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Nuclear receptors (NRs) are important biological macromolecular transcription factors that are implicated in multiple biological
pathways andmay interact with other xenobiotics that are endocrine disruptors present in the environment. Examples of important
NRs include the androgen receptor (AR), estrogen receptors (ER), and the pregnane X receptor (PXR). In this studywe have utilized
the LigandActivity by Surface SimilarityOrder (LASSO)method, a ligand-based virtual screening strategy to derive structural (sur-
face/shape) molecular features used to generate predictive models of biomolecular activity for AR, ER, and PXR. For PXR, twenty-
five models were built using between 8 to 128 agonists and tested using 3000, 8000, and 24,000 drug-like decoys including PXR
inactive compounds (𝑁 = 228). Preliminary studies with AR and ER using LASSO suggested the utility of this approach with 2-fold
enrichment factors at 20%.We found thatmodelswith 64–128 PXRactives provided enrichment factors of 10-fold (10% actives in the
top 1% of compounds screened). The LASSO models for AR and ER have been deployed and are freely available online, and they
represent a ligand-based prediction method for putative NR activity of compounds in this database.

1. Introduction

Thenuclear receptor (NRs) family of transcription factors are
important targets for therapeutic interventions for multiple
diseases [1] and also may interact with other xenobiotics that
are endocrine disruptors present in the environment [2]. It is
therefore important to identify compounds that may specif-
ically bind NRs and act as endocrine disruptors and develop
synthetic compounds that can selectively (in a cell-type
and/or tissue-selective manner) modulate NR pharmacology
(reviewed in [3–9]). NRs including the androgen receptor

(AR; NR3C4), estrogen receptors 𝛼 and 𝛽, (ER𝛼 and ER𝛽;
NR3A1 and NR3A2) and pregnane X receptor (PXR; NR1I2)
are particularly important as both therapeutic targets and for
xenobiotics to mediate off-target effects.

The ERs are activated by 17𝛽-estradiol while the AR is
activated by testosterone and dihydrotestosterone and these
receptors are transcriptional regulators of many genes [10]
with important physiological functions [11–16]. The human
PXR [17–19] similarly transcriptionally regulates genes
involved in xenobiotic metabolism and excretion, as well as
other cellular processes, including apoptosis [20–24]. Human
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PXR is a broad specificity NR, binding a wide variety of
molecules [25] and the activation of this NR can cause drug-
drug interactions [23].

Multiple QSAR and machine learning models have been
described for these NRs, to address endocrine disruptor risk
assessment [26–28] and toxicological screening [29]. For
example, a recent QSAR analysis of 74 natural or synthetic
estrogens provided information on structural features for
the activation of ER𝛼 and ER𝛽 [30]. Nonlinear statistical
machine learning methods have been applied to separate NR
activators from nonactivators [31]. A virtual screening proto-
col identifiedER𝛽 specific ligands fromaplant product-based
database [32]; from 12 candidates evaluated by a fluorescence
polarization binding assay, 3 had >100-fold selectivity to ER𝛽
over ER𝛼. The same approach has also been used to find
compounds with good selectivity for ER𝛼 over ER𝛽 [32, 33].
Bisson et al. have used computational methods that led to
a nonsteroidal antiandrogen with improved AR antagonistic
activity based on an initial screening of FDA approved new
drugs [33]. Several groups have published datasets or per-
formed modeling on ER and AR and these data are readily
available for further evaluation with new modeling methods
[34–38].

While the crystal structures of human PXR [39–43] have
led to a greater understanding of the ligand binding domain
(LBD) and ligand-receptor interactions [39–45], ligand-
based computational models possess the key features for pre-
dicting binding [46–49]. PXR pharmacophores have been
used to predict interactions for antibiotics [50] verified in
vitro, and machine learning methods have also been evalu-
ated [25, 38, 51–53]. Several protein-based docking studies
have also been used to predict PXR agonists [25, 54–56],
although machine learning methods appear to be advanta-
geous to date.

