩
󵄩
󵄩
󵄩

𝐽(c∗)−1󵄩󵄩󵄩
󵄩
󵄩

≤ 2𝑀. (43)

Proof. By the definitions of [𝐽
𝑘
]
𝑖𝑗
and [𝐽(c∗)]

𝑖𝑗
, for all 𝑘 suffi-

ciently large,
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

[𝐽
𝑘
]

𝑖𝑗
− [𝐽 (c∗)]

𝑖𝑗

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

≤

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

p
𝑖
(c𝑘)
⊤

𝐴
𝑗
p
𝑖
(c𝑘) − p

𝑖
(c𝑘)
⊤

𝐴
𝑗
q
𝑖
(c∗)

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

+

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

p
𝑖
(c𝑘)
⊤

𝐴
𝑗
q
𝑖
(c∗) − q

𝑖
(c∗)⊤𝐴

𝑗
q
𝑖
(c∗)

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
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≤

󵄩
󵄩
󵄩
󵄩
󵄩
󵄩

p
𝑖
(c𝑘)
⊤󵄩
󵄩
󵄩
󵄩
󵄩
󵄩

󵄩
󵄩
󵄩
󵄩
󵄩

𝐴
𝑗

󵄩
󵄩
󵄩
󵄩
󵄩

󵄩
󵄩
󵄩
󵄩
󵄩

p
𝑖
(c𝑘) − q

𝑖
(c∗)󵄩󵄩󵄩

󵄩
󵄩

+

󵄩
󵄩
󵄩
󵄩
󵄩
󵄩

p
𝑖
(c𝑘)
⊤

− q
𝑖
(c∗)⊤

󵄩
󵄩
󵄩
󵄩
󵄩
󵄩

󵄩
󵄩
󵄩
󵄩
󵄩

𝐴
𝑗

󵄩
󵄩
󵄩
󵄩
󵄩

󵄩
󵄩
󵄩
󵄩

q
𝑖
(c∗)󵄩󵄩󵄩

󵄩

= 2

󵄩
󵄩
󵄩
󵄩
󵄩

𝐴
𝑗

󵄩
󵄩
󵄩
󵄩
󵄩

󵄩
󵄩
󵄩
󵄩
󵄩

p
𝑖
(c𝑘) − q

𝑖
(c∗)󵄩󵄩󵄩

󵄩
󵄩

, 1 ≤ 𝑖, 𝑗 ≤ 𝑛.

(44)

Then, we have, for all 𝑘 sufficiently large,
󵄩
󵄩
󵄩
󵄩

𝐽
𝑘
− 𝐽 (c∗)󵄩󵄩󵄩

󵄩

≤

󵄩
󵄩
󵄩
󵄩

𝐽
𝑘
− 𝐽(c∗)󵄩󵄩󵄩

󵄩𝐹

≤ 2𝑛 ⋅ max
1≤𝑗≤𝑛

󵄩
󵄩
󵄩
󵄩
󵄩

𝐴
𝑗

󵄩
󵄩
󵄩
󵄩
󵄩

⋅max
1≤𝑖≤𝑛

󵄩
󵄩
󵄩
󵄩
󵄩

p
𝑖
(c𝑘) − q

𝑖
(c∗)󵄩󵄩󵄩

󵄩
󵄩

.

(45)

Noting that p
𝑖
(c𝑘) − q

𝑖
(c∗) is the 𝑖th column of 𝐸

𝑘
, then

‖p
𝑖
(c𝑘)−q

𝑖
(c∗)‖ ≤ ‖𝐸

𝑘
‖ for 𝑖 = 1, . . . , 𝑛. So, for all 𝑘 sufficiently

large,
󵄩
󵄩
󵄩
󵄩
󵄩

𝐽(c∗)−1󵄩󵄩󵄩
󵄩
󵄩

󵄩
󵄩
󵄩
󵄩

𝐽
𝑘
− 𝐽 (c∗)󵄩󵄩󵄩

󵄩

≤ 𝜇
1
𝛿
1
𝑀 ≤

1

2

< 1. (46)

It follows from Banach lemma that 𝐽
𝑘
is invertible and

‖𝐽

−1

𝑘
‖ ≤ 2𝑀 for all 𝑘 sufficiently large. This completes the

proof.

Lemmas 6, 8, and 9 yield the result below.

Corollary 10. Assume that c∗ is an accumulation point of {c𝑘}
such that 𝐽(c∗) is invertible. Set 𝑀 := ‖𝐽(c∗)−1‖ and let 𝛿

1

be determined by Lemma 9. Assume that ‖𝐸
𝑘
‖ ≤ 𝛿

1
for 𝑘

sufficiently large. Then c𝑘 → c∗ as 𝑘 → ∞.

Proof. By Lemma 9, we know 𝐽
𝑘
is invertible and ‖𝐽

−1

𝑘
‖ ≤

2𝑀 for all 𝑘 sufficiently large. From the proof of Lemma 6,
(40) holds for the constant Γ = 2𝑀(1 + 𝜂max)/(1 − 𝜂max)

independent of 𝑘. Therefore, c𝑘 → c∗ as 𝑘 → ∞ follows
from Lemma 8.

Corollary 11. Assume that c∗ is an accumulation point of {c𝑘}
such that 𝐽(c∗) is invertible.Then, 𝜌(c𝑘)−𝜆∗ → 0 as 𝑘 → ∞.
Moreover, for all 𝑘 sufficiently large, one has 𝜂

𝑘
= 𝜂

𝑘
.

