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This paper investigates the optimal taxi fleet size structure under monopoly and oligopoly market regimes when taxis are charged
with the link-based toll. We proposed a bilevel programming model to take account of the interaction between taxi fleet size
and different traffic modes in the network. The upper level is to determine the optimal taxi fleet structure so as to maximize the
profit of each taxi firm. The lower-level is a combined network equilibrium model (CNEM) representing the travelers’ response
to the equilibrium taxi fleet size structure when congestion toll is imposed on taxis. We show that the lower level problem can
be formulated as an equivalent variational inequality formulation, which considers the hierarchical logit-based mode split, route
choice, elastic demand, and vacant taxi distributions.The bilevel problem can be solved by an iterative heuristic solution algorithm,
whereas the lower level model is solved by the block Gauss-Seidel decomposition approach together with method of successive
averages. An application with numerical examples is presented to illustrate the effectiveness of the proposed model and algorithm,
and some interesting findings are also provided.

1. Introduction

Congestion pricing has been widely accepted as an efficient
traffic management policy to alleviate traffic congestion and
has been implemented inmany cities, for example, Singapore,
London, and Stockholm since Pigou [1] first proposed the
concept. Recently, an important issue in this field that
whether taxis should be charged in the pricing zone has
been attracting more and more attention in view of the high
demand for taxis in most large cities and of its consistent
impact on the traffic congestion. For instance, King and
Peters [2] examined the impact of road pricing on both route
choice and travel time of taxi trips between lower Manhattan
and LaGuardia airport in Queens in the U.S.A The results
indicated that, for passengers, usage of toll road gives rise
to a cost greater than the benefit, unless one has extremely
high value of time (about $170 per hour). Nevertheless, in
many cities such as Singapore and Hong Kong, aside from
private cars, taxis also have to pay the charge when using

toll road, because taxis make significant contribution to the
traffic congestion and the external cost of taxis can not be
internalized without toll. There is, however, a nonnegligible
issue when charging taxis with toll, that is, the decline of
profits for taxi firms. Due to the toll, the demand of taxi
customers decreases (diverting to the public transit or private
car), which leads to the drop in the profits of taxi firms.Thus,
the firms would like to optimize the taxi fleet size or fare to
maximize their profits.

Lots of studies have focused on the optimal taxi fleet
size and fare structure for different objectives. Cairns and
Liston-Heyes [3] examined the economic consequences of
taxi regulations from the perspective of monopoly, social
optimum, and second best scenarios, in which the taxi
price, fleet size, and taxi working hour are the endogenous
variables. Since Cairns and Liston-Heyes’s work [3] is on the
basis of a simple and abstract demand-supply model, ample
attention has been paid to equilibrium modeling urban taxi
services with a detailed spatial structure of taxi market [4–8].
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Yang et al. [9] investigated the impacts of various types of
taxi regulation on the market equilibrium when taxi fare and
fleet size varied in the monopoly and competitive markets.
Yang et al. [10] then further extended this work to incorporate
the congestion externalities which are caused by the occupied
and vacant taxi as well as normal vehicular traffic.

These studies, however, considered only the interaction
between taxi service level (measured by taxi fleet size and
fare) and taxi customer demand. In fact, the supply of taxi
services and demand for normal traffic including private
car and public transit are also interrelated. It is commonly
acknowledged that if the number of private cars is large,
fewer travelers would choose taxi because of the congested
traffic and thus taxi firms tend to operate in a small fleet size.
Inversely, as the taxi fleet size increases the road becomes
more congested, and hence part of demand for private car
shifts to taxi and public transit. Therefore, the intervening
relationship between taxi fleet size and normal traffic should
be taken into account.

In addition to the choice game between taxi and normal
traffic, travelers’ preference of taxi firm is also a key concern.
In many cities, taxi services are provided by several indepen-
dent taxi firms and different firms may provide varied taxi
types; that is, there are luxury taxi and normal taxi which are
allowed to charge at different levels. Even if the various taxi
firms serve customers with the same taxi type, the customers
also prefer to choose the taxi for which the customer-waiting
time is minimal (i.e., the first available taxi). Therefore, the
taxi market is an oligopoly in which the competition among
taxi firms can be described as an n-player, noncooperative
game.

Because the taxi service fare is generally set by the govern-
ment in most cities, this paper concentrates on the optimal
fleet size structure to maximize the profit of each firm in the
monopoly and oligopolymarkets when taxis are chargedwith
toll. A bilevel programming model is proposed, in which the
lower-level problem is formulated as the combined network
equilibrium model (CNEM) considering the intervening
relationship between taxi fleet size and different trafficmodes
including taxi, private car, and public transit. The lower-
level model can thus represent the travelers’ response to the
equilibrium taxi fleet size structure. Since the interactions
of network flows are asymmetric, we formulate the lower-
level problem as an equivalent variational inequality that
involves hierarchical logit-based mode split, route choice,
elastic demand, and vacant taxi distributions. The upperlevel
aims at profit maximization for each taxi firm. This study
can thus offer some useful suggestions to the taxi firms and
regulator when congestion toll is imposed on taxis.

The paper is structured as follows. Section 2 proposes the
combined network equilibrium model (CNEM). Section 3
constructs an equivalent variatinal inequality for CNEM.
Section 4 addresses the optimal taxi fleet size of each taxi firm
in monopoly and oligopoly markets, respectively. Section 5
develops an iterative heuristic solution algorithm to solve
the bi-level programming problem, while the lower-level
formulation is solved by the block Gauss-Seidel decomposi-
tion approach together with method of successive averages.
Section 6 provides a numerical example to demonstrate

the effectiveness of the proposed methodology. Conclusions
and future studies are given in Section 7.

2. The Combined Network Equilibrium Model

2.1. Preliminaries. Consider a road network𝐺(𝑉,𝐴), where𝑉
is the set of nodes and 𝐴 is the set of links. 𝐴 is the set of toll
links,𝐴 ⊆ 𝐴. Let 𝑅 and 𝑆 be the sets of origin and destination
nodes and 𝐼 the set of taxi firms. Also, let the following
superscripts “𝑝,” “𝑏,” “𝑜,” and “V” indicate private car, bus,
occupied taxi, and vacant taxi, respectively. In addition, we
use 𝑚 ∈ 𝑀 = (𝑝, 𝑏, (𝑜, 𝑖)) to denote the combination of
private car, bus, and occupied taxi of different taxi firms 𝑖 ∈ 𝐼.

Let 𝑞
𝑟𝑠
be the total demand between OD pair 𝑟 ∈ 𝑅 and

𝑠 ∈ 𝑆, and then we have the following equation:

𝑞
𝑟𝑠

= 𝑞
𝑝

𝑟𝑠
+ 𝑞
𝑏

𝑟𝑠
+ 𝑞
𝑜

𝑟𝑠
, 𝑟 ∈ 𝑅, 𝑠 ∈ 𝑆, (1)

where 𝑞
𝑝

𝑟𝑠
, 𝑞𝑏
𝑟𝑠
, and 𝑞

𝑜

𝑟𝑠
represent the demands of private car,

bus, and occupied taxi from origin 𝑟 ∈ 𝑅 to destination 𝑠 ∈ 𝑆,
respectively. Furthermore, we provide the following demand
conservation for occupied taxis:

𝑞
𝑜

𝑟𝑠
= ∑

𝑖∈𝐼

𝑞
𝑜,𝑖

𝑟𝑠
, 𝑟 ∈ 𝑅, 𝑠 ∈ 𝑆, (2)

where 𝑞𝑜,𝑖
𝑟𝑠
is the demand for taxi of firm 𝑖 ∈ 𝐼 between origin

zone 𝑟 ∈ 𝑅 and destination zone 𝑠 ∈ 𝑆.
And for each taxi firm, the following equations about

origin and destination trips can be obtained:

𝑂
𝑜,𝑖

𝑟
= ∑

𝑠∈𝑆

𝑞
𝑜,𝑖

𝑟𝑠
, 𝑟 ∈ 𝑅, 𝑖 ∈ 𝐼,

𝐷
𝑜,𝑖

𝑠
= ∑

𝑟∈𝑅

𝑞
𝑜,𝑖

𝑟𝑠
, 𝑠 ∈ 𝑆, 𝑖 ∈ 𝐼,

(3)

where𝑂𝑜,𝑖
𝑟
and𝐷

𝑜,𝑖

𝑠
are demands for the taxi of firm 𝑖 ∈ 𝐼 from

origin zone 𝑟 ∈ 𝑅 to destination zone 𝑠 ∈ 𝑆, respectively.