We have recently described troubleshooting various com-
putational methods [57] and specifically compared different
methods for PXR [25]. There is a continuous search for new
methods that might offer advantages for computationalmod-
eling to overcome some of these limitations and specifically
for NRs [58]. A ligand-based software called LASSO (Ligand
Activity by Surface Similarity Order) has been described that
is focused on similarities in biomolecular activity rather than
structural similarity [59]. The key components describing
LASSO are the 23 kinds of Interacting Surface Point Type
(ISPT)molecular descriptors (see Supplemental Table 1 avail-
able online at http://dx.doi.org/10.1155/2013/513537), which
capture the essence of the surface point information in a
feature vector containing the counts of each surface point
type and create the feature vector for that ligand. This vector
serves as the descriptor of that molecule with the assumption
that ligands with similar feature vectors will have similar
activity. A key property of the LASSO descriptor is its con-
formation independence which is due to the fact that it is
defined by the number and type of Interacting Surface Points
and not by their relative spacial distribution. LASSO has been
shown to be able to readily screen over 1 million structures/
minute, identify activemolecules by enriching screened data-
bases, and provide ameans for scaffold hopping [59].The cur-
rent study applies LASSO to various NR datasets to generate

models, validate them, and make the models available on a
public website to illustrate how the method can be used.This
work can be considered an extension of our previous trouble-
shooting studies [25, 57].

2. Materials and Methods

2.1. Training and Test Set Molecular Dataset Selection. One
of the goals of this study was to determine what level of
enrichment for binders (at weak or strong binding threshold)
can be afforded using the ChemSpider LASSO descriptors
(ligand-based approach) and compared with enrichment
from a structure-based docking approach (eHiTS). For AR,
the dataset consisting of 203 molecules with relative binding
affinities and activity threshold classes of (a) strong, (b)
moderate, (c) weak, and (d) inactive/nonbinding ligands, we
evaluated the ability of LASSO to differentiate both (a) strong
and (a + b) strong andmoderate binders (all others were con-
sidered to be nonbinding). The training set for AR, derived
with the LASSO descriptors, was obtained from the DUD set
[60] and differ considerably from the test set. To evaluate the
LASSO descriptors for the ER dataset consisting of 50 mole-
cules with 15 “hits” (i.e., considerably weak binders) and 35
“nonhits” for the estrogen binding that differs considerably
from the training set obtained again, we used the DUD ER
(default or agonist and antagonist) as a training set [60].

In addition to the ChemSpider LASSO approach for the
AR test set we used the eHiTS structure-based (molecular
docking) screening strategy on two conformations of the AR
(using PDB structures 2AMA and 1XNN) and reported the
minimum score across the two conformations examined (this
approach was used to add flexibility to the receptor). Simi-
larly, for the ER dataset we docked against two functionally
distinct conformations of the estrogen receptor (3ERT and
1GWR).

2.2. Datasets for LASSO Modeling: Structure File Preparation.
The rat ER binding dataset (𝐾

𝑖
values for 50 compounds of

environmental relevance [35]) was obtained from EPA’s
DSSTox database (http://epa.gov/ncct/dsstox/ [34]). This
dataset contains 15 industrial chemical “binders” (i.e., non-
therapeutic) with significantly weaker binding affinities than
what would be desired for drug lead candidates (i.e., 3–5-
fold weaker binding affinity than the natural ligand 17𝛽-
estradiol). Similarly, the NCTR’s rat AR activity dataset (com-
petitive inhibition assays), also used in this study, contains
146 AR binders and 56 nonbinders (http://www.fda.gov/nctr/
science/centers/toxicoinformatics/edkb/index.htm [37, 38]).
All structures were imported into MOE and geometry opti-
mized using the MMFFx forcefield in MOE (Chemical Com-
puting Group, Montreal, Canada).

Three human PXR datasets were used, namely, dataset
1 represented 80 actives EC

50
< 100 𝜇M and 64 inactives

EC
50
> 100 𝜇M that were drug-like molecules. The SMILES

string for each molecule named or CAS number provided
was obtained by downloading from either PubChem (http://
pubchem.ncbi.nlm.nih.gov/) or ChemSpider (http://www
.chemspider.com/) or sketched using the BUILDER module
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of SYBYL [56]. Dataset 2 represented 93 actives and 75
inactives that were drug-likemolecules from a previous study
[61]. The molecular structures encoded as SMILES strings
[62] were downloaded from the supplementary information
tables in the original publication [61]. Dataset 3 represented
30 actives and 89 inactives from a dataset of steroidal
compounds (namely, androstanes, estratrienes, pregnanes
and bile salts) as well as the ligands used in the crystal struc-
tures with hPXR activation determined by a luciferase-based
reporter assay [25]. Human PXR activation was determined
by a luciferase-based reporter assay as has been previously
described in these and other publications.