Proof. If Δc𝑘 is computed in the backtracking loop, the back-
tracking terminates with 𝜂

𝑘
such that (38) holds. Since c𝑘 →

c∗ byCorollary 10, we have c𝑘 ∈ B(c∗, 𝛿) for all 𝑘 sufficiently
large.Thus, the series∑∞

𝑘=0
(1−𝜂
𝑘
) is divergent.Then, we have

∏

1≤𝑖<𝑘

[1 − 𝜉 (1 − 𝜂
𝑖
)] ≤ ∏

1≤𝑖<𝑘

𝑒

−𝜉(1−𝜂
𝑖
)

= 𝑒

−𝜉⋅∑
𝑘−1

𝑖=1
(1−𝜂
𝑖
)
󳨀→ 0, 𝑘 󳨀→ ∞,

(47)

and so
󵄩
󵄩
󵄩
󵄩
󵄩

𝜌 (c𝑘) − 𝜆∗󵄩󵄩󵄩
󵄩
󵄩

≤ [1 − 𝜉 (1 − 𝜂
𝑘−1

)]

󵄩
󵄩
󵄩
󵄩
󵄩

𝜌 (c𝑘−1) − 𝜆∗󵄩󵄩󵄩
󵄩
󵄩

≤

󵄩
󵄩
󵄩
󵄩
󵄩

𝜌 (c0) − 𝜆∗󵄩󵄩󵄩
󵄩
󵄩

∏

0≤𝑖<𝑘

[1 − 𝜉 (1 − 𝜂
𝑖
)] 󳨀→ 0, 𝑘 󳨀→ ∞.

(48)

This together with (38) yields that 𝜂
𝑘
= 𝜂

𝑘
for all 𝑘 sufficiently

large.

Lemma 12. Assume that c∗ is an accumulation point of {c𝑘}
such that 𝐽(c∗) is invertible. Then, there exists 𝛿

2
> 0 such that

󵄩
󵄩
󵄩
󵄩
󵄩

𝜌 (c𝑘) − 𝜆∗ − 𝐽
𝑘
(c𝑘 − c∗)󵄩󵄩󵄩

󵄩
󵄩

≤ 𝜇
3

󵄩
󵄩
󵄩
󵄩

𝐸
𝑘

󵄩
󵄩
󵄩
󵄩

2

𝐹
(49)

whenever c𝑘 ∈ B(c∗, 𝛿
2
) and 𝑘 sufficiently large, where 𝜇

3
:=

2max
1≤𝑖≤𝑛

|𝜆

∗

𝑖
|.

Proof. Set 𝐻
𝑘

:= 𝑄(c∗)⊤𝑃
𝑘
− I. Then, we have, for all 𝑘

sufficiently large,

𝑃

⊤

𝑘
𝐴 (c∗) 𝑃

𝑘
= (I + 𝐻

𝑘
)

⊤

Λ

∗
(I + 𝐻

𝑘
)

= Λ

∗
+ Λ

∗
𝐻
𝑘
+ 𝐻

⊤

𝑘
Λ

∗
+ 𝐻

⊤

𝑘
Λ

∗
𝐻
𝑘
.

(50)

It follows that, for all 𝑘 sufficiently large,

p
𝑖
(c𝑘)
⊤

𝐴 (c∗) p
𝑖
(c𝑘)

= 𝜆

∗

𝑖
+ 2𝜆

∗

𝑖
[𝐻
𝑘
]

𝑖𝑖
+

𝑛

∑

𝑗=1

𝜆

∗

𝑗
[𝐻
𝑘
]

2

𝑖𝑗
, 𝑖 = 1, 2, . . . , 𝑛.

(51)

Set

V
𝑖
:= 2𝜆

∗

𝑖
[𝐻
𝑘
]

𝑖𝑖
+

𝑛

∑

𝑗=1

𝜆

∗

𝑗
[𝐻
𝑘
]

2

𝑖𝑗
, 𝑖 = 1, 2, . . . , 𝑛, (52)

and write k = (V
1
, V
2
, . . . , V

𝑛
)

⊤. It follows that 𝐽
𝑘
c∗ = 𝜆∗−a𝑘+

k, where

[a𝑘]
𝑖
= p
𝑖
(c𝑘)
⊤

𝐴
0
p
𝑖
(c𝑘) , 𝑖 = 1, 2, . . . , 𝑛. (53)

In view of that 𝐽
𝑘
c𝑘 = 𝜌(c𝑘) − a𝑘 for any 𝑘 ∈ N, one has that,

for all 𝑘 sufficiently large,

k = 𝜌 (c𝑘) − 𝜆∗ − 𝐽
𝑘
(c𝑘 − c∗) . (54)

Since

I + 𝐻
𝑘
𝐻

⊤

𝑘
+ 𝐻
𝑘
𝐻

⊤

𝑘
= (I + 𝐻

𝑘
) (I + 𝐻

𝑘
)

⊤

= 𝑄(c∗)⊤𝑃
𝑘
𝑃

⊤

𝑘
𝑄 (c∗) = I,

(55)

we have

[𝐻
𝑘
]

𝑖𝑖
= −

1

2

𝑛

∑

𝑗=1

[𝐻
𝑘
]

2

𝑖𝑗
, 𝑖 = 1, 2, . . . , 𝑛. (56)
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It follows from (52) that, for all 𝑘 sufficiently large,

V2
𝑖
= (2𝜆

∗

𝑖
[𝐻
𝑘
]

𝑖𝑖
+

𝑛

∑

𝑗=1

𝜆

∗

𝑗
[𝐻
𝑘
]

2

𝑖𝑗
)

2

≤ 2
[

[

4(𝜆

∗

𝑖
)

2

[𝐻
𝑘
]

2

𝑖𝑖
+ (

𝑛

∑

𝑗=1

𝜆

∗

𝑗
[𝐻
𝑘
]

2

𝑖𝑗
)

2

]

]

.

