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A novel algorithm is developed based on fractional signal processing approach for parameter estimation of input nonlinear control
autoregressive (INCAR) models. The design scheme consists of parameterization of INCAR systems to obtain linear-in-parameter
models and to use fractional least mean square algorithm (FLMS) for adaptation of unknown parameter vectors. The performance
analyses of the proposed scheme are carried out with third-order Volterra least mean square (VLMS) and kernel least mean square
(KLMS) algorithms based on convergence to the true values of INCAR systems. It is found that the proposed FLMS algorithm
provides most accurate and convergent results than those of VLMS and KLMS under different scenarios and by taking the low-to-
high signal-to-noise ratio.

1. Introduction
Parameter estimation methods have been applied in many
important applications arising in applied science and engi-
neering including linear and nonlinear system identification,
signal processing, and adaptive control [1–9]. Nonlinear
systems are generally categorized into input, output, feed-
back, and hybrid, that is, combination of input and output
nonlinear systems.Many nonlinear systems aremodeledwith
Hammerstein model, a class of input nonlinear systems that
consists of static nonlinear blocks followed by linear dynam-
ical subsystems [10, 11]. Such models have been broadly used
in diverse fields such as nonlinear filtering [12], biological
systems [13], actuator saturations [14], chemical processes
[15], audiovisual processing [16], and signal analysis [17].

A lot of interest has been shown by the research com-
munity for parameter estimation of Hammerstein nonlin-
ear controlled autoregression models also known as input
nonlinear controlled auto-regression (INCAR) systems. For
instance, Ding and Chen have developed a least square based
iterative procedure and an adaptive extended version of the

least square algorithm for Hammerstein autoregressive mov-
ing average with exogenous inputs (ARMAX) system [18],
Ding et al. also present an auxiliary model using recursive
least square algorithm for Hammerstein output error systems
[19], and Fan et al. have developed the least square identifi-
cation algorithm for Hammerstein nonlinear autoregressive
with exogenous inputs (ARX) models, while Wang and Ding
have developed the extended stochastic gradient algorithm
for Hammerstein-Wiener ARMAX models. As per authors’
literature survey adaptive or recursive algorithms based on
fractional signal processing approach like fractional least
mean square algorithm (FLMS) and its normalized version
have not been exploited in this domain.

The application of fractional signal processing has been
arising in many fields of science and technology including
modeling of fractional Brownian motion [20], description of
fractional damping [21], charge estimation of lead acid bat-
tery through identification of fractional systems [22], which
differintegration [23], and Identifying a transfer function
from a frequency response[24] etc. Fundamental description,
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subject terms, importance, and history of fractional signal
process can be seen in [25, 26]. Wealth of information
about fractional signal processing is also available in special
issues of renewed journals [27, 28]. Fractional time integral
approach to image structure denoising [29] and design for
the adjustable fractional order differentiator [30] are other
illustrative recent applications of these approaches. These are
alsomotivation factors for the authors to explore applications
of fractional signal processing specially in the area of Ham-
merstein nonlinear systems.

In this paper, adaptive algorithm based on fractional least
mean square (FLMS) approach is applied for parameter esti-
mation of INCAR model to find unknown parameter vector.
The FLMS algorithm with different step size parameters is
applied to two examples of INCAR model, and performance
of the proposed scheme is analyzed for different scenarios
of signal-to-noise ratios. The optimization problem is also
adaptive with Volterra LMS and recently proposed kernel
LMS, and comparison of the results is made with FLMS
algorithm for each case of both examples.

The organization of the paper is as follows; in Section 2
the description of the problem based on INCAR model
is presented. In Section 3, proposed adaptive algorithms
are described. Results of detailed simulations are given in
Section 4 alone with necessary discussion. We conclude our
finding in the last sections along with few future research
directions in this domain.

2. Input Nonlinear Control
Autoregressive Systems

In this section, the brief description of input nonlinear
control autoregressive (INCAR) systems is presented.