2.2. Generalized Costs

2.2.1. Generalized Costs of the Private Car and Taxi Mode. Let
𝑐
𝑝

𝑎
, 𝑐𝑜,𝑖
𝑎
, and 𝑐

V,𝑖
𝑎

be the generalized costs on link 𝑎 ∈ 𝐴 for
private car, occupied taxi, and vacant taxi operated by firm
𝑖 ∈ 𝐼, respectively. And all of them are supposed to be a linear
function of link travel time 𝑡

𝑎
, link length 𝑑

𝑎
, and toll 𝑦

𝑎
. Let

𝑏
𝑝 and 𝑏

V,𝑖 be the operating costs per unit distance for private
car and taxi of firm 𝑖 ∈ 𝐼. Additionally, we use 𝑏𝑜,𝑖

0
, 𝑏𝑜,𝑖
1
, and 𝑏

𝑜,𝑖

2

to indicate the preliminary flag-fall charge per ride, mileage-
based and delay-based fare that are charged to customers who
take a taxi of firm 𝑖 ∈ 𝐼.

Then, we have the following link-based cost structures
when taxis as well as private car are tolled in the road pricing
zone [10, 11]:

𝑐
𝑝

𝑎
= 𝜆𝑡
𝑎
(𝑥
𝑎
) + 𝑏
𝑝

𝑑
𝑎
+ 𝑦
𝑎
, 𝑎 ∈ 𝐴,

𝑐
𝑜,𝑖

𝑎
= 𝜆𝑡
𝑎
(𝑥
𝑎
) + 𝑏
𝑜,𝑖

1
𝑑
𝑎
+ 𝑏
𝑜,𝑖

2
(𝑡
𝑎
(𝑥
𝑎
) − 𝑡
0

𝑎
) + 𝑦
𝑎
, 𝑎 ∈ 𝐴,

𝑐
V,𝑖
𝑎

= 𝜆V𝑡𝑎 (𝑥𝑎) + 𝑏
V,𝑖
𝑑
𝑎
+ 𝑦
𝑎
, 𝑎 ∈ 𝐴,

(4)
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where 𝜆 is the value of time (VOT) for users taking private
car or taxi while 𝜆V is VOT for taxi drivers. 𝑡

𝑎
(𝑥
𝑎
) is the travel

time which is an increasing function of total flow 𝑥
𝑎
on link

𝑎 ∈ 𝐴. 𝑡0
𝑎
is the free flow travel time.

We then can present the total generalized cost for private
car and taxi on path 𝑘 ∈ 𝐾

𝑟𝑠
between origin 𝑟 ∈ 𝑅 and

destination 𝑠 ∈ 𝑆, as follows:

𝐶
𝑝

𝑟𝑠,𝑘
= ∑

𝑎∈𝐴

𝑐
𝑝

𝑎
𝛿
𝑟𝑠

𝑎,𝑘
, 𝑟 ∈ 𝑅, 𝑠 ∈ 𝑆, 𝑘 ∈ 𝐾

𝑟𝑠
,

𝐶
𝑜,𝑖

𝑟𝑠,𝑘
= ∑

𝑎∈𝐴

𝑐
𝑜,𝑖

𝑎
𝛿
𝑟𝑠

𝑎,𝑘
+ 𝑏
𝑜,𝑖

0
+ 𝜆
𝑜𝑤

𝑊
𝑜,𝑖

𝑟
,

𝑟 ∈ 𝑅, 𝑠 ∈ 𝑆, 𝑘 ∈ 𝐾
𝑟𝑠
, 𝑖 ∈ 𝐼,

𝐶
V,𝑖
𝑠𝑟,𝑘

= ∑

𝑎∈𝐴

𝑐
V,𝑖
𝑎
𝛿
𝑠𝑟

𝑎,𝑘
, 𝑟 ∈ 𝑅, 𝑠 ∈ 𝑆, 𝑘 ∈ 𝐾

𝑠𝑟
, 𝑖 ∈ 𝐼,

(5)

where 𝑊
𝑜,𝑖

𝑟
is an endogenous variable representing the cus-

tomer waiting time for taxi of firm 𝑖 ∈ 𝐼 at zone 𝑟 ∈ 𝑅. 𝜆
𝑜𝑤

is
the value of customer waiting time. According to Wong et al.
[8], we can specify the expected customer waiting time as a
function of the cruising vacant taxi hours and the area of the
zone:

𝑊
𝑜,𝑖

𝑟
= 𝜂

𝑍
𝑟

𝑁V,𝑖
𝑟
𝑤V,𝑖
𝑟

, 𝑟 ∈ 𝑅, 𝑖 ∈ 𝐼, (6)

where𝑍
𝑟
is the area of zone 𝑟 ∈ 𝑅 and 𝜂 is a model parameter

which is common to all zones. 𝑤V,𝑖
𝑟

is the waiting/searching
time of vacant taxi operated by firm 𝑖 ∈ 𝐼 in zone 𝑟 ∈ 𝑅.
𝑁

V,𝑖
𝑟

is the number of vacant taxi meeting customers in zone
𝑟 per hour. Note that, at equilibrium, we have 𝑁

V,𝑖
𝑟

= 𝑂
𝑜,𝑖

𝑟
.

Therefore, (6) can be represented as follows:

𝑊
𝑜,𝑖

𝑟
= 𝜂

𝑍
𝑟

𝑂𝑜,𝑖
𝑟
𝑤V,𝑖
𝑟

, 𝑟 ∈ 𝑅, 𝑖 ∈ 𝐼. (7)

2.2.2. Generalized Cost of the Bus Mode. It is assumed that
buses operate on the dedicated bus lanes, and there is no
interaction between bus and other travel modes. Also the
capacity of bus is supposed to be large enough to meet the
passenger demands and in each OD pair there is one bus line
[12].Therefore, we have the following generalized costs of bus
passengers between origin 𝑟 ∈ 𝑅 and destination 𝑠 ∈ 𝑆, which
is denoted as 𝐶𝑏

𝑟𝑠
:

𝐶
𝑏

𝑟𝑠
= 𝜆
𝑏
𝑇
𝑟𝑠
+ 𝜁𝐺
𝑟𝑠
(𝑞
𝑏

𝑟𝑠
) + 𝜆
𝑏𝑤

𝑊
𝑏

𝑟𝑠
+ 𝜏, 𝑟 ∈ 𝑅, 𝑠 ∈ 𝑆, (8)

where 𝑇
𝑟𝑠
is the bus travel time. Under previous assumptions

as well as the fixed bus schedule, 𝑇
𝑟𝑠
is thus constant here.

𝜆
𝑏
is the value of time for bus passengers. 𝐺

𝑟𝑠
(𝑞
𝑏

𝑟𝑠
) is the

crowding discomfort experienced by bus passengers, which is
an increasing functionwith respect to the number of travelers
choosing bus. 𝜁 is the unit cost of discomfort. 𝑊𝑏

𝑟𝑠
is the

waiting time of bus passengers and can be specified as 𝑊𝑏
𝑟𝑠

=

𝛼/𝐹
𝑟𝑠
, where𝐹

𝑟𝑠
is bus frequency. Furthermore, the passenger

arrival obeys the uniform random distribution in congested

condition, thus the value of 𝛼 is 0.5. 𝜆
𝑏𝑤

is the waiting time
value of bus passenger. 𝜏 is the bus fare.

Additionally, the total flow on each link 𝑎 ∈ 𝐴 can be
calculated via the following equation

𝑥
𝑎
= ∑

𝑟∈𝑅,𝑠∈𝑆

∑

𝑘∈𝐾
𝑟𝑠

∑

𝑖∈𝐼

(𝑓
𝑝

𝑟𝑠,𝑘
+ 𝑓
𝑜,𝑖

𝑟𝑠,𝑘
) 𝛿
𝑟𝑠

𝑎𝑘

+ ∑

𝑠∈𝑆,𝑟∈𝑅

∑

𝑘∈𝐾
𝑠𝑟

∑

𝑖∈𝐼

𝑓
V,𝑖
𝑠𝑟,𝑘

𝛿
𝑠𝑟

𝑎𝑘
, 𝑎 ∈ 𝐴,

(9)

where 𝑓
𝑝

𝑟𝑠,𝑘
and 𝑓

𝑜,𝑖

𝑟𝑠,𝑘
are the flow on path 𝑘 ∈ 𝐾

𝑟𝑠
for private

car and occupied taxi of firm 𝑖 ∈ 𝐼, respectively. 𝑓V,𝑖
𝑠𝑟,𝑘

is the
flow of vacant taxi on path 𝑘 ∈ 𝐾

𝑠𝑟
, where𝐾

𝑟𝑠
and𝐾

𝑠𝑟
are the

sets of paths between zone 𝑟 ∈ 𝑅 and zone 𝑠 ∈ 𝑆. 𝛿𝑟𝑠
𝑎𝑘

and 𝛿
𝑠𝑟

𝑎𝑘

are link-path indicator variables which are 1 if link 𝑎 lies on
path 𝑘 and 0 otherwise.