(57)

Combining (56) with (57), one has that, for all 𝑘 sufficiently
large,

𝑛

∑

𝑖=1

V2
𝑖
≤ 2

[

[

𝑛

∑

𝑖=1

4(𝜆

∗

𝑖
)

2

[𝐻
𝑘
]

2

𝑖𝑖
+

𝑛

∑

𝑖=1

(

𝑛

∑

𝑗=1

𝜆

∗

𝑗
[𝐻
𝑘
]

2

𝑖𝑗
)

2

]

]

= 2
[

[

𝑛

∑

𝑖=1

(𝜆

∗

𝑖
)

2

(

𝑛

∑

𝑗=1

[𝐻
𝑘
]

2

𝑖𝑗
)

2

+

𝑛

∑

𝑖=1

(

𝑛

∑

𝑗=1

𝜆

∗

𝑗
[𝐻
𝑘
]

2

𝑖𝑗
)

2

]

]

≤ 2
[

[

max
1≤𝑖≤𝑛

󵄨
󵄨
󵄨
󵄨

𝜆

∗

𝑖

󵄨
󵄨
󵄨
󵄨

2

⋅

𝑛

∑

𝑖=1

(

𝑛

∑

𝑗=1

[𝐻
𝑘
]

2

𝑖𝑗
)

2

+max
1≤𝑖≤𝑛

󵄨
󵄨
󵄨
󵄨

𝜆

∗

𝑖

󵄨
󵄨
󵄨
󵄨

2

⋅

𝑛

∑

𝑖=1

(

𝑛

∑

𝑗=1

[𝐻
𝑘
]

2

𝑖𝑗
)

2

]

]

≤ 4max
1≤𝑖≤𝑛

󵄨
󵄨
󵄨
󵄨

𝜆

∗

𝑖

󵄨
󵄨
󵄨
󵄨

2

⋅ (

𝑛

∑

𝑖=1

𝑛

∑

𝑗=1

[𝐻
𝑘
]

2

𝑖𝑗
)

2

= 4max
1≤𝑖≤𝑛

󵄨
󵄨
󵄨
󵄨

𝜆

∗

𝑖

󵄨
󵄨
󵄨
󵄨

2

⋅

󵄩
󵄩
󵄩
󵄩

𝐻
𝑘

󵄩
󵄩
󵄩
󵄩

4

𝐹
,

(58)

which gives

‖k‖ ≤ 2max
1≤𝑖≤𝑛

󵄨
󵄨
󵄨
󵄨

𝜆

∗

𝑖

󵄨
󵄨
󵄨
󵄨

⋅

󵄩
󵄩
󵄩
󵄩

𝐻
𝑘

󵄩
󵄩
󵄩
󵄩

2

𝐹
. (59)

Note that,
󵄩
󵄩
󵄩
󵄩

𝐻
𝑘

󵄩
󵄩
󵄩
󵄩𝐹

=

󵄩
󵄩
󵄩
󵄩
󵄩

𝑄(c∗)⊤𝑃
𝑘
− I󵄩󵄩󵄩

󵄩
󵄩𝐹

=

󵄩
󵄩
󵄩
󵄩

𝑃
𝑘
− 𝑄(c∗)󵄩󵄩󵄩

󵄩𝐹
=

󵄩
󵄩
󵄩
󵄩

𝐸
𝑘

󵄩
󵄩
󵄩
󵄩𝐹
. (60)

Therefore, we obtain from (54) that (49) holds for all 𝑘
sufficiently large. This completes the proof.

Lemma 13. Assume that c∗ is an accumulation point of {c𝑘}
such that 𝐽(c∗) is invertible. Then, there exist 𝛿

3
> 0, 𝛿

4
∈

(0, 𝛿
1
] sufficiently small such that ‖𝐸

𝑘
‖ ≤ 𝛿
4
and

󵄩
󵄩
󵄩
󵄩
󵄩

c𝑘+1 − c∗󵄩󵄩󵄩
󵄩
󵄩

≤ 2𝑀(𝜇
3

󵄩
󵄩
󵄩
󵄩

𝐸
𝑘

󵄩
󵄩
󵄩
󵄩

2

𝐹
+ (

2

𝜇
3

)

𝛽
󵄩
󵄩
󵄩
󵄩
󵄩

𝜌(c𝑘) − 𝜆∗󵄩󵄩󵄩
󵄩
󵄩

𝛽

) (61)

whenever c𝑘 ∈ B(c∗, 𝛿
3
) and 𝑘 sufficiently large, where 𝛿

1
is

determined by Lemma 9.