2.3. LASSO Models for ER and AR. The methodology of
LASSO has already been previously described in detail, [59]
and the method performance in terms of diversity of test
set and % enrichment of a database has also already been
evaluated for the DUD set in paper just mentioned and
also for other targets published elsewhere (http://www
.simbiosys.com/ehits lasso/ehits lasso table.html) to exam-
ine the performance of eHiTS LASSO, with this endocrine
panel subset of target proteins of the total ∼48 nuclear recep-
tors. We used the newly assembled directory of useful decoys
(DUD) [60] dataset to augment both the KIERBL and NCTR
AR datasets.

2.4. PXR Models: Method I. The previously mentioned three
PXR datasets were received from three different sources
described earlier. Set 1, called: “hpxr test,” contained 80
actives and 64 inactives or decoys; set 2, called: “hpxr train,”
contained 93 actives and 75 inactives; and finally set 3, called:
“PXR119-class,” contained 30 actives with 89 inactives. Out
of these three data sets, 7 screening prediction models were
built using only the actives (the inactives were automatically
generated by the software).

The following models were developed. Model 1 was
trained on the first dataset (hpxr test, 80 ligands) and tested
with the other two sets (123 ligands). Model 2 was trained on
the second dataset (hpxr train, 93 ligands) and testedwith the
other two sets (110 ligands). Model 3 was trained on the third
dataset (PXR119-class, 30 ligands) and tested with the other
two sets (173 ligands). Models 4–6 were trained on sets 1 and
2, that is, 173 ligands, sets 1 and 3, that is, 110 ligands, and sets
2 and 3, that is, 123 ligands and tested with the remaining one
set of actives (i.e., 30, 93, and 80 ligands, resp.). Model 7 was
trained on all actives (1, 2, and 3) and tested on the same.This
was done as an extreme case to see the maximum potential
training effect.

2.5. PXR Models: Method II. A second method for creating
LASSO prediction models for the PXR test case was also
investigated. Actives from the 3 datasets were all merged,
resulting in an SDF file with 203 ligands with relative
binding affinities and activity threshold classes (a) strong, (b)
moderate, (c) weak, and (d) inactive/nonbinding ligands. To
determine how many actives are needed to be selected for a
good LASSO predictionmodel and also to see if the source of
the actives is important, 25 LASSO models were developed

(Supplementary Table 2). Prediction models were built by
selecting 8, 16, 32, 64, and 128 actives, starting from positions
first, ninth, seventeenth, thirty-third, and sixty-fourth in the
merged actives file.

The above 25 models were then tested for enrichment
factor using the actives from the total active set and leaving
out the ones used for training (this was 8, 16, 32, 64 or
128 ligands, resp.) mixed with drug-like decoys, that were
obtained from another recent screening study [63]. To assess
the effect of the size of the decoy set upon the prediction
model, random 3000 (3 k), 8000 (8 k), and the whole 24,000
(24 k) decoy sets were used. In each case the decoys from all
three sets received (228 structures in total) were added into
the decoy test set.

3. Results

The enrichment plots shown for AR (Figure 1) and ER
(Figure 2) with the percent actives recovered versus percent
of dataset reveal an enrichment of ∼2-fold at 20% of the
dataset coverage regardless of whether a ligand or structure-
based approachwas used. For theARdataset if the interaction
threshold is specified as strong or strong+moderate, different
levels of enrichment are incurred by either ChemSpider
LASSO or eHiTS results. This translates into an improved
performance of either ligand or structure-based screening
approaches to bin molecules with stronger interactions (cyan
and purple) than those substantially altered through the addi-
tion of weaker binding classes (magenta and yellow). Inter-
estingly, in terms of the early-recognition problem, eHiTS is
more sensitive (4-fold at 20%) than LASSO (1.5-fold at 20%);
however, all 15 actives are captured by the LASSO descriptor
within the first 37% of the dataset (with a minimum value of
LASSO = 0.07) at considerably lower computational cost. A
means of incorporating this into a real scenario would be to
screen ChemSpider for AR with a descriptor above a thresh-
old (in this case 0.07) from a specific dataset on ChemSpider
and follow up these “hits” only with a more costly structure-
based approach.

For the ER dataset where all 15 binders are in fact weak
binders (i.e., 3 to 5 orders of magnitude weaker binders than
the natural ligand 17𝛽-estradiol) the default LASSO descrip-
tors outperform (3-fold enrichment) the structure-based ap-
proach (2-fold enrichment) and the agonist-trained LASSO
method outperforms the antagonist LASSO method (most
likely due to a large diversity among antagonists than ago-
nists). Here we can see that even for weakly interacting
partners (i.e., low affinity binders for ER) we can still obtain
enrichment that is substantially better than random.