Let us consider the following governing equation of
INCAR model as [18, 31]

𝑃 (𝑧) 𝑦 (𝑡) = 𝑄 (𝑧) 𝑢 (𝑡) + V (𝑡) , (1)

here 𝑦(𝑡) represents the output of system, V(𝑡) is the distur-
bance noise, 𝑢(𝑡) is output of nonlinear block and is given as
a nonlinear function of𝑚 known basis (𝑓

1
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2
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where p = [𝑝
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R𝑛 are the constants coefficient vectors. Rearranging equa-
tion (1) one has

𝑦 (𝑡) = [1 − 𝑃 (𝑧)] 𝑦 (𝑡) + 𝑄 (𝑧) 𝑢 (𝑡) + V (𝑡) (4)

Using (3) in (4) one has
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where the parameter vector 𝜃 and information vector 𝜑(𝑡) are
defined as
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Equation (5) represents the linear-in-parameters identifica-
tion model for Hammerstein control autoregressive systems
using parameterization. The detail studies of input nonlinear
systems, interested reader are referred to [32].

3. Methodologies for Parameter Estimation of
INCAR Model

In this section, brief introductory material is presented for
proposed adaptive algorithms for identification of INCAR
model given in Section 5. Three recursive algorithms are
used: optimization of the model including fractional least
mean square (FLMS), Volterra least mean square (VLMS),
and kernel least mean square (KLMS).

3.1. Fractional Least Mean Square (FLMS) Algorithm. FLMS
belongs to the class of nonlinear adaptive algorithms which
is introduced by Zahoor and Qureshi [33] in their work of
identification of autoregressive (AR) systems. Since origi-
nation of FLMS algorithm, it has been utilized immensely
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in various problems effectively such as dual-channel speech
enhancement [34, 35], acoustic echo cancellation [36], and
performance analysis of Bessel beamformers [37, 38]. Our
intention is thin study to use FLMS with a different order for
parameter estimation of INCAR systems.

The cost function for adaptive algorithm like FLMS is
given as

𝑗 (𝑛) = 𝐸 [|𝑒 (𝑛)|
2
] , (7)

where

𝑒 (𝑛) = 𝑑 (𝑛) − 𝑦 (𝑛) (8)

𝑒(𝑛) represents the difference between desired 𝑑(𝑛) and 𝑦(𝑛)
filter response, 𝑢(𝑛) is the input to the filter, and 𝜇 is the step
size parameter.

Normally, the filter weight update equation for least mean
square (LMS) algorithm is written as

𝑤
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𝜕𝑗 (𝑛)

𝜕𝑤
𝑘

, 𝑘 = 0, 1, 2, . . . ,𝑀 − 1, (9)

where𝑀 is the number of tap weight and𝑤
𝑘
(𝑛) indicates the

𝑘th filter weight at 𝑛 time index. The final weight updated
equation for LMS algorithm [39] is given in vector form as

w (𝑛 + 1) = w (𝑛) + 𝜇 [u (𝑛) 𝑒 (𝑛)] . (10)

Accordingly, for FLMS algorithm, filter weight update equa-
tion for 𝑘th tap weight is written with inclusion of fractional
term as
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where fr represents the fractional order which is generally
taken as real value between 0 and 1, and 𝜇fr is fractional step
size parameter. The final weight updated equation for 𝑘th tap
in case of FLMS algorithm is written as [33]
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The detailed derivation of (12) can be seen in [33, 40].

3.2. Third-Order Volterra Least Mean Square (VLMS) Algo-
rithm. In this section, brief description of third-order
Volterra is presented. Volterra model is widely used in many
applications of nonlinear systems including system identifica-
tion, echo cancellation, acoustic noise control, and nonlinear
channel equalization and is also used in transmission chan-
nels to compensate the nonlinear effects [41–43].