Proof. Thanks to Corollary 11, we have 𝜂
𝑘
= 𝜂

𝑘
andΔc𝑘 = Δc𝑘

for all 𝑘 sufficiently large. Thus, the Jacobian equation (18) is
equivalent to, for all 𝑘 sufficiently large,

𝐽
𝑘
c𝑘+1 − 𝜆∗ + a𝑘 = 0. (62)

Assume that the residual of this approximate Jacobian equa-
tion is defined by r𝑘; that is, for all 𝑘 sufficiently large,

r𝑘 = 𝐽
𝑘
c𝑘+1 − 𝜆∗ + a𝑘. (63)

This together with 𝐽
𝑘
c∗−𝜆∗+a𝑘 = k gives, for all 𝑘 sufficiently

large,

𝐽
𝑘
(c∗ − c𝑘+1) = k − r𝑘. (64)

By (19), Lemmas 9 and 12, we obtain, for all 𝑘 sufficiently
large,

󵄩
󵄩
󵄩
󵄩
󵄩

c𝑘+1 − c∗󵄩󵄩󵄩
󵄩
󵄩

≤

󵄩
󵄩
󵄩
󵄩
󵄩

𝐽

−1

𝑘

󵄩
󵄩
󵄩
󵄩
󵄩

(‖k‖ +
󵄩
󵄩
󵄩
󵄩
󵄩

r𝑘󵄩󵄩󵄩
󵄩
󵄩

)

≤ 2𝑀(𝜇
3

󵄩
󵄩
󵄩
󵄩

𝐸
𝑘

󵄩
󵄩
󵄩
󵄩

2

𝐹
+

󵄩
󵄩
󵄩
󵄩
󵄩

𝜌 (c𝑘) − 𝜆∗󵄩󵄩󵄩
󵄩
󵄩

𝛽+1

󵄩
󵄩
󵄩
󵄩

𝜆
∗󵄩
󵄩
󵄩
󵄩

𝛽
) .

(65)

It follows from Lemma 3 that
󵄩
󵄩
󵄩
󵄩
󵄩

𝜌 (c𝑘) − 𝜆∗󵄩󵄩󵄩
󵄩
󵄩

≤ √𝑛𝐿

󵄩
󵄩
󵄩
󵄩
󵄩

c𝑘 − c∗󵄩󵄩󵄩
󵄩
󵄩

+ 𝜇
2

󵄩
󵄩
󵄩
󵄩

𝐸
𝑘

󵄩
󵄩
󵄩
󵄩

, ∀𝑘 ∈ N. (66)

Thus, we can choose 𝛿
3
> 0 and 0 < 𝛿

4
≤ 𝛿
1
sufficiently

small such that

√𝑛𝐿𝛿
3
+ 𝜇
2
𝛿
4
≤ 1, (67)

whenever ‖c𝑘 − c∗‖ ≤ 𝛿
3
and ‖𝐸

𝑘
‖
𝐹

≤ 𝛿
4
. Therefore,

combining this with the definition of 𝜇
3
given in Lemma 12,

(61) follows.

Lemma 14 (see [6]). There exist two positive numbers 𝛿
5
and

𝜔
1
such that, for any orthogonal matrix 𝑃 with ‖𝑃 − 𝑄(c∗)‖ <

𝛿
5
, the skew-symmetric 𝑋 defined by 𝑒𝑋 := 𝑃

⊤
𝑄(c∗) satisfies

‖𝑋‖ ≤ 𝜔
1
‖𝑃 − 𝑄(c∗)‖.

Based onLemma 14, by using the similar arguments in the
proof of [10, Lemma 5], we can obtain the following lemma.
If we write 𝑒𝑋𝑘 := 𝑃

⊤

𝑘
𝑄

∗, then there exists 𝐶 > 0 such that
‖𝑌
𝑘
‖ ≤ 𝐶(‖c𝑘+1 − c∗‖ + ‖𝑋

𝑘
‖).

Lemma 15. Suppose that the given eigenvalues {𝜆

∗

𝑖
}

𝑛

𝑖=1
are

distinct and the Jacobian matrix 𝐽(c∗) is invertible.Then, there
exist 𝜔

2
> 0 and 0 < 𝛿

6
< min{𝛿

5
, 1/(1 + 𝜔

1
)𝐶} such that,

for 𝑘 sufficiently large, if ‖c𝑘+1 − c∗‖ ≤ 𝛿
6
and ‖𝐸

𝑘
‖ ≤ 𝛿
6
, then

󵄩
󵄩
󵄩
󵄩

𝐸
𝑘+1

󵄩
󵄩
󵄩
󵄩

≤ 𝜔
2
(

󵄩
󵄩
󵄩
󵄩
󵄩

c𝑘+1 − c∗󵄩󵄩󵄩
󵄩
󵄩

+

󵄩
󵄩
󵄩
󵄩

𝐸
𝑘

󵄩
󵄩
󵄩
󵄩

2

) , (68)

where 𝜔
1
is determined by Lemma 14.

In order to prove our global convergence result for
Algorithm 1, we introduce some notations. Let 𝜁

1
:= 2(√𝑛𝐿+

𝜇
2
)/𝜇
3
and 𝜁

2
:= 2𝑀(𝜇

3
+ 𝜁

𝛽

1
). Set

𝜏 := min {1, (2𝑀(𝜇
3
+ 𝜁

𝛽

1
))

−(1/(𝛽−1))

× (𝜔
2
(𝜁
2
+ 1))

−(1/(𝛽−1))

} ,

(69)

𝛿 := min {𝜏, 𝛿
2
, 𝛿
3
, 𝛿
4
, 𝛿
6
} . (70)

Our main global convergence result is as follows.
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Theorem 16. Assume that {c𝑘} is generated by Algorithm 1.
Suppose that the given eigenvalues {𝜆∗

𝑖
}

𝑛

𝑖=1
are distinct and c∗

is an accumulation point of {c𝑘} such that 𝐽(c∗) is invertible.
Then, 𝜌(c𝑘) − 𝜆∗ → 0 and c𝑘 → c∗ as 𝑘 → ∞. Moreover,
the convergence is of R-order 𝛽.