These tandemvirtual screening approaches combine com-
putationally efficient ligand-based ChemSpider LASSO des-
criptors (since ChemSpider is at its core a rich and diverse
collection of chemical structures, these were used in order to
produce LASSO predictions for over 14 million compounds
against a series of 40 targets including AR and ER. A LASSO
search feature was added to ChemSpider to allow users to
search the database by LASSO value (see Figure 3(a)). Sci-
entists can readily search for the top 1000 compounds (or
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Figure 1: Enrichment plot for AR. Legend: blue dotted line: random
hit rate, pink line: eHiTS docking score-based enrichment for strong
andmoderate binders (i.e., strong LogIC50mean = −7.7, stdev = 0.7,
moderate LogIC50 mean = −5.1, stdev = 0.6, probe DHT) from two
crystal structures (1XNN and 2AMA), yellow line: LASSODUDAR
androgen receptor trained ligands (ChemSpider value with strong
and moderate binding ligands as “hit” criteria), light blue: eHiTS
minimum energy docking score from two crystal structures using
strong binder hit criteria only (crystal structures 1XNN and 2AMA),
purple: DUD LASSO using strong binders hit criteria only.

less) with the highest LASSO value for a particular target of
interest. An advanced search in ChemSpider can combine
LASSO value searches with other parameters such as mole-
cular weight, rule of 5 values, and specific data sources (e.g.,
selecting molecules from commercial data sources only))
prior to more costly structure-based virtual screening stra-
tegies, dramatically improving virtual screening and “early-
recognition problem” workflow efficiency.

Piggy-backingmore costly structure-based virtual screen-
ing strategies on top of an initial screen dramatically assists
in virtual screening endeavors and the early-recognition
problem.

We have also shown an example of a molecule,
mibolerone, a strong AR and ER binder based on LASSO
(Figure 3(b)) which is known as a potent AR binder [64].The
LASSO surface point type values are shown in Supplemental
Table 3 and more visually in Supplemental Figure 2.

When we used LASSO models with hPXR in method I
(Figure 4) we found the best results with Model 1 which sug-
gested 40% of the ligands can be pushed into the top 10% of
the screened database resulting with an enrichment factor 4-
fold better than random (Figure 5). In Method II we found
the same enrichment factor using 64 actives in a 24 thousand
compound decoy set (Figure 6). Another way to evaluate
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Figure 2: Enrichment plot for ER. Legend: purple dotted line:
random hit rate, blue line: the minimum eHiTS docking score
reported for two different crystal structures (Min eHiTS, crystal
structure = 3ERT and 1GWR), pink: using the default LASSO
descriptors (LASSO-def), yellow: using the DUD AR agonist-
trained descriptors as found onChemSpider (agonist DUDLASSO),
light blue: using the DUD AR antagonist trained descriptors as
found on ChemSpider (antagonist DUD LASSO).

the models is to present the statistics for using dataset 1 to
predict dataset 2 (𝑁 = 168) for which we obtained sensitivity
12%, specificity 99%, accuracy 51%, andMatthews correlation
0.2. Using dataset 2 to predict dataset 1 gives similar results.
These results suggest that the models could identify potential
human PXR agonists in databases similar to other target pro-
teins [59].

4. Discussion

For both the AR and ER ligands the main objective was to see
how ligand-based screening tools, such as LASSO’s ChemSpi-
der implementation, perform such that they could be used for
prioritizing chemicals for testing.The AR dataset contained a
mixture of drug-like and environmental receptormodulators,
whereas the ER dataset contained primarily environmental
chemicals. Even in light of the relatively weak binding affinity
of the “actives,” that is, 𝐾

𝑖
of 10−4–10−6, while these would be

poor candidates for lead optimization into drugs, they still
pose an interaction potential with biological systems such as
NRs if they bioaccumulate. Using these leads from LASSO
screening with other methods such as molecular docking or
free-energy perturbation simulations may also be useful. The
validation of the approaches outlined above was pursued by
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(a)

(b)

Figure 3: (a) LASSO models implemented in ChemSpider. (b)
LASSO scores for Mibolerone, a strong AR and ER binder found
with a LASSO search onChemSpider.TheLASSO score is significant
only for 4 targets: MR, AR, ER and PRwhile the rest of the 40 targets
are all 0.10 or below for this molecule.

examining two real datasets.These were the FDA’s NCTR AR
[38] and 50 environmental molecules evaluated for ER bind-
ing affinity [35]. In additionwe have usedmultiple sets of PXR
agonists described previously. Our results show enrichments
of between 2-fold and 4-fold depending on the NR. For
PXR there have been numerous recent studies using different
machine learning methods and descriptors [25, 54, 56], and
while the Matthews correlation coefficient in this study is
lower than those in previous studies, the level of enrich-
ment from between 4 fold (40% of actives in the top 10%
of compounds screened) and 10-fold (10% actives in the top
1% of compounds screened) was very encouraging.