The governing mathematical relations for Volterra series
for a causal discrete time nonlinear system having input 𝑢[𝑛]

and output 𝑦[𝑛] are introduced by Schetzen, in 1980, and
given as [42, 44]
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where 𝑁 represents the degree of nonlinearity in the model,
𝑀 is the filtermemory,𝑤
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kernel. By taking 𝑁 = 3 in (13), the input-output expression
for third-order Volterra filter is given as
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here 𝑤
3
[𝑘
1
, 𝑘
2
, 𝑘
3
] is the third-order Volterra kernel of the

system. In case of symmetric kernels havingmemory𝑀, then
coefficient 𝑀(𝑀 + 1)(𝑀 + 2)/6 is required for third-order
kernel [44]. For the third degree of nonlinearity withmemory
𝑀, the volterra kernel coefficient vectorW is given as:
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The corresponding input vector U forM = 3 is written as
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The weights update equation for third-order VLMS is given
as

𝑊
(3)

𝑘+1
= 𝑊
(3)

𝑘
+ 𝜇𝑒
𝑘
𝑈
(3)

𝑘
, (17)

where 𝑒
𝑘
is the error and 𝜇 is the step size parameter. For the

detail description of VLMS, interested readers are referred to
[44].

3.3. Kernel LMS (KLMS) Algorithm. Pokharel et al. have
developed the least mean square (LMS) adaptive algorithm
in kernel feature space known in the literature as kernel
least mean square (KLMS) algorithm [45]. The basic idea
of KLMS algorithm is to transform the data from the input
space to a high-dimensional feature space. The importance,
fundamental theory, the definition ofmathematical term, and
applications can be seen in [46–49].
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The KLMS algorithm is a modified version of LMS with
introduction of kernel feature space, and its weight updating
equation is written as

𝜔 (𝑛 + 1) = 𝜔 (𝑛) + 2𝜇𝑒 (𝑛)Φ (u (𝑛)) , (18)
where 𝑒(𝑛) represents the error term similar to (8) but for
KLMS, filter output 𝑦 is computed as

𝑦 (𝑛) = ⟨𝜔 (𝑛) , Φ (u (𝑛))⟩ , (19)
here ⟨⋅, ⋅⟩ represents inner product in the kernel Hilbert space
and Φ is a mapping which transforms input vector u(n) to
high-dimensional kernel feature space such that

⟨Φ (u (𝑗)) , Φ (u (𝑛))⟩ = ⟨𝜅 (⋅, u (𝑖)) , 𝜅 (⋅, u (𝑛))⟩

= 𝜅 (u (𝑗) , u (𝑛)) ,
(20)

where Φ(u(𝑛)) = 𝜅(⋅, u(𝑛)) defines the Hilbert space asso-
ciated with the kernel and can be taken as a nonlinear
transformation from the input to feature space. Using (20) in
(19) gives

𝑦 (𝑛) = 𝜇

𝑛−1

∑

𝑗=0

𝑒 (𝑗) 𝜅 (u (𝑗) , u (𝑛)) . (21)

Equation (21) is called the KLMS algorithm and further detail
about the procedure for the derivation of the algorithm is
given in [45, 46].

In this study we will only consider most widely used
Mercer kernel which is given by translation invariant radial
basis (Gaussian) kernel as

𝜅 (u, k) = exp(−‖u − k‖2

𝜎2
) . (22)

4. Simulations and Results

In this section, results of simulations are presented for two
case studies of INCAR model using proposed FLMS, VLMS,
andKLMS algorithms.The parameter estimation is carried in
both studies by taking different levels of signal-to-noise ratio
(SNR) and with various step size 𝜇 parameters. Moreover,
FLMS operates based on different values of fractional orders.