Proof. It follows immediately from Corollaries 10 and 11 that
𝜌(c𝑘) − 𝜆∗ → 0 and c𝑘 → c∗ as 𝑘 → ∞. For the 𝜏 given in
(69), there exists 𝑘

0
sufficiently large such that ‖c𝑘0 − c∗‖ ≤ 𝜏

and ‖𝐸
𝑘
0

‖ ≤ 𝜏. Set 𝛾 := 𝛿/𝜏, where 𝛿 and 𝜏 are given in (70)
and (69), respectively. Then, 𝛾 ≤ 1. We will show that, for all
𝑘 ≥ 𝑘
0
sufficiently large,

󵄩
󵄩
󵄩
󵄩
󵄩

c𝑘 − c∗󵄩󵄩󵄩
󵄩
󵄩

≤ 𝜏 ⋅ 𝛾

𝛽
𝑘−𝑘
0

, (71)

󵄩
󵄩
󵄩
󵄩

𝐸
𝑘

󵄩
󵄩
󵄩
󵄩

≤ 𝜏 ⋅ 𝛾

𝛽
𝑘−𝑘
0

.
(72)

Suppose that (71) and (72) hold for some 𝑘 = ℓ ≥ 𝑘
0
. Consider

the case 𝑘 = ℓ+1.Thanks to Lemma 3, we have, for all ℓ ≥ 𝑘
0
,

󵄩
󵄩
󵄩
󵄩
󵄩

𝜌 (cℓ) − 𝜆∗󵄩󵄩󵄩
󵄩
󵄩

≤ √𝑛𝐿

󵄩
󵄩
󵄩
󵄩
󵄩

cℓ − c∗󵄩󵄩󵄩
󵄩
󵄩

+ 𝜇
2

󵄩
󵄩
󵄩
󵄩

𝐸
ℓ

󵄩
󵄩
󵄩
󵄩

≤ √𝑛𝐿𝜏 ⋅ 𝛾

𝛽
ℓ−𝑘
0

+ 𝜇
2
𝜏 ⋅ 𝛾

𝛽
ℓ−𝑘
0

= (√𝑛𝐿 + 𝜇
2
) 𝜏 ⋅ 𝛾

𝛽
ℓ−𝑘
0

.

(73)

Then, by using Lemma 13, one has that, for all ℓ ≥ 𝑘
0
,

󵄩
󵄩
󵄩
󵄩
󵄩

cℓ+1 − c∗󵄩󵄩󵄩
󵄩
󵄩

≤ 2𝑀(𝜇
3

󵄩
󵄩
󵄩
󵄩

𝐸
ℓ

󵄩
󵄩
󵄩
󵄩

2

𝐹
+ (

2

𝜇
3

)

𝛽
󵄩
󵄩
󵄩
󵄩
󵄩

𝜌 (cℓ) − 𝜆∗󵄩󵄩󵄩
󵄩
󵄩

)

≤ 2𝑀𝜇
3
𝜏

2
(𝛾

𝛽
ℓ−𝑘
0

)

2

+ 2𝑀(

2

𝜇
3

)

𝛽

(√𝑛𝐿 + 𝜇
3
)

𝛽

𝜏

𝛽
𝛾

𝛽
ℓ−𝑘
0
+1

≤ 2𝑀[𝜇
3
+ (

2 (√𝑛𝐿 + 𝜇
2
)

𝜇
3

)

𝛽

] 𝜏

𝛽
𝛾

𝛽
ℓ−𝑘
0
+1

≤ 𝜏𝛾

𝛽
ℓ−𝑘
0
+1

,

(74)

where the last inequality follows from the definition of 𝜏 in
(69). By Lemma 15, we have, for all ℓ ≥ 𝑘

0
,

󵄩
󵄩
󵄩
󵄩

𝐸
ℓ+1

󵄩
󵄩
󵄩
󵄩

≤ 𝜔
2
(

󵄩
󵄩
󵄩
󵄩
󵄩

cℓ+1 − c∗󵄩󵄩󵄩
󵄩
󵄩

+

󵄩
󵄩
󵄩
󵄩

𝐸
ℓ

󵄩
󵄩
󵄩
󵄩

2

)

≤ 2𝑀𝜔
2
(𝜇
3
+ 𝜁

𝛽

1
) 𝜏

𝛽
𝛾

𝛽
ℓ−𝑘
0
+1

+ 𝜔
2
𝜏

2
(𝛾

𝛽
ℓ−𝑘
0

)

2

≤ 𝜔 (2𝑀(𝜇
3
+ 𝜁

𝛽

1
) + 1) 𝜏

𝛽
⋅ 𝛾

𝛽
ℓ−𝑘
0
+1

= 𝜔
2
(𝜁
2
+ 1) 𝜏

𝛽
⋅ 𝛾

𝛽
ℓ−𝑘
0
+1

≤ 𝜏 ⋅ 𝛾

𝛽
ℓ−𝑘
0
+1

.

(75)

Therefore, we conclude that (71) and (72) hold for all 𝑘 ≥ 𝑘
0
.

Moreover, we see from (71) that c𝑘 converges to c∗ with R-
order 𝛽. This completes the proof.