2.3. Taxi Service Time Constraint. It is assumed that totally
𝑁
𝑖 cruising taxis operate in the network for each taxi firm

𝑖 ∈ 𝐼. And the total taxi service time consists of occupied
time (denoted as 𝑇

𝑂
) and empty time (denoted as 𝑇

𝑉
) within

one unit period (1 h) operations of taxis. In a stationary state,
the total occupied time of taxis from each firm is equal to the
taxihours that complete all 𝑞𝑜,𝑖

𝑟𝑠
, 𝑟 ∈ 𝑅, 𝑠 ∈ 𝑆, 𝑖 ∈ 𝐼, trips and

thus can be given by

𝑇
𝑂
= ∑

𝑟∈𝑅

∑

𝑠∈𝑆

𝑞
𝑜,𝑖

𝑟𝑠
ℎ
𝑜,𝑖

𝑟𝑠
, 𝑖 ∈ 𝐼, (10)

where ℎ
𝑜,𝑖

𝑟𝑠
is the average travel time from origin 𝑟 ∈ 𝑅 to

destination 𝑠 ∈ 𝑆 by taking taxi mode 𝑖 ∈ 𝐼 and can be
represented as ℎ

𝑜,𝑖

𝑟𝑠
= (∑
𝑘∈𝐾
𝑟𝑠

(𝑓
𝑜,𝑖

𝑟𝑠,𝑘
∑
𝑎∈𝐴

𝑡
𝑎
𝛿
𝑟𝑠

𝑎,𝑘
))/∑
𝑘∈𝐾
𝑟𝑠

𝑓
𝑜,𝑖

𝑟𝑠,𝑘

[11]. The total empty time of taxis is comprised of moving
times from zone 𝑠 ∈ 𝑆 to zone 𝑟 ∈ 𝑅 and waiting/searching
times in the zones. Thus, this time can be given by

𝑇
𝑉
= ∑

𝑠∈𝑆

∑

𝑟∈𝑅

𝑞
V,𝑖
𝑠𝑟

(ℎ
V,𝑖
𝑠𝑟

+ 𝑤
V,𝑖
𝑟
) , 𝑖 ∈ 𝐼, (11)

where 𝑞V,𝑖
𝑠𝑟
is the number of vacant taxis operated by taxi firm

𝑖 ∈ 𝐼 to search for customers between zone 𝑠 ∈ 𝑆 and zone
𝑟 ∈ 𝑅.

Therefore, the following constraint must be satisfied in
term of the 1 h period [4]:

∑

𝑟∈𝑅

∑

𝑠∈𝑆

𝑞
𝑜,𝑖

𝑟𝑠
ℎ
𝑜,𝑖

𝑟𝑠
+ ∑

𝑠∈𝑆

∑

𝑟∈𝑅

𝑞
V,𝑖
𝑠𝑟

(ℎ
V,𝑖
𝑠𝑟

+ 𝑤
V,𝑖
𝑟
) = 𝑁

𝑖

, 𝑖 ∈ 𝐼, (12)

where𝑁𝑖 is the taxi fleet size of taxi firm 𝑖 ∈ 𝐼.

2.4. Traffic Assignment. We suppose that each path from
different traffic modes including private car, bus passenger,
occupied taxi, and vacant taxi can reach user equilibrium.
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At equilibrium, the following conditions should be satis-
fied:

𝐶
𝑚

𝑟𝑠,𝑘
= 𝑢
𝑚

𝑟𝑠
, if 𝑓𝑚

𝑟𝑠,𝑘
> 0, 𝑟 ∈ 𝑅, 𝑠 ∈ 𝑆, 𝑘 ∈ 𝐾

𝑟𝑠
, 𝑚 ∈ 𝑀,

𝐶
𝑚

𝑟𝑠,𝑘
≥ 𝑢
𝑚

𝑟𝑠
, if𝑓𝑚

𝑟𝑠,𝑘
= 0, 𝑟 ∈ 𝑅, 𝑠 ∈ 𝑆, 𝑘 ∈ 𝐾

𝑟𝑠
, 𝑚 ∈ 𝑀,

𝐶
V,𝑖
𝑠𝑟,𝑘

= 𝑢
V,𝑖
𝑠𝑟
, if𝑓V,𝑖

𝑠𝑟,𝑘
> 0, 𝑟 ∈ 𝑅, 𝑠 ∈ 𝑆, 𝑘 ∈ 𝐾

𝑠𝑟
, 𝑖 ∈ 𝐼,

𝐶
V,𝑖
𝑠𝑟,𝑘

≥ 𝑢
V,𝑖
𝑠𝑟
, if 𝑓V,𝑖

𝑠𝑟,𝑘
= 0, 𝑟 ∈ 𝑅, 𝑠 ∈ 𝑆, 𝑘 ∈ 𝐾

𝑠𝑟
, 𝑖 ∈ 𝐼,

(13)

where 𝑢
𝑚

𝑟𝑠
and 𝑢

V,𝑖
𝑠𝑟

are the minimum generalized costs for
mode 𝑚 ∈ 𝑀 and vacant taxi of firm 𝑖 ∈ 𝐼 between origin
𝑟 ∈ 𝑅 and destination 𝑠 ∈ 𝑆, respectively.

2.5. Hierarchical Logit Mode Split. We propose a hierarchical
logit mode choice function where the upper choice level
presents amode split between taxi and nontaxi traffic (includ-
ing private car and public transit), and the lower choice level
aims to obtain the proportion of customers choosing taxi of
firm 𝑖 ∈ 𝐼.

We now first focus on the following logit-based mode
choice function, which is able to give the proportion of trips
taken by the private car, bus, and taxi between origin 𝑟 ∈ 𝑅

and destination 𝑠 ∈ 𝑆 at equilibrium.
For private car we have

𝑃
𝑝

𝑟𝑠
= (exp [−𝛽

1
(𝑢
𝑝

𝑟𝑠
− 𝜑
𝑝

𝑟𝑠
)])

× (exp [−𝛽
1
(𝑢
𝑝

𝑟𝑠
− 𝜑
𝑝

𝑟𝑠
)]

+ exp [−𝛽
1
(𝑢
𝑏

𝑟𝑠
− 𝜑
𝑏

𝑟𝑠
)]

+ exp [−𝛽
1
(𝐿
𝑜

𝑟𝑠
− 𝜑
𝑜

𝑟𝑠
)] )
−1

,

𝑟 ∈ 𝑅, 𝑠 ∈ 𝑆,

(14)

where 𝑃
𝑝

𝑟𝑠
is the proportion of trips taken by the private car.

𝐿
𝑜

𝑟𝑠
= −(1/𝛽

2
) ln∑
𝑖∈𝐼

exp[−𝛽
2
(𝑢
𝑜,𝑖

𝑟𝑠
− 𝜑
𝑜,𝑖

𝑟𝑠
)], 𝑟 ∈ 𝑅, 𝑠 ∈ 𝑆,

is the log sum of disutility for travelers choosing taxi mode.
𝛽
1
and 𝛽

2
are the dispersion coefficients. 𝜑𝑝

𝑟𝑠
represents the

attraction of private car for travelers between origin 𝑟 ∈ 𝑅 and
destination 𝑠 ∈ 𝑆. By symmetry, we can get the proportion of
trips taken by bus and taxi.

Then we have the number of travelers who take private
car as follows:

𝑞
𝑝

𝑟𝑠
= (exp [−𝛽

1
(𝑢
𝑝

𝑟𝑠
− 𝜑
𝑝

𝑟𝑠
)])

× (exp [−𝛽
1
(𝑢
𝑝

𝑟𝑠
− 𝜑
𝑝

𝑟𝑠
)]

+ exp [−𝛽
1
(𝑢
𝑏

𝑟𝑠
− 𝜑
𝑏

𝑟𝑠
)]

+ exp [−𝛽
1
(𝐿
𝑜

𝑟𝑠
− 𝜑
𝑜

𝑟𝑠
)])
−1

𝑞
𝑟𝑠
,

𝑟 ∈ 𝑅, 𝑠 ∈ 𝑆.

(15)

As taxi has been chosen as the transportation mode,
the following logit-based function is proposed to obtain the
proportion of taxis in firm 𝑖 ∈ 𝐼 selected by travelers:

𝑃
𝑜,𝑖

𝑟𝑠
=

exp [−𝛽
2
(𝑢
𝑜,𝑖

𝑟𝑠
− 𝜑
𝑜,𝑖

𝑟𝑠
)]

∑
𝑖

∈𝐼
exp [−𝛽

2
(𝑢𝑜,𝑖



𝑟𝑠
− 𝜑𝑜,𝑖



𝑟𝑠
)]

, 𝑟 ∈ 𝑅, 𝑠 ∈ 𝑆, 𝑖 ∈ 𝐼.