The molecular descriptors used in eHiTS LASSO are
independent of ligand conformation and have been shown to
successfully enrich screened databases across a wide range of
target families [59]. Lying somewhere between a 2D and a 3D
descriptor the ISPT descriptor does not contain any shape
or 2D connectivity information.There may however be some
molecular size information implicit in the descriptor due to
capturing the counts of surface points and larger molecules
will have more surface points than smaller molecules (and
eHiTS LASSO may be somewhat sensitive to this).

The relatively high speed of eHiTS LASSO on a single
CPU [59] makes it an ideal tool to be used as a predocking
screen. From a troubleshooting perspective, eHiTS LASSO
will return a high percentage of false positives, due to not

0
5

10
15
20
25(%

)

30
35
40
45
50

Se
t 1

Se
t 2

Se
t 3

Top 1%
Top 2%

Top 5%
Top 10%

Se
t 1

+
2

Se
t 1

+
3

Se
t 2

+
3

A
ll 

(1
+

2
+

3)

Figure 4: PXR LASSO 7 models derived in training method I.
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considering 3D relationships of surface properties. Because
of this, it will also return a higher percentage of different
scaffolds, enabling scaffold hopping. It is also important to
note that LASSO would not be able to differentiate stereo-
isomerism apart from, perhaps, diastereomeric pairs which
have structurally (configurationally) different features rather
than conformationally different features, for which this
method is conformation invariant.

Taking the results of eHiTS LASSO and feeding the top
𝑁% into a docking program would allow the docking pro-
gram to weed out many of the false positives binders. For this
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Figure 6: PXR LASSO average of 5 models over 5 runs derived in
training method II.

reason, eHiTS LASSO is currently integrated with the com-
mercially available eHiTS docking tool and can be readily
used as a predocking screening tool for large virtual screens.

From the current study we have shown significant enrich-
ments when testing computational models for AR, ER, and
PXR. While AR and ER predictions are currently already
implemented in ChemSpider, it is clear that adding predicted
values for PXR and otherNRs as they become available would
be beneficial to the community in terms of accessing an open
source of chemical structures with pregenerated descriptors.
It should be noted however that the generation of model data
for a database as large as that hosted by ChemSpider (now
well over 25 million compounds) is not a small undertaking
and consumes a significant amount of compute time, data
preparation, and handling in order to deliver the models to
the community for consumption.

The use of such ligand-based computational methods as
exemplified by LASSO in this study could also be useful
for the design and selection of chemical products that are
less hazardous to human health and the environment. This
may make them useful in green chemistry [65] (http://www
.epa.gov/gcc/pubs/about gc.html) as well as in biomedical
research. The ready accessibility of such NR binding predic-
tions from computational models like LASSO will be key in
future for both pharmaceutical and environmental applica-
tions, and databases like ChemSpider can have an important
role in providing them to the public as a predocking criteria,
as we have demonstrated in this study. This study used
published rat ER, AR and human PXR data. LASSO could
also be applied to build models for the same NRs across
multiple species, such that they could be used to estimate
interspecies variation in ligand binding.

Abbreviations

AR: Androgen receptor
DUD: Directory of useful decoys

ER: Estrogen receptor
ISPT: Interacting Surface Point Type
LASSO: Ligand Activity by Surface Similarity Order
LBD: Ligand binding domain
PXR: Pregnane X receptor
QSAR: Quantitative Structure Activity Relationship
SNNS: Stuttgart Neural Network Simulator.

Supporting Information

The supplemental files contain (I) the 23 Surface Point Types
used in LASSO with related descriptions, (II) the model
building details for PXR (III) the LASSO 6.1 surface point
types for Mibolerone, (IV) a visualization of the generalized
surface-point types fromLASSO for a histidine-like fragment
as visualized in CheVi and (V) Mibolerone displayed in
SimBioSys’ CheVi 3D desktop visualization tool, showing the
3D structure, color-coded interaction surface of themolecule,
and the surface point representation.
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