If {c𝑘} generated by Algorithm 1 converges to a solution
at which the Jacobian matrix is invertible, then the ultimate
rate of convergence is governed by the choices of the 𝜂

𝑘
(𝑘 =

0, 1, . . .) as in the local theory of [9].

4. Numerical Examples

In this section, we illustrate the effectiveness of Algorithm 1
in solving IEP on three examples. The tests were carried out
in MATLAB 7.0 running on a PC Intel Pentium P6200 of
2.13 GHz CPU.

The given parameters used in our algorithm were 𝜂
0
=

0.5, 𝜂max = 0.9, 𝜉 = 10

−4, 𝜃min = 0.1, and 𝜃max = 0.9. In the
while loop, we choose 𝜃 ∈ [𝜃min, 𝜃max] to minimize ‖𝜌(c𝑘 +
𝜃Δc𝑘) − 𝜆∗‖ if 80 iterations of the backtracking loop fail to
produce the sufficient decrease in ‖𝜌(c) − 𝜆∗‖.

Linear systems (14) and (19) are all solved iteratively by the
QMRmethod [20] using theMATLAB qmr function. In order
to guarantee the orthogonality of 𝑃new in (14), this system is
solved up to machine precision eps (≈ 2.2 × 10

−16). The inner
loop stopping tolerance for (18) is given by (20).The stopping
criterion of the outer iteration in our algorithm is

󵄩
󵄩
󵄩
󵄩
󵄩

𝑃

⊤

𝑘
𝐴(c𝑘)𝑃

𝑘
− Λ
∗

󵄩
󵄩
󵄩
󵄩
󵄩𝐹

≤ 10

−10
. (76)

Example 1. This is an inverse Toeplitz eigenvalue problem
(see [2] formore details on this inverse problem)with distinct
eigenvalues. The basis matrices {𝐴

𝑖
}

5

𝑖=1
are given as follows:

𝐴
1
=

[

[

[

[

[

[

1 0 0 0 0

0 1 0 0 0

0 0 1 0 0

0 0 0 1 0

0 0 0 0 1

]

]

]

]

]

]

, 𝐴
2
=

[

[

[

[

[

[

0 1 0 0 0

1 0 1 0 0

0 1 0 1 0

0 0 1 0 1

0 0 0 1 0

]

]

]

]

]

]

,

𝐴
3
=

[

[

[

[

[

[

0 0 1 0 0

0 0 0 1 0

1 0 0 0 1

0 1 0 0 0

0 0 1 0 0

]

]

]

]

]

]

, 𝐴
4
=

[

[

[

[

[

[

0 0 0 1 0

0 0 0 0 1

0 0 0 0 0

1 0 0 0 0

0 1 0 0 0

]

]

]

]

]

]

,

𝐴
5
=

[

[

[

[

[

[

0 0 0 0 1

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

1 0 0 0 0

]

]

]

]

]

]

.

(77)

The given real eigenvalues and a solution, respectively, are

𝜆
∗
= (−5.2361, −1.5876, −0.7639, −0.5555, 18.1431)

⊤
,

c∗ = (2, 3, 4, 5, 6)

⊤
.

(78)
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Table 1: Numerical results for Example 1.

c0 𝛽 = 1.5 𝛽 = 1.8 𝛽 = 2.0

(a)
errs

1.0659𝑒 − 02 1.0659𝑒 − 02 1.0659𝑒 − 02

1.1323𝑒 − 05 1.1323𝑒 − 05 1.1323𝑒 − 05

8.0567𝑒 − 12 8.0567𝑒 − 12 8.0567𝑒 − 12

ite. 6 6 6
c∗ (2.0000, 3.2926, 3.4471, 4.9014, 6.5529)

⊤

(b)
errs

3.8846𝑒 − 03 3.8846𝑒 − 03 3.8846𝑒 − 03

1.2491𝑒 − 06 1.2491𝑒 − 06 1.2491𝑒 − 06

7.9990𝑒 − 14 7.9990𝑒 − 14 7.9990𝑒 − 14

ite. 9 9 9
c∗ (2, 3, 4, 5, 6)

⊤

(c)
errs

5.0389𝑒 − 05 5.0389𝑒 − 05 5.0389𝑒 − 05

3.5838𝑒 − 10 3.5838𝑒 − 10 3.5838𝑒 − 10

5.0337𝑒 − 15 5.0337𝑒 − 15 5.0337𝑒 − 15

ite. 13 13 13
c∗ (2.0000, 3.2926, 3.4471, 4.9014, 6.5529)

⊤

(d)
errs

1.3806𝑒 − 04 1.3806𝑒 − 04 1.3806𝑒 − 04

6.4118𝑒 − 09 6.4118𝑒 − 09 6.4118𝑒 − 09

9.8493𝑒 − 15 9.8493𝑒 − 15 9.8493𝑒 − 15

ite. 75 75 75
c∗ (2.0000, 3.2926, 3.4471, 4.9014, 6.5529)

⊤

(e)
errs

1.2028𝑒 − 04 7.7624𝑒 − 03 7.7624𝑒 − 03

3.8608𝑒 − 10 6.1243𝑒 − 06 6.1243𝑒 − 06

5.3680𝑒 − 15 2.1634𝑒 − 12 2.1634𝑒 − 12

ite. 13 5 5
c∗ (2, 3, 4, 5, 6)

⊤

In Table 1, we report our numerical results for various starting
points:

(a) c0 = (1, 2, 3, 4, 5)

⊤
,

(b) c0 = (1, 5, 10, 15, 20)

⊤
,

(c) c0 = (11, 12, 13, 14, 15)

⊤
,

(d) c0 = (21, 38, 46, 63, 81)

⊤
,

(e) c0 = (101, 112, 123, 134, 145)

⊤
,

(79)

where c0, errs, ite. and c∗ stand for the starting point, the
error value of the left-hand side of (76) for the last three
iterates of the algorithm, the number of outer iteration, and
the accumulation point corresponding to the starting point.