(16)

Thus, the number of travelers choosing taxis of firm 𝑖 ∈ 𝐼

can be specified as follows:

𝑞
𝑜,𝑖

𝑟𝑠
=

exp [−𝛽
2
(𝑢
𝑜,𝑖

𝑟𝑠
− 𝜑
𝑜,𝑖

𝑟𝑠
)]

∑
𝑖

∈𝐼
exp [−𝛽

2
(𝑢𝑜,𝑖



𝑟𝑠
− 𝜑𝑜,𝑖



𝑟𝑠
)]

𝑞
𝑜

𝑟𝑠
, 𝑟 ∈ 𝑅, 𝑠 ∈ 𝑆, 𝑖 ∈ 𝐼,

(17)

where 𝑢
𝑜,𝑖

𝑟𝑠
is the minimum generalized costs for travelers

choosing taxis of firm 𝑖 ∈ 𝐼 between origin 𝑟 ∈ 𝑅 and
destination 𝑠 ∈ 𝑆. 𝜑𝑜,𝑖

𝑟𝑠
is the attraction of taxi operated by firm

𝑖 ∈ 𝐼. Note that the dispersion coefficients 𝛽
1
and 𝛽

2
should

satisfy the condition that 𝛽
2
≥ 𝛽
1
to keep the consistency of

the hierarchical logit function [13].

2.6. Vacant Taxi Distributions. In addition to private car and
occupied taxi, there are considerable amount of vacant taxis
searching for customers, which is closely associated with the
fleet size. In this section we construct the following logit
type model to describe the vacant taxi behaviors on the road
network [4]. As in Yang and Wong’s paper [4], we suppose
that every taxi driver attempts to spend theminimal expected
search time in meeting customer, and the expected search
time is assumed to be a random variable which is identically
distributed with a Gumbel density function:

𝑃
V,𝑖
𝑟/𝑠

=

exp [−𝜎 (𝑢
V,𝑖
𝑠𝑟

+ 𝜆V𝑤
V,𝑖
𝑟
)]

∑
𝑟

∈𝑅

exp [−𝜎 (𝑢
V,𝑖
𝑠𝑟

+ 𝜆V𝑤

V,𝑖
𝑟

)]

, 𝑠 ∈ 𝑆, 𝑟 ∈ 𝑅, 𝑖 ∈ 𝐼,

(18)

where 𝑃
V,𝑖
𝑟/𝑠

is the probability that vacant taxis of firm 𝑖 ∈ 𝐼

depart from zone 𝑠 ∈ 𝑆 and meet the customer in zone
𝑟 ∈ 𝑅. 𝜎 is a nonnegative parameter reflecting the degree of
uncertainty for taxi drivers on customer demand and on taxi
services of the whole market.

Furthermore, in a steadystate of equilibrium, every cus-
tomer is eventually able to take a taxi after waiting and
searching, and all occupied taxis will become available when
passengers arrive at destinations [8]. Thus, we have the
following constraints:

∑

𝑟∈𝑅

𝑞
V,𝑖
𝑠𝑟

= 𝐷
𝑜,𝑖

𝑠
, 𝑠 ∈ 𝑆, 𝑖 ∈ 𝐼,

∑

𝑠∈𝑆

𝑞
V,𝑖
𝑠𝑟

= ∑

𝑠∈𝑆

𝐷
𝑜,𝑖

𝑠
⋅ 𝑃

V,𝑖
𝑟/𝑠

= 𝑂
𝑜,𝑖

𝑟
, 𝑟 ∈ 𝑅, 𝑖 ∈ 𝐼.

(19)

2.7. Elastic Demand. Note that taxi fleet size has an impact on
the total demands in view of the fact that as fleet size increases
the total demands decrease due to the congested road.
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Thus a demand function is presented here to describe the
elasticity of the OD demands:

𝑞
𝑟𝑠

= 𝐷
𝑟𝑠
(𝑢
𝑟𝑠
) , 𝑟 ∈ 𝑅, 𝑠 ∈ 𝑅, (20)

where 𝑞
𝑟𝑠
is the total demand between origin 𝑟 ∈ 𝑅 and

destination 𝑠 ∈ 𝑆, which is supposed to be a continuously
and strictly decreasing function of users’ minimumperceived
generalized costs 𝑢

𝑟𝑠
:

𝑢
𝑟𝑠

= −
1

𝛽
1

ln {exp [−𝛽
1
(𝑢
𝑝

𝑟𝑠
− 𝜑
𝑝

𝑟𝑠
)] + exp [−𝛽

1
(𝑢
𝑏

𝑟𝑠
− 𝜑
𝑏

𝑟𝑠
)]

+ exp [−𝛽
1
(𝐿
𝑜

𝑟𝑠
− 𝜑
𝑜

𝑟𝑠
)] } 𝑟 ∈ 𝑅, 𝑠 ∈ 𝑅.

(21)

Correspondingly, 𝑢
𝑟𝑠

= 𝐷
−1

𝑟𝑠
(𝑞
𝑟𝑠
) is the inverse demand

function.

3. An Equivalent Variational
Inequality Program

Due to the asymmetric interactions of network flows caused
by the delay-based taxi charge, a variational inequality (VI)
program is used in this section which is equivalent to the
aforementioned combined network equilibrium model. It is
worth noting that the model proposed here is different from
that in Wong et al. [11]. Our model incorporates the impact
of endogenous variable, taxi fleet size on all the traffic modes
and total demands. In particular, the variable demands are
taken into account, because total demands would be affected
as taxi fleet size varies. Furthermore, we also consider the
effect of charging taxis with toll on the profits of taxi firms.
In Wong et al.’s work [11], however, the taxi fleet size is given
as a normal parameter with a given OD demand pattern and
the congestion toll is not included as well.

The feasible region Ω of our VI formulation is stated as
below and related dual variables are also provided in the
brackets:

∑

𝑠∈𝑆

𝑞
V,𝑖
𝑠𝑟

= 𝑂
𝑜,𝑖

𝑟
, 𝑟 ∈ 𝑅, 𝑖 ∈ 𝐼, (𝑒

𝑖

𝑟
) , (22)

∑

𝑟∈𝑅

𝑞
V,𝑖
𝑠𝑟

= 𝐷
𝑜,𝑖

𝑠
, 𝑠 ∈ 𝑆, 𝑖 ∈ 𝐼, (𝑎

𝑖

𝑠
) , (23)

∑

𝑖∈𝐼

𝑞
𝑜,𝑖

𝑟𝑠
= 𝑞
𝑜

𝑟𝑠
, 𝑟 ∈ 𝑅, 𝑠 ∈ 𝑆, (𝐿

𝑜

𝑟𝑠
) , (24)

𝑞
𝑟𝑠

= 𝑞
𝑝

𝑟𝑠
+ 𝑞
𝑏

𝑟𝑠
+ 𝑞
𝑜

𝑟𝑠
, 𝑟 ∈ 𝑅, 𝑠 ∈ 𝑆, (𝛾

𝑟𝑠
) , (25)

∑

𝑘∈𝐾
𝑟𝑠

𝑓
𝑚

𝑟𝑠,𝑘
= 𝑞
𝑚

𝑟𝑠
, 𝑟 ∈ 𝑅, 𝑠 ∈ 𝑆, 𝑚 ∈ 𝑀, (𝑢

𝑚

𝑟𝑠
) , (26)

∑

𝑘∈𝐾
𝑠𝑟

𝑓
V,𝑖
𝑠𝑟,𝑘

= 𝑞
V,𝑖
𝑠𝑟
, 𝑠 ∈ 𝑆, 𝑟 ∈ 𝑅, (𝑢

V,𝑖
𝑠𝑟
) , (27)

𝑓
𝑚

𝑟𝑠,𝑘
≥ 0, 𝑟 ∈ 𝑅, 𝑠 ∈ 𝑆, 𝑚 ∈ 𝑀, 𝑘 ∈ 𝐾

𝑟𝑠
, (𝜒

𝑚

𝑟𝑠,𝑘
) , (28)

𝑓
V,𝑖
𝑠𝑟,𝑘

≥ 0, 𝑟 ∈ 𝑅, 𝑠 ∈ 𝑆, 𝑖 ∈ 𝐼, 𝑘 ∈ 𝐾
𝑠𝑟
, (𝜒

V,𝑖
𝑠𝑟,𝑘

) , (29)

𝑞
𝑚

𝑟𝑠
≥ 0, 𝑞

V,𝑖
𝑠𝑟

≥ 0, 𝑟 ∈ 𝑅, 𝑠 ∈ 𝑆, 𝑚 ∈ 𝑀, 𝑖 ∈ 𝐼. (30)

Constraints (22) and (23) are the conservation conditions
of flow for vacant taxis. Equation (24) is the conservation
of flow for occupied taxis. Equation (25) is the conservation
equation for total demand. Equations (26) and (27) show that
the sum of all path flows for private car, bus, occupied taxi,
and vacant taxi should be equal to their demands, respec-
tively. Equations (28), (29), and (30) are the nonnegativity
constraints on path flows and demands, respectively.