4.1. Case Study 1. The INCAR model for this case is taken as
follows:

𝑃 (𝑧) 𝑦 (𝑡) = 𝑄 (𝑧) 𝑢 (𝑡) + V (𝑡) ,
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1
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1
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= [1.35, −0.75, 1.00, 0.50, 0.20, 1.68, 0.84, 0.336]
𝑇
.

(23)

In numerical experimentation, the input 𝑢(𝑡) is taken as
persistent excitation signal sequence with zero mean and
unit variance, and V(𝑡) is taken as a white noise sequence
with zero mean and constant variance. Before applying the
design methodology, a figure of merit or fitness function is
developed based on estimation error as

𝜀 =
‖w (𝑛) − 𝜃‖
‖𝜃‖

, (24)

wherew(𝑛) is vector of adaptive parameter for INCARmodel
based on 𝑛th iteration of the algorithm and vector for the true
or desired values is represented by 𝜃. Now the requirement
is to find weight vector w such that the value of fitness
function given in (24) approaches zero, and, consequently, the
w approaches 𝜃.

The proposed adaptive algorithms based on FLMS,
VLMS, and KLMS are applied to find the optimal weight vec-
tor w for INCAR system using sufficient large number of
iteration, that is, 𝑛 = 20000. Two types of step size variation
strategy are adopted for each algorithm. Firstly, up to 𝑛 =
1000 iterations, the larger values of step size parameter are
taken, that is, 𝜇 = 10−04, for fast convergence and for
remaining iteration smaller value of step size is used, that
is, 𝜇 = 10−08, for the stability. Secondly, initially the step
size is taken as 𝜇 = 10−03and later on 𝜇 = 10−05 for 𝑛 >
1000. The design schemes are evaluated for INCAR models
based on four different levels of signal-to-noise ratio, that is,
30 dB, 20 dB, 10 dB, and 3 dB. The iterative results of each
algorithm against the values of merit function are shown
graphically in Figures 1 and 2 for first and second strategy of
𝜇, respectively, for all four variants of SNR. It is found that for
higher values of SNRand lower values of step size, all the three
algorithms are convergent but the accuracy and convergence
of the FLMS algorithm are much better than those of VLMS
and KLMS. Moreover, with the increase in step size VLMS
algorithm diverges, while efficiency of both KLMS and FLMS
algorithms increases and remains convergent.

The design parameters of INCAR model obtained with
adaptation procedure of VLMS, KLMS, and FLMS

1
for fr =

0.5 and FLMS
2
for fr = 0.75 are listed in Tables 1, 2, 3, and

4 for SNR = 30 dB, 20 dB, 10 dB, and 3 dB, respectively, for
both step size strategies. The values of mean square error
(MSE) from true parameters of INCAR model are calculated
and its values are also tabulated in Tables 1, 2, 3, and 4
for each algorithm. The values of absolute error (AE) for
each element of the design parameter are calculated from
reference value of INCAR model and results are presented
in Figure 3 for each variant of SNR and for both step size
strategies. In order to broaden the small difference in the
values, results are plotted on semilog scale. It is seen from
the results presented that for high SNR values, like 30 dB, the
values of MSE for FLMS

1
and FLMS

2
are of the order 10−07

to 10−06 and for low SNR values like 3 dB the values of MSE
are around 10−04 to 10−05 for FLMS algorithm. Moreover, for
increased values of step size, that is, 𝜇 ∈ (10−03, 10−05), the
VLMSalgorithm is not providing the convergent resultswhile
both KLMS and FLMS give accurate results.TheMSE andAE
values of KLMS algorithm are considerably inferior to FLMS
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Figure 1: Iterative adaptation of merit function by VLMS, KLMS, and FLMS for fr = 0.5 algorithms for 𝜇 ∈ (10−04, 10−08); (a) for SNR = 30 dB,
(b) for SNR = 20 dB, (c) for SNR = 10, and (d) for SNR = 3 dB.
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Figure 2: Iterative adaptation of merit function by VLMS, KLMS, and FLMS for fr = 0.5 algorithms for 𝜇 ∈ (10−03, 10−05); (a) for SNR =
30 dB, (b) for SNR = 20 dB, (c) for SNR = 10, and (d) for SNR = 3 dB.
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Table 1: Comparison of proposed results against true values of INCAR model for 30 dB SNR.