Example 2. This is a Toeplitz-plus-Hankel inverse eigenvalue
problem (see [1] for more details on this inverse problem)

with distinct eigenvalues.The basis matrices {𝐴
𝑖
}

7

𝑖=1
are given

as follows:

𝐴
1
=

[

[

[

[

[

[

[

[

[

[

−1 0 0 0 0 0 0

0 1 0 0 0 0 0

0 0 1 0 0 0 0

0 0 0 1 0 0 0

0 0 0 0 1 0 0

0 0 0 0 0 1 0

0 0 0 0 0 0 1

]

]

]

]

]

]

]

]

]

]

,

𝐴
2
=

[

[

[

[

[

[

[

[

[

[

0 −1 0 0 0 0 0

−1 0 1 0 0 0 0

0 1 0 1 0 0 0

0 0 1 0 1 0 0

0 0 0 1 0 1 0

0 0 0 0 1 0 1

0 0 0 0 0 1 0

]

]

]

]

]

]

]

]

]

]

,

𝐴
3
=

[

[

[

[

[

[

[

[

[

[

0 0 −1 0 0 0 0

0 −2 0 1 0 0 0

−1 0 0 0 1 0 0

0 1 0 0 0 1 0

0 0 1 0 0 0 1

0 0 0 1 0 0 0

0 0 0 0 1 0 0

]

]

]

]

]

]

]

]

]

]

,

𝐴
4
=

[

[

[

[

[

[

[

[

[

[

0 0 0 −1 0 0 0

0 0 −2 0 1 0 0

0 −2 0 0 0 1 0

−1 0 0 0 0 0 1

0 1 0 0 0 0 0

0 0 1 0 0 0 0

0 0 0 1 0 0 0

]

]

]

]

]

]

]

]

]

]

,

𝐴
5
=

[

[

[

[

[

[

[

[

[

[

0 0 0 0 −1 0 0

0 0 0 −2 0 1 0

0 0 −2 0 0 0 1

0 −2 0 0 0 0 0

−1 0 0 0 0 0 0

0 1 0 0 0 0 0

0 0 1 0 0 0 0

]

]

]

]

]

]

]

]

]

]

,

𝐴
6
=

[

[

[

[

[

[

[

[

[

[

0 0 0 0 0 −1 0

0 0 0 0 −2 0 1

0 0 0 −2 0 0 0

0 0 −2 0 0 0 0

0 −2 0 0 0 0 0

−1 0 0 0 0 0 0

0 1 0 0 0 0 0

]

]

]

]

]

]

]

]

]

]

,

𝐴
7
=

[

[

[

[

[

[

[

[

[

[

0 0 0 0 0 0 −1

0 0 0 0 0 −2 0

0 0 0 0 −2 0 0

0 0 0 −2 0 0 0

0 0 −2 0 0 0 0

0 −2 0 0 0 0 0

−1 0 0 0 0 0 0

]

]

]

]

]

]

]

]

]

]

.

(80)
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The given real eigenvalues are

𝜆
∗
= (−35.4513, −13.6805, −9.5675,

−8.5489, 8.7666, 11.8220, 26596)

⊤
,

(81)

and c∗ = (2, 3, 4, 5, 6, 7, 8)

⊤ is a solution. In Table 2, we
report our numerical results for various starting points:

(a) c0= (1, 2, 3, 4, 5, 6, 7)

⊤
,

(b) c0 = (1, 3, 5, 7, 9, 11, 13)

⊤
,

(c) c0 = (11, 13, 15, 17, 19, 21, 23)

⊤
,

(d) c0 = (50, 52, 56, 58, 62, 65, 68)

⊤
,

(e) c0 = (101, 102, 103, 104, 106, 108, 110)

⊤
.

(82)

Example 3 (see [10]). Given 𝐵 = [𝑏
𝑖𝑗
]
8×8

:= I + 𝑉𝑉

⊤, where

𝑉 =

[

[

[

[

[

[

[

[

[

[

[

1 −1 −3 −5 −6

1 1 −2 −5 −17

1 −1 −1 5 18

1 1 1 2 0

1 −1 2 0 1

1 1 3 0 −1

2.5 0.2 0.3 0.5 0.6

2 −0.2 0.3 0.5 0.8

]

]

]

]

]

]

]

]

]

]

]
8×5

, (83)

the basis matrices {𝐴
𝑘
}

8

𝑘=1
are defined from 𝐵 as follows:

𝐴
𝑘
= 𝑏
𝑘𝑘
𝑒
𝑘
𝑒

⊤

𝑘
+

𝑘−1

∑

𝑗=1

𝑏
𝑘𝑗
(𝑒
𝑘
𝑒

⊤

𝑘
+ 𝑒
𝑗
𝑒

⊤

𝑘
) , 𝑘 = 1, 2, . . . , 8,

(84)

where 𝑒
𝑘
is the 𝑘th column of the identity matrix I. The

given real eigenvalues and a solution, respectively, are

𝜆
∗
= (1.0𝑒 + 04) × (−1.1672, −0.3139, −0.0140, −0.0008,

0.0003, 0.0075, 0.0327, 1.7372)