With the feasible region above, the VI problem can be
stated as follows. Find (𝑓𝑚,∗

𝑟𝑠,𝑘
, 𝑓V,𝑖∗

𝑠𝑟,𝑘
, 𝑞∗
𝑟𝑠
, 𝑞𝑚,∗
𝑟𝑠

, 𝑞V,𝑖
∗

𝑠𝑟
) ∈ Ω, which

satisfies

∑

𝑟∈𝑅,𝑠∈𝑆

∑

𝑚∈𝑀

∑

𝑘∈𝐾
𝑟𝑠

𝐶
𝑚

𝑟𝑠,𝑘
(𝑓
∗

) (𝑓
𝑚

𝑟𝑠,𝑘
− 𝑓
𝑚,∗

𝑟𝑠,𝑘
)

+ ∑

𝑠∈𝑆,𝑟∈𝑅

∑

𝑘∈𝐾
𝑠𝑟

∑

𝑖∈𝐼

𝐶
V,𝑖
𝑠𝑟,𝑘

(𝑓
∗

) (𝑓
V,𝑖
𝑠𝑟,𝑘

− 𝑓
V,𝑖∗

𝑠𝑟,𝑘
)

+ ∑

𝑟∈𝑅,𝑠∈𝑆

∑

𝜓∈{𝑝,𝑏,𝑜}

(
1

𝛽
1

ln
𝑞
𝜓,∗

𝑟𝑠

𝑞
𝑟𝑠

− 𝜑
𝜓

𝑟𝑠
) (𝑞
𝜓

𝑟𝑠
− 𝑞
𝜓,∗

𝑟𝑠
)

+ ∑

𝑟∈𝑅,𝑠∈𝑆

∑

𝑖∈𝐼

(
1

𝛽
2

ln
𝑞
𝑜,𝑖
∗

𝑟𝑠

𝑞𝑜
𝑟𝑠

− 𝜑
𝑜,𝑖

𝑟𝑠
)(𝑞
𝑜,𝑖

𝑟𝑠
− 𝑞
𝑜,𝑖
∗

𝑟𝑠
)

+ ∑

𝑠∈𝑆,𝑟∈𝑅

∑

𝑖∈𝐼

1

𝜎
ln 𝑞

V,𝑖∗

𝑠𝑟
(𝑞

V,𝑖
𝑠𝑟

− 𝑞
V,𝑖∗

𝑠𝑟
)

− ∑

𝑟∈𝑅,𝑠∈𝑆

𝐷
−1

𝑟𝑠
(𝑞
∗

𝑟𝑠
) (𝑞
𝑟𝑠
− 𝑞
∗

𝑟𝑠
) ≥ 0,

(31)

where 𝐶
𝑚

𝑟𝑠,𝑘
and 𝐶

V,𝑖
𝑠𝑟,𝑘

, 𝑟 ∈ 𝑅, 𝑠 ∈ 𝑆, 𝑚 ∈ 𝑀, and 𝑘 ∈ 𝐾
𝑟𝑠
, are

defined by (5).

Proposition 1. The optimality conditions of the proposed
variational inequality (VI) program are equivalent to the
combined network equilibrium model in Section 2.

Proof. The KKT conditions of the variational inequality
formulation (31) are given below:

𝑓
𝑚

𝑟𝑠,𝑘
: 𝐶
𝑚

𝑟𝑠,𝑘
− 𝑢
𝑚

𝑟𝑠
− 𝜒
𝑚

𝑟𝑠,𝑘
= 0,

𝑟 ∈ 𝑅, 𝑠 ∈ 𝑆, 𝑚 ∈ 𝑀, 𝑘 ∈ 𝐾
𝑟𝑠
,

(32)

𝑓
V,𝑖
𝑠𝑟,𝑘

: 𝐶
V,𝑖
𝑠𝑟,𝑘

− 𝑢
V,𝑖
𝑠𝑟

− 𝜒
V,𝑖
𝑠𝑟,𝑘

= 0, 𝑟 ∈ 𝑅, 𝑠 ∈ 𝑆, 𝑘 ∈ 𝐾
𝑠𝑟
, 𝑖 ∈ 𝐼,

(33)

𝑞
𝑝

𝑟𝑠
:
1

𝛽
1

ln
𝑞
𝑝

𝑟𝑠

𝑞
𝑟𝑠

− 𝜑
𝑝

𝑟𝑠
− 𝛾
𝑟𝑠
+ 𝑢
𝑝

𝑟𝑠
= 0, 𝑟 ∈ 𝑅, 𝑠 ∈ 𝑆, (34)

𝑞
𝑏

𝑟𝑠
:
1

𝛽
1

ln
𝑞
𝑏

𝑟𝑠

𝑞
𝑟𝑠

− 𝜑
𝑏

𝑟𝑠
− 𝛾
𝑟𝑠
+ 𝑢
𝑏

𝑟𝑠
= 0, 𝑟 ∈ 𝑅, 𝑠 ∈ 𝑆, (35)

𝑞
𝑜

𝑟𝑠
:
1

𝛽
1

ln
𝑞
𝑜

𝑟𝑠

𝑞
𝑟𝑠

− 𝜑
𝑜

𝑟𝑠
− 𝛾
𝑟𝑠
+ 𝐿
𝑜

𝑟𝑠
= 0, 𝑟 ∈ 𝑅, 𝑠 ∈ 𝑆, (36)
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𝑞
𝑜,𝑖

𝑟𝑠
:
1

𝛽
2

ln
𝑞
𝑜,𝑖

𝑟𝑠

𝑞𝑜
𝑟𝑠

− 𝜑
𝑜,𝑖

𝑟𝑠
+ 𝑢
𝑜,𝑖

𝑟𝑠
− 𝐿
𝑜

𝑟𝑠
= 0, 𝑟 ∈ 𝑅, 𝑠 ∈ 𝑆, (37)

𝑞
V,𝑖
𝑠𝑟
:
1

𝜎
ln 𝑞

V,𝑖
𝑠𝑟

+ 𝑒
𝑖

𝑟
+ 𝑎
𝑖

𝑠
+ 𝑢

V,𝑖
𝑠𝑟

= 0, 𝑠 ∈ 𝑆, 𝑟 ∈ 𝑅, (38)

𝑞
𝑟𝑠
: −𝐷
−1

𝑟𝑠
(𝑞
𝑟𝑠
) + 𝛾
𝑟𝑠

= 0, 𝑟 ∈ 𝑅, 𝑠 ∈ 𝑆. (39)

The complementarity conditions are

𝑓
𝑚

𝑟𝑠,𝑘
⋅ 𝜒
𝑚

𝑟𝑠,𝑘
= 0, 𝑟 ∈ 𝑅, 𝑠 ∈ 𝑆, 𝑚 ∈ 𝑀, 𝑘 ∈ 𝐾

𝑟𝑠
, (40)

𝑓
V,𝑖
𝑠𝑟,𝑘

⋅ 𝜒
V,𝑖
𝑠𝑟,𝑘

= 0, 𝑟 ∈ 𝑅, 𝑠 ∈ 𝑆, 𝑘 ∈ 𝐾
𝑠𝑟
, 𝑖 ∈ 𝐼, (41)

𝜒
𝑚

𝑟𝑠,𝑘
≥ 0, 𝑟 ∈ 𝑅, 𝑠 ∈ 𝑆, 𝑚 ∈ 𝑀, 𝑘 ∈ 𝐾

𝑟𝑠
, (42)

𝜒
V,𝑖
𝑠𝑟,𝑘

≥ 0, 𝑟 ∈ 𝑅, 𝑠 ∈ 𝑆, 𝑘 ∈ 𝐾
𝑠𝑟
, 𝑖 ∈ 𝐼. (43)

From (40) and (42), we have 𝜒
𝑚

𝑟𝑠,𝑘
= 0 if 𝑓𝑚

𝑟𝑠,𝑘
> 0. Then,

according to (32), we can obtain that𝐶𝑚
𝑟𝑠,𝑘

= 𝑢
𝑚

𝑟𝑠
. And if𝑓𝑚

𝑟𝑠,𝑘
=

0, 𝜒𝑚
𝑟𝑠,𝑘

≥ 0, then 𝐶
𝑚

𝑟𝑠,𝑘
≥ 𝑢
𝑚

𝑟𝑠
. Therefore, we have the following

conditions:

𝐶
𝑚

𝑟𝑠,𝑘
= 𝑢
𝑚

𝑟𝑠
, if𝑓𝑚

𝑟𝑠,𝑘
> 0, 𝑟 ∈ 𝑅, 𝑠 ∈ 𝑆, 𝑘 ∈ 𝐾

𝑟𝑠
, 𝑚 ∈ 𝑀,

𝐶
𝑚

𝑟𝑠,𝑘
≥ 𝑢
𝑚

𝑟𝑠
, if𝑓𝑚

𝑟𝑠,𝑘
= 0, 𝑟 ∈ 𝑅, 𝑠 ∈ 𝑆, 𝑘 ∈ 𝐾

𝑟𝑠
, 𝑚 ∈ 𝑀,

(44)

which implies that the route choices of private car, bus
commuters, and occupied taxis of each firm follow user
equilibrium. Similarly, we can demonstrate that the route
choice of vacant taxis also satisfies the user equilibrium
condition by utilizing (41), (43), and (33).