𝜇 Method Design parameters MSE
𝑝
1

𝑝
2

𝑎
1

𝑎
2

𝑎
3

𝑞
2
𝑎
1

𝑞
2
𝑎
2

𝑞
2
𝑎
3

(10−04, 10−08)

VLMS 1.339192 −0.738613 0.783251 0.722700 0.143211 1.614600 0.948003 0.311984 1.46𝐸 − 02

KLMS 1.347467 −0.751995 1.185194 0.341222 0.235790 1.435438 1.067026 0.282885 2.19𝐸 − 02

FLMS1 1.350010 −0.749510 0.999882 0.499921 0.200304 1.679315 0.839550 0.336252 1.36𝐸 − 07

FLMS2 1.350001 −0.749505 1.000112 0.499909 0.200210 1.679258 0.839549 0.336301 1.44𝐸 − 07

(10−03, 10−05)

VLMS NaN NaN NaN NaN NaN NaN NaN NaN NaN
KLMS 1.353513 −0.746410 1.210424 0.385133 0.139330 1.317242 0.989680 0.541315 3.22𝐸 − 02

FLMS1 1.349938 −0.748981 0.997433 0.502193 0.201849 1.676682 0.839442 0.335640 3.41𝐸 − 06

FLMS2 1.349940 −0.748991 0.997454 0.502326 0.201821 1.676806 0.839434 0.335511 3.37𝐸 − 06

True values 1.350000 −0.750000 1.000000 0.500000 0.200000 1.680000 0.840000 0.33600

Table 2: Comparison of proposed results against true values of INCAR model for 20 dB SNR.

𝜇 Method Design parameters MSE
𝑝
1

𝑝
2

𝑎
1

𝑎
2

𝑎
3

𝑞
2
𝑎
1

𝑞
2
𝑎
2

𝑞
2
𝑎
3

(10−04, 10−08)

VLMS 1.347467 −0.751995 1.185194 0.341222 0.235790 1.435438 1.067026 0.282885 2.19𝐸 − 02

KLMS 1.352035 −0.745072 0.923361 0.244504 0.577959 1.563722 0.660224 0.673292 4.67𝐸 − 02

FLMS1 1.351852 −0.750247 0.998773 0.499946 0.201665 1.679453 0.841320 0.336062 1.23𝐸 − 06

FLMS2 1.351805 −0.750225 0.998823 0.499995 0.201691 1.679341 0.841338 0.336139 1.22𝐸 − 06

(10−03, 10−05)

VLMS NaN NaN NaN NaN NaN NaN NaN NaN NaN
KLMS 1.353428 −0.745015 1.141632 0.298110 0.300711 1.325873 1.163538 0.362182 3.77𝐸 − 02

FLMS1 1.345754 −0.753166 0.996107 0.496821 0.201403 1.679157 0.838343 0.338860 8.36𝐸 − 06

FLMS2 1.345854 −0.753357 0.996484 0.496661 0.201533 1.679222 0.838346 0.338957 8.30𝐸 − 06

True values 1.350000 −0.750000 1.000000 0.500000 0.200000 1.680000 0.840000 0.33600 0

Table 3: Comparison of proposed results against true values of INCAR model for 10 dB SNR.