⊤
,

(85)

and c∗ = (2, 3, 4, 5, 6, 7, 8, 9)

⊤. Table 3 shows the numerical
results for the following various starting points:

(a) c0 = (1, 1, 1, 1, 1, 1, 1, 1)

⊤
,

(b) c0 = (2.5, 2.5, 2.5, 2.5, 2.5, 2.5, 2.5, 2.5)

⊤
,

(c) c0 = (1, 2, 3, 4, 5, 6, 7, 8)

⊤
,

(d) c0 = (2, 4, 6, 8, 10, 12, 14, 16)

⊤
,

(86)

Table 2: Numerical results for Example 2.

c0 𝛽 = 1.5 𝛽 = 1.8 𝛽 = 2.0

(a)
errs

8.2730𝑒 − 03 8.2730𝑒 − 03 8.2730𝑒 − 03

2.2866𝑒 − 05 2.2866𝑒 − 05 2.2866𝑒 − 05

5.5845𝑒 − 11 5.5845𝑒 − 11 5.5845𝑒 − 11

ite. 6 6 6
c∗ (2, 3, 4, 5, 6, 7, 8)

⊤

(b)
errs

8.2129𝑒 − 03 4.0190𝑒 − 03 1.7235𝑒 − 04

2.0027𝑒 − 05 1.5988𝑒 − 06 3.7839𝑒 − 09

5.0828𝑒 − 11 2.8276𝑒 − 13 1.9386𝑒 − 14

ite. 7 7 7
c∗ (2.8703, 2.0639, 4.9434, 4.1053, 6.7530, 6.3287, 8.4794)

⊤

(c)
errs

3.4941𝑒 − 03 3.4941𝑒 − 03 3.4941𝑒 − 03

2.5608𝑒 − 06 2.5608𝑒 − 06 2.5608𝑒 − 06

6.7550𝑒 − 13 6.7550𝑒 − 13 6.7550𝑒 − 13

ite. 11 11 11
c∗ (2.8703, 2.0639, 4.9434, 4.1053, 6.7530, 6.3287, 8.4794)

⊤

(d)
errs

2.9914𝑒 − 04 2.9914𝑒 − 04 2.9914𝑒 − 04

8.2616𝑒 − 09 8.2616𝑒 − 09 8.2616𝑒 − 09

1.8946𝑒 − 14 1.8946𝑒 − 14 1.8946𝑒 − 14

ite. 13 13 13
c∗ (1.1787, −0.0035, 2.0401, 1.6976, 5.3794, 6.2068, 8.5273)

⊤

(e)
errs

2.1008𝑒 − 04 2.1008𝑒 − 04 2.1008𝑒 − 04

1.5703𝑒 − 08 1.5703𝑒 − 08 1.5703𝑒 − 08

2.2331𝑒 − 14 2.2331𝑒 − 14 2.2331𝑒 − 14

ite. 13 13 13
c∗ (2.8703, 2.0639, 4.9434, 4.1053, 6.7530, 6.3287, 8.4794)

⊤

where

c∗
1
= (2, 3, 4, 5, 6, 7, 8, 9)

⊤
,

c∗
2
= (−2.7065, −7.0690, 8.4130, 1.1038, −3.6637,

8.8346, 5.5078, 9.1273)

⊤
,

c∗
3
= (1.2877, 2.4677, 4.5379, −6.1037, 1.7930,

1.1093, 1.1024, 5.3320)

⊤

(87)

are the three accumulation points of this problem.

We observe from Tables 1–3 that our algorithm is con-
vergent for different starting points. We also see that our
algorithm converges to a solution of the IEP, which is not
necessarily equal to the original one. An interesting question
is to consider the performance of the algorithm when the
starting point c0 is chosen as random vector, which needs
future study.
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Table 3: Numerical results for Example 3.

c0 𝛽 = 1.5 𝛽 = 1.8 𝛽 = 2.0

(a)
errs

5.2594𝑒 − 03 2.2949𝑒 − 04 6.3777𝑒 − 02

1.5831𝑒 − 08 2.1853𝑒 − 10 5.2251𝑒 − 05

9.8210𝑒 − 12 5.3338𝑒 − 12 1.1737𝑒 − 11

ite. 17 17 17
c∗ c∗

2
c∗
3

c∗
2

(b)
errs

2.3747𝑒 − 02 2.4283𝑒 − 02 5.3326𝑒 − 02

6.6052𝑒 − 07 6.8845𝑒 − 07 3.5462𝑒 − 05

9.2871𝑒 − 12 7.8077𝑒 − 12 1.2096𝑒 − 11

ite. 13 14 14
c∗ c∗

2
c∗
2

c∗
2

(c)
errs

5.0900𝑒 − 04 5.0902𝑒 − 04 5.0902𝑒 − 04

5.5760𝑒 − 09 5.5819𝑒 − 09 5.5827𝑒 − 09

1.4600𝑒 − 11 1.3617𝑒 − 11 1.7533𝑒 − 11

ite. 10 10 10
c∗ c∗

1
c∗
1

c∗
1

(d)
errs

1.7014𝑒 − 02 1.7014𝑒 − 02 1.7014𝑒 − 02

6.9575𝑒 − 07 6.9575𝑒 − 07 6.9575𝑒 − 07

1.5224𝑒 − 11 1.7256𝑒 − 11 6.2077𝑒 − 11

ite. 9 9 9
c∗ c∗

1
c∗
1

c∗
1
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