From (37) we have

𝑞
𝑜,𝑖

𝑟𝑠

𝑞𝑜
𝑟𝑠

= exp [𝛽
2
(𝜑
𝑜,𝑖

𝑟𝑠
− 𝑢
𝑜,𝑖

𝑟𝑠
+ 𝐿
𝑜

𝑟𝑠
)] , 𝑟 ∈ 𝑅, 𝑠 ∈ 𝑆. (45)

Taking the sum of 𝑖 in both sides gives rise to

𝐿
𝑜

𝑟𝑠
= −

1

𝛽
2

ln∑

𝑖∈𝐼

exp [−𝛽
2
(𝑢
𝑜,𝑖

𝑟𝑠
− 𝜑
𝑜,𝑖

𝑟𝑠
)] ,

𝑟 ∈ 𝑅, 𝑠 ∈ 𝑆.

(46)

Substituting (46) into (45) leads to

𝑞
𝑜,𝑖

𝑟𝑠

𝑞𝑜
𝑟𝑠

=

exp [−𝛽
2
(𝑢
𝑜,𝑖

𝑟𝑠
− 𝜑
𝑜,𝑖

𝑟𝑠
)]

∑
𝑖

∈𝐼
exp [−𝛽

2
(𝑢𝑜,𝑖



𝑟𝑠
− 𝜑𝑜,𝑖



𝑟𝑠
)]

, 𝑟 ∈ 𝑅, 𝑠 ∈ 𝑆, 𝑖 ∈ 𝐼,

(47)

which is the lower choice level of hierarchical logit mode split
function, that is, (17).

From (34) we can see

𝑞
𝑝

𝑟𝑠

𝑞
𝑟𝑠

= exp [𝛽
1
(𝜑
𝑝

𝑟𝑠
+ 𝛾
𝑟𝑠
− 𝑢
𝑝

𝑟𝑠
)] , 𝑟 ∈ 𝑅, 𝑠 ∈ 𝑆. (48)

By symmetry, we have the following equations according to
(35) and (36):

𝑞
𝑏

𝑟𝑠

𝑞
𝑟𝑠

= exp [𝛽
1
(𝜑
𝑏

𝑟𝑠
+ 𝛾
𝑟𝑠
− 𝑢
𝑏

𝑟𝑠
)] , 𝑟 ∈ 𝑅, 𝑠 ∈ 𝑆, (49)

𝑞
𝑜

𝑟𝑠

𝑞
𝑟𝑠

= exp [𝛽
1
(𝜑
𝑜

𝑟𝑠
+ 𝛾
𝑟𝑠
− 𝐿
𝑜

𝑟𝑠
)] , 𝑟 ∈ 𝑅, 𝑠 ∈ 𝑆. (50)

Equation (48) plus (49) plus (50) gives rise to

exp (𝛽
1
𝛾
𝑟𝑠
) = (1) (exp [−𝛽

1
(𝑢
𝑝

𝑟𝑠
− 𝜑
𝑝

𝑟𝑠
)]

+ exp [−𝛽
1
(𝑢
𝑏

𝑟𝑠
− 𝜑
𝑏

𝑟𝑠
)]

+ exp [−𝛽
1
(𝐿
𝑜

𝑟𝑠
− 𝜑
𝑜

𝑟𝑠
)] )
−1

,

𝑟 ∈ 𝑅, 𝑠 ∈ 𝑆.

(51)

Substituting (51) into (48) we can see

𝑞
𝑝

𝑟𝑠
= (exp [−𝛽

1
(𝑢
𝑝

𝑟𝑠
− 𝜑
𝑝

𝑟𝑠
)])

× (exp [−𝛽
1
(𝑢
𝑝

𝑟𝑠
− 𝜑
𝑝

𝑟𝑠
)]

+ exp [−𝛽
1
(𝑢
𝑏

𝑟𝑠
− 𝜑
𝑏

𝑟𝑠
)]

+ exp [−𝛽
1
(𝐿
𝑜

𝑟𝑠
− 𝜑
𝑜

𝑟𝑠
)] )
−1

𝑞
𝑟𝑠
,

𝑟 ∈ 𝑅, 𝑠 ∈ 𝑆,

(52)

which is the upper choice level of hierarchical logitmode split
function, that is, (15).

From (51) we have

𝛾
𝑟𝑠

= −
1

𝛽
1

ln {exp [−𝛽
1
(𝑢
𝑝

𝑟𝑠
− 𝜑
𝑝

𝑟𝑠
)]

+ exp [−𝛽
1
(𝑢
𝑏

𝑟𝑠
− 𝜑
𝑏

𝑟𝑠
)]

+ exp [−𝛽
1
(𝐿
𝑜

𝑟𝑠
− 𝜑
𝑜

𝑟𝑠
)] }

𝑟 ∈ 𝑅, 𝑠 ∈ 𝑆.

(53)

Substituting (53) into (39) we have

𝐷
−1

𝑟𝑠
(𝑞
𝑟𝑠
) = −

1

𝛽
1

ln {exp [−𝛽
1
(𝑢
𝑝

𝑟𝑠
− 𝜑
𝑝

𝑟𝑠
)]

+ exp [−𝛽
1
(𝑢
𝑏

𝑟𝑠
− 𝜑
𝑏

𝑟𝑠
)]

+ exp [−𝛽
1
(𝐿
𝑜

𝑟𝑠
− 𝜑
𝑜

𝑟𝑠
)] } ,

𝑟 ∈ 𝑅, 𝑠 ∈ 𝑆,

(54)

which indicates that the elastic demand function defined in
Section 2.7 is satisfied.

Equation (38) can be rewritten as follows:

𝑞
V,𝑖
𝑠𝑟

= exp [−𝜎 (𝑢
V,𝑖
𝑠𝑟

+ 𝑎
𝑖

𝑠
+ 𝑒
𝑖

𝑟
)] , 𝑟 ∈ 𝑅, 𝑠 ∈ 𝑆. (55)
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Substituting (55) into (23) we have

exp (−𝜎𝑎
𝑖

𝑠
) =

𝐷
𝑜,𝑖

𝑠

∑
𝑟∈𝑅

exp [−𝜎 (𝑢V,𝑖
𝑠𝑟

+ 𝑒𝑖
𝑟
)]
, 𝑠 ∈ 𝑆, 𝑖 ∈ 𝐼. (56)

Then, substituting (56) into (55) we can see

𝑞
V,𝑖
𝑠𝑟

=

exp [−𝜎 (𝑢
V,𝑖
𝑠𝑟

+ 𝑒
𝑖

𝑟
)]

∑
𝑟

∈𝑅

exp [−𝜎 (𝑢
V,𝑖
𝑠𝑟

+ 𝑒
𝑖

𝑟

)]

𝐷
𝑜,𝑖

𝑠
, 𝑟 ∈ 𝑅, 𝑠 ∈ 𝑆, 𝑖 ∈ 𝐼.

(57)

Comparing (57) with the logit-based vacant taxi dis-
tribution model equation (18), we know that 𝜆V𝑤

V,𝑖
𝑟

is in
connectionwith 𝑒

𝑖

𝑟
. Similar toWong et al. [8], we can calculate

taxi waiting/searching time 𝑤
V,𝑖
𝑟

through (12), (22), (23), and
(55) (for details, one can see Wong et al. [8]).

Since the constraints (22) to (30) are nonnegative and
linear, and the continuous formulation (31) has the region of
non-negative flows and OD demands, we can conclude that
at least one solution to the VI program exists [11].