𝜇 Method Design parameters MSE
𝑝
1

𝑝
2

𝑎
1

𝑎
2

𝑎
3

𝑞
2
𝑎
1

𝑞
2
𝑎
2

𝑞
2
𝑎
3

(10−04, 10−08)

VLMS 1.350924 −0.748145 0.772281 0.747924 0.138729 1.481738 1.066460 0.281078 2.63𝐸 − 02

KLMS 1.355082 −0.736640 0.657397 0.631919 0.529419 0.932575 1.184584 0.819516 1.44𝐸 − 01

FLMS1 1.348795 −0.753541 0.999514 0.505212 0.194240 1.687344 0.839732 0.332946 1.72𝐸 − 05

FLMS2 1.348876 −0.753596 0.999636 0.505522 0.193962 1.686987 0.839622 0.333021 1.74𝐸 − 05

(10−03, 10−05)

VLMS NaN NaN NaN NaN NaN NaN NaN NaN NaN
KLMS 1.339625 −0.751687 1.065474 0.302732 0.375939 1.634616 0.705183 0.515233 3.88𝐸 − 02

FLMS1 1.346058 −0.732482 0.977546 0.494359 0.193604 1.691872 0.857421 0.345628 1.80𝐸 − 04

FLMS2 1.346365 −0.732517 0.977584 0.494478 0.192037 1.688032 0.857678 0.347713 1.79𝐸 − 04

True values 1.350000 −0.750000 1.000000 0.500000 0.200000 1.680000 0.840000 0.33600

Table 4: Comparison of proposed results against true values of INCAR model for 3 dB SNR.

𝜇 Method Design parameters MSE
𝑝
1

𝑝
2

𝑎
1

𝑎
2

𝑎
3

𝑞
2
𝑎
1

𝑞
2
𝑎
2

𝑞
2
𝑎
3

(10−04, 10−08)

VLMS 1.349988 −0.749965 1.004847 0.536095 0.187753 1.244750 1.281211 0.230035 4.96𝐸 − 02

KLMS 1.354804 −0.739470 1.021873 0.808820 −0.040308 0.858857 1.095944 0.934113 1.56𝐸 − 01

FLMS1 1.340508 −0.735628 1.003795 0.503585 0.206571 1.684274 0.845499 0.346739 6.64𝐸 − 05

FLMS2 1.340415 −0.735617 1.003511 0.503718 0.207224 1.683801 0.845381 0.347265 6.84𝐸 − 05

(10−03, 10−05)

VLMS NaN NaN NaN NaN NaN NaN NaN NaN NaN
KLMS 1.354922 −0.759970 1.011317 0.632627 0.038110 1.601097 0.584400 0.668535 3.93𝐸 − 02

FLMS1 1.351284 −0.725432 1.008120 0.504721 0.201932 1.694754 0.805207 0.332677 2.67𝐸 − 04

FLMS2 1.351821 −0.726599 1.015656 0.504366 0.198380 1.696545 0.805365 0.331465 2.89𝐸 − 04

True values 1.350000 −0.750000 1.000000 0.500000 0.200000 1.680000 0.840000 0.33600
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(d) SNR = 3 dB, 𝜇 ∈ (10−04, 10−08)
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(e) SNR = 30 dB, 𝜇 ∈ (10−03, 10−05)
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(h) SNR = 3 dB, 𝜇 ∈ (10−03, 10−05)

Figure 3: Comparison on the basis of absolute error from true values for INCAR model in case study 1.
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Figure 4: Iterative adaptation of merit function by VLMS, KLMS, and FLMS for fr = 0.5 algorithm for 𝜇 ∈ (10−04, 10−08); (a) for SNR = 30 dB,
(b) for SNR = 20 dB, (c) for SNR = 10, and (d) for SNR = 3 dB.

algorithm. Generally, it is observed that with decrease in the
values of step size parameter, the stability of the algorithm
is observed but needs more computational budget to achieve
better results.