4. Optimal Taxi Fleet Size Structure of
Taxi Firms

4.1. Profit Function of Taxi Firms. The taxi fleet size structure
of taxi firms has significant effects on the behaviors of all
the travelers including taxi customers and, thus, on the
profits of taxi firms. The net profit of a taxi firm is the total
revenue raised from taxi customer fares minus the total taxi
operating costs. It is assumed that the cost of taxi operation
for “occupied” service time is consistent with the “vacant”
service time and 𝜉

𝑖 is denoted as the operating cost per taxi
per hour of service time for taxi firm 𝑖 ∈ 𝐼. Consequently the
total taxi operating cost of taxi firm 𝑖 ∈ 𝐼 can be represented
as 𝜉𝑖𝑁𝑖 [9]. The net profit, Φ

𝑖
, of taxi firm 𝑖 ∈ 𝐼 then can be

expressed as follows:

Φ
𝑖
(N, q𝑜,𝑖 (N) , x𝑜,𝑖 (N))

= ∑

𝑟∈𝑅,𝑠∈𝑆

𝑏
𝑜,𝑖

0
𝑞
𝑜,𝑖

𝑟𝑠
(N) + ∑

𝑎∈𝐴

𝑏
𝑜,𝑖

1
𝑑
𝑎
𝑥
𝑜,𝑖

𝑎
(N)

+ ∑

𝑎∈𝐴

𝑏
𝑜,𝑖

2
(𝑡
𝑎
(𝑥
𝑎
) − 𝑡
0

𝑎
) 𝑥
𝑜,𝑖

𝑎
(N) − 𝜉

𝑖

𝑁
𝑖

, 𝑖 ∈ 𝐼,

(58)

where q𝑜,𝑖 and x𝑜,𝑖 are the vectors representing the numbers
of travelers choosing taxis of firm 𝑖 ∈ 𝐼 and link flow for
occupied taxis of firm 𝑖 ∈ 𝐼, respectively.

4.2. Market Equilibrium. With the above-mentioned model
and assumptions, we now investigate the optimal taxi fleet
size structure under two scenarios: themonopolymarket and
oligopolistic competitive market.

4.2.1. Monopoly Market. The monopoly market here is
defined as all the taxis in the network are operated by
a single firm to which the monopoly rights to pick up
customers in the market area are granted by the government,

and the government also sets the taxi fare. Thus, under this
monopoly system, the taxi firmwouldmaximize its net profit
generated from the fare charges. The upper-level program
then aims to determine the optimal taxi fleet size so as to
maximize the net profit:

maxΦ(𝑁, q𝑜 (𝑁) , x𝑜 (𝑁)) , (59)

where q𝑜(𝑁) and x𝑜(𝑁) are obtained by solving the varia-
tional inequality program (31).

4.2.2. Oligopoly Market. It is commonly acknowledged that
taxi services are generally provided by several independent
operators in practice, which gives rise to a competition where
each firm seeks to maximize its own profits. Because the taxi
fare is set by regulator, each taxi firm would optimize its taxi
fleet size. Then the Nash equilibrium among different taxi
firms can be found by determining the equilibrium taxi fleet
size structure such that the following inequalities are satisfied:

Φ
𝑖
(𝑁
𝑖
∗

,N−𝑖
∗

, q𝑜,𝑖 (𝑁𝑖
∗

,N−𝑖
∗

) , x𝑜,𝑖 (𝑁𝑖
∗

,N−𝑖
∗

))

≥ Φ
𝑖
(𝑁
𝑖

,N−𝑖
∗

, q𝑜,𝑖 (𝑁𝑖,N−𝑖
∗

) , x𝑜,𝑖 (𝑁𝑖,N−𝑖
∗

)) ,

𝑖 ∈ I, 𝑁
𝑖

∈ R
𝑖

.

(60)

Inequality (60) indicates that no one can increase its profit
by unilaterally changing taxi fleet size under equilibrium
situation.𝑁𝑖

∗

represents the optimal solution of taxi fleet size
for firm 𝑖 and N−𝑖

∗

denotes the optimal solution of taxi fleet
size for the other firms excluding 𝑖.R𝑖 is the strategy set of taxi
firm 𝑖. q𝑜(𝑁𝑖

∗

,N−𝑖
∗

) and x𝑜(𝑁𝑖
∗

,N−𝑖
∗

) are given by solving
variational inequality formulation (31).

For convenience, let v𝑖 = (N, q𝑜,𝑖, x𝑜,𝑖), 𝑍𝑖(v𝑖) = ∇v𝑖Φ𝑖(v𝑖),
Z(v) = (𝑍

1

(v1), 𝑍2(v2), . . . , 𝑍𝐼(v𝐼)), 𝑖 ∈ 𝐼. Then, the above
Nash equilibrium problem (60) can be expressed as the
following variational inequality program:

Z (v∗) (v − v∗) ≥ 0, v ∈ Ψ (v∗) , (61)

where Ψ = Π
𝑖
Ψ
𝑖 and Ψ

𝑖 is the strategy set of vector v𝑖.
Furthermore, the solution in variational inequality (61) also
satisfies inequality (60) [14].

5. Solution Algorithm

An iterative heuristic solution algorithm is developed to solve
the bi-level programming where the variational inequality
programs (31) can be solved by the block Gauss-Seidel
decomposition approach coupled with method of successive
averages [15], whereas (61) is solved by the diagonalization
method [16]. One can refer to Zhou et al. [17] for the details
of the heuristic solution algorithm. The procedure of the
algorithm is structured as below.
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Step 1. Let the iteration number 𝑗 = 0. Set an initial taxi fleet
size structure N(𝑗).

Step 2. Compute auxiliary solutionU(𝑗) by solving variational
inequality problem (61) and (31).

Substep 1. Set 𝑖 = 1.

Substep 2. Compute the auxiliary solution 𝑈
𝑖(𝑗) by solving

lower-level problem (31) and the following linear program
(62) which is equivalent to the variational inequality problem
(61). Note that the genetic algorithm or simulated annealing
algorithm can be used to solve this problem. And the lower-
level formulation (31) is solved by the block Gauss-Seidel
decomposition approach coupled with method of successive
averages. It is also worth noting that, in each solution
procedure, to get the next pattern of taxi fleet size for taxi firm
𝑖, we need to calculate the taxi waiting time,𝑤V,𝑖

𝑟
, through (12),

(22), (23), and (55) and get the demand q𝑜,𝑖and link flow x𝑜,𝑖,
which are then substituted into (62) to get the profitΦ

𝑖
:

maxΦ
𝑖
(𝑈
𝑖(𝑗)

,N−𝑖(𝑗), q𝑜,𝑖 (𝑈𝑖(𝑗),N−𝑖(𝑗)) , x𝑜,𝑖 (𝑈𝑖(𝑗),N−𝑖(𝑗))) ,

𝑖 ∈ 𝐼.

(62)

Substep 3. If 𝑖 < 𝐼, then 𝑖 = 𝑖 + 1 and return to Substep 2,
otherwise go to Step 3.

Step 3. Utilize the method of successive averages to find the
solution pattern of next iteration:

N(𝑗+1) = N(𝑗) + 1

𝑗 + 1
(U(𝑗) − N(𝑗)) . (63)

Step 4. If |𝑁𝑖(𝑗+1) −𝑁
𝑖(𝑗)

| ≤ 𝜀
1
for all 𝑖 ∈ 𝐼, where 𝜀

1
is a preset

tolerance, then stop. Otherwise let 𝑗 = 𝑗 + 1 and return to
Step 2.

Note that the method of successive averages is used in
the proposed algorithm to get the solution pattern of next
iteration, because many existing literatures, such as [11, 15],
have shown that it can perform well even in a large-scale
transport network and the stable solutions can always be
obtained.

6. Numerical Example

In this section, we utilize a numerical example proposed by
Zhu et al. [18] to illustrate the presentedmodel and algorithm.
The road network is depicted in Figure 1 with 4 OD pairs, 6
nodes, and 14 links. For the sake of simplicity, we suppose
that there are two taxi firms in the oligopoly market let 𝑖 = 1

denote the taxi firm providing normal taxi service, and, 𝑖 = 2

represent the firm providing the luxury taxi service. Clearly,
the fare for luxury taxi is higher than that for normal taxi.
Also we let 𝑖 = 1 indicate the single taxi firm in the case of
monopolymarket.Thebus lines are 1–2–4–6, 1–3–4, 5–6, and
5–3–4, respectively, which are represented as dotted lines in
Figure 1.

1 2

65

3 4
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Figure 1: The network.

We assume the travel time function for each link follows
the traditional BPR function:

𝑡
𝑎
(𝑥
𝑎
) = 𝑡
0

𝑎
[1 + 0.15(

𝑥
𝑝

𝑎
+ ∑
𝑖∈𝐼

𝑥
𝑜,𝑖

𝑎
+ ∑
𝑖∈𝐼

𝑥
V,𝑖
𝑎

𝐶
𝑎

)

4

] ,

𝑎 ∈ 𝐴,

(64)

where the free flow travel time 𝑡0
𝑎
and link capacity 𝐶

𝑎
as well

as link length 𝑑
𝑎
, 𝑎 ∈ 𝐴, are given in Table 1.

The negative exponential demand function is

𝑞
𝑟𝑠

= 𝑞
𝑟𝑠
exp (−𝜅

𝑟𝑠
𝑢
𝑟𝑠
) , 𝑟 ∈ 𝑅, 𝑠 ∈ 𝑆, (65)

where 𝑞
𝑟𝑠

is the potential demand for each OD pair and
𝜅
𝑟𝑠
is an elasticity parameter that represents the sensitivity

of demand to generalized costs. Let 𝑞
16

= 4000 veh/h,
𝑞
14

= 3000 veh/h, 𝑞
56

= 4000 veh/h, and 𝑞
54

= 3000 veh/h,
respectively. Also, let 𝜅

16
= 𝜅
14

= 𝜅
56

= 𝜅
54

= 0.03. Similar
to Huang [19], the following passenger crowding discomfort
function is specified

𝐺
𝑟𝑠
(𝑞
𝑏

𝑟𝑠
) = 𝜃
1
(𝑞
𝑏

𝑟𝑠
)
2

+ 𝜃
2
𝑞
𝑏

𝑟𝑠
, 𝑟 ∈ 𝑅, 𝑠 ∈ 𝑆, (66)

where 𝜃
1
and 𝜃

2
are positive parameters. In this numerical

example, let 𝜃
1
and 𝜃

2
be 0.001 and 0.0001, respectively.

Furthermore, the bus frequency and bus travel time are
shown in Table 2.

Other parameters are set as follows: 𝑏𝑝 = 3 $/km; 𝑏𝑜,1
0

=

10 $, 𝑏𝑜,2
0

= 12 $; 𝑏𝑜,1
1

= 2 $/km, 𝑏𝑜,2
1

= 3 $/km; 𝑏𝑜,1
2

= 30 $/h,
𝑏
𝑜,2

2
= 35 $/h; 𝑏V,1 = 1.5 $/km, 𝑏V,2 = 2 $/km; 𝜆 = 60 $/h, 𝜆V =

40 $/h, 𝜆
𝑜𝑤

= 120 $/h, 𝜆
𝑏
= 30 $/h, 𝜆

𝑏𝑤
= 60 $/h; 𝜏 = 2 $;

𝜉
1
= 30 $/h, 𝜉

2
= 35 $/h; 𝜁 = 0.01; 𝜑𝑝

16
= 10, 𝜑𝑏

16
= 1, 𝜑𝑜

16
= 8,

𝜑
𝑝

14
= 10, 𝜑𝑏

14
= 1, 𝜑𝑜

14
= 8, 𝜑𝑝

56
= 10, 𝜑𝑏

56
= 1, 𝜑𝑜

56
= 8, 𝜑𝑝

54
=

10, 𝜑𝑏
54

= 1, 𝜑𝑜
54

= 8; 𝜑𝑜,1
16

= 2, 𝜑𝑜,2
16

= 5, 𝜑𝑜,1
14

= 2, 𝜑𝑜,2
14

= 5,
𝜑
𝑜,1

56
= 2, 𝜑𝑜,2

56
= 5, 𝜑𝑜,1

54
= 2, 𝜑𝑜,2

54
= 5; 𝛽

1
= 0.06, 𝛽

2
= 0.06;

𝑦 = [7.8,1.2,4.4,5.6,7.7,4.5,7.8,1.4,7.8,7.8,7.8,1.3,7.7,7.8], 𝜎 = 0.2,
𝜂𝑍
𝑟
= 10, 𝑟 ∈ 𝑅.
We initially consider the monopoly scenario in which

there is a single profit-maximizing firm operating the taxi
services in the market. Figure 2 plots the contours of the taxi
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Table 1: Link free flow, capacity and length.

Link Star
node

End
node 𝑡

0

𝑎
(h) 𝐶

𝑎
(veh/h) 𝑑

𝑎
(km)

1 1 2 0.03 1200 2
2 2 1 0.03 1200 2
3 1 3 0.03 1200 2
4 3 1 0.03 1200 2
5 3 4 0.04 1200 3
6 4 3 0.04 1000 3
7 2 4 0.02 1800 1
8 4 2 0.02 1800 1
9 3 5 0.03 1200 2
10 5 3 0.03 1200 2
11 5 6 0.04 1200 3
12 6 5 0.04 1200 3
13 4 6 0.04 1200 3
14 6 4 0.04 1200 3

Table 2: Bus travel time and frequency.

Origin Destination Travel time
𝑇
𝑟𝑠
(h)

Bus frequency
𝐹
𝑟𝑠
(veh/h)

1 6 0.3 10
1 4 0.2 10
5 6 0.15 10
5 4 0.2 10

profit when the taxi fleet size and fare varied. As we can
see from the figure that three possible outcomes including
positive profit, zero profit, and negative profit can be obtained
with various combinations of fleet size and fare. Point G in
Figure 2 is the monopolistic solution where the optimal taxi
fleet size is 803 veh, resulting in a profit of $14400 per hour. It
is also worth noting that as the fare increases the optimal fleet
size decreases, which can be observed from the monopoly
solution dashed curve in Figure 2. This can be explained by
the fact that the customer demand decreases due to the higher
taxi fare and thus the taxi firm will reduce the number of
taxis. The maximum profit of $14641 occurs at point M, with
optimal taxi fleet size of 780 veh and preliminary flag-fall
charge per ride of $12, respectively. Therefore, the moderate
taxi fleet size and fare can improve the profit of taxi firm in
the case of monopoly market.

We now look at the oligopolistic competitive solution
which can be determined by solving (61) and (31) with the
constraints (22) to (30). Figure 3 depicts the convergence
of the proposed iterative heuristic algorithm for oligopoly
market. We can see that the final convergent equilibrium
point is achieved in approximately seven iterations for this
numerical example.

Figure 4 shows the profit contours of the two taxi firms
with taxi fleet size pattern. It can be observed in Figure 4 that
point H is the oligopolistic solution with the optimal taxi fleet
size of 657 for taxi firm 1 and 575 for taxi firm 2, giving rise
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to a profit of $7844 per hour and $7886 per hour for the two
firms, respectively. It is noteworthy that the optimal taxi fleet
size of taxi firm 1 is considerably larger than that of taxi firm
2. This is because as the two types of taxis are available more
customers would like to choose the taxi type 1 because of the
lower fare. Thus, taxi firm 1 tends to provide more taxis to
meet the demands. The profit of taxi firm 2 is, however, as
many as the profit of taxi firm 1 though the demand of taxi
type 2 is obviously lower. This is because the higher taxi fare
can make contribution to the profit.

Additionally, we also analyze the scenario when vacant
taxis are exempted from tolling, as shown in Tables 3 and 4.
As we can see from the tables, the optimal taxi fleet size and
profits of taxi firm in both monopoly market and oligopoly
market increase, compared with the case that vacant taxis are
charged with the toll. The reason is that as vacant taxis have
to pay a congestion charge they would be less willing to cruise
in the charging area or the area where toll is high. Thus, taxi
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Table 3:Themonopolistic solution when vacant taxis are exempted
from tolling.

Monopolistic solution
Optimal taxi fleet size 910 veh
Taxi firm profit $17350

Table 4: The oligopolistic solution when vacant taxis are exempted
from tolling.

Oligopolistic solution
Optimal taxi fleet size of taxi firm 1 750 veh
Optimal taxi fleet size of taxi firm 2 645 veh
Profit of taxi firm 1 $9238
Profit of taxi firm 2 $9256

demand there decreases (diverting to private car and bus),
leading to a smaller optimal taxi fleet size and lower profits
of taxi firm.

7. Conclusions

A mathematical model is proposed to address the optimal
taxi fleet size structure under different market regimes when
taxis are charged with the link-based toll. The model is
developed as a bi-level programming formulation that takes
into account the intervening relationship between taxi fleet
size and different traffic modes. The lower-level problem is
a combined network equilibrium model formulated as an
equivalent variational inequality describing the hierarchical
logit-based mode split, route choice, elastic demand, and
vacant taxi distributions. The upper level aims to determine
the optimal taxi fleet size structure so as to maximize the
profit of each firm. The bi-level problem is solved by a
heuristic solution algorithm whereas the lower level can be
solved by the block Gauss-Seidel decomposition approach
together with method of successive averages.

The results of the numerical example show that the
optimal taxi fleet size decreases with the fare, while the
moderate fleet size and fare can maximize the profit of taxi
firm in the case of monopoly market. For the oligopoly
scenario, the demand for the normal taxis is considerably
higher than that for the luxury taxis because of the lower
fare. Nevertheless, the profits of these two firms are almost
the same. Furthermore, the optimal taxi fleet size and profits
of taxi firm in both monopoly market and oligopoly market
would increase if vacant taxis are exempted from tolling.

This study offers some useful advice to the taxi firms
and regulator when charging taxis with toll. Real-world
transportation networks instead of the synthetic network will
be tested in the future study.
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