4.2. Case Study 2. Another INCAR system has been taken in
this case as

𝑃 (𝑧) 𝑦 (𝑡) = 𝑄 (𝑧) 𝑢 (𝑡) + V (𝑡) ,

𝑃 (𝑧) = 1 + 𝑝
1
𝑧
−1
+ 𝑝
2
𝑧
−2
= 1 + 1.35𝑧

−1
− 0.75𝑧

−2
,

𝑄 (𝑧) = 𝑞
1
𝑧
−1
+ 𝑞
2
𝑧
−2
= 𝑧
−1
+ 1.68𝑧

−2
,

𝑢 (𝑡) = 𝑓 (𝑢 (𝑡)) = 𝑎
1
𝑢 (𝑡) + 𝑎

2
𝑢
2
(𝑡) + 𝑎

3
𝑢
3
(𝑡)

= 𝑢 (𝑡) + 0.50𝑢
2
(𝑡) − 0.20𝑢

3
(𝑡) ,

𝜃 = [𝜃
1
, 𝜃
2
, 𝜃
3
, 𝜃
4
, 𝜃
5
, 𝜃
6
, 𝜃
7
, 𝜃
8
]
T

= [𝑝
1
, 𝑝
2
, 𝑎
1
, 𝑎
2
, 𝑎
3
, 𝑞
2
𝑎
1
, 𝑞
2
𝑎
2
, 𝑞
2
𝑎
3
]
T

= [1.35, −0.75, 1.00, 0.50, −0.20, 1.68, 0.84, −0.336]
𝑇
.

(25)

The numerical experimentation for this case has been per-
formed on a similar pattern as in the previous case study.
The proposed schemes based on FLMS, VLMS, and KLMS

methods are applied to find vector of design parameters w
for INCAR system using sufficient large number of iterations,
that is, 𝑛 = 20000. The same types of step size variation
strategy and variants of SNR are used for each algorithm in
this case as described in the last example.The iterative results
of each algorithm against the values of merit function are
plotted in Figures 4 and 5 for first and second strategy of 𝜇,
respectively, for all four variants of SNR.The vector for design
parameters of INCAR systems optimizedwith VLMS, KLMS,
and FLMS

1
for fr = 0.5 and FLMS

2
for fr = 0.75 are tabulated

in Tables 5, 6, 7, and 8 for SNR = 30 dB, 20 dB, 10 dB, and
3 dB, respectively, for both step size strategies. The values of
MSE and AE of the proposed schemes from true parameters
of INCARmodel are calculated and results are given in Tables
5, 6, 7, and 8 and Figure 6, respectively.

It is seen from the results presented that with high SNR
values, that is, 30 dB, the values of MSE for FLMS

1
and

FLMS
2
are around 10−06 to 10−07 while for low SNR values,

that is, 3 dB, the values of MSE are around 10−04 to 10−05.
By increasing the values of step size, that is, 𝜇 ∈ (10−03 and
10−05), the VLMS algorithm is also giving the convergent
results for this case, as well as both KLMS and FLMS provide
accurate and convergent results. The MSE and AE values
for the KLMS and VLMS algorithms for this case are also
found to be inferior from FLMS algorithm. Moreover, it is
found that with decrease in the values of step size parameter,
the stability in the algorithm is observed but needs relatively
more computations to get better results.
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Figure 5: Iterative adaptation of merit function by VLMS, KLMS, and FLMS for fr = 0.5 algorithms for 𝜇 ∈ (10−03, 10−05) (a) for SNR = 30 dB,
(b) for SNR = 20 dB, (c) for SNR = 10, and (d) for SNR = 3 dB.

Table 5: Comparison of proposed results against true values of INCAR model for 30 dB SNR.

𝜇 Method Design parameters MSE
𝑝
1

𝑝
2

𝑎
1

𝑎
2

𝑎
3

𝑞
2
𝑎
1

𝑞
2
𝑎
2

𝑞
2
𝑎
3

(10−04, 10−08)

VLMS 1.353089 −0.745850 0.939847 0.577771 −0.222600 1.428070 1.095959 −0.399576 1.79𝐸 − 02

KLMS 1.355430 −0.739217 0.694061 0.493618 0.180732 1.425650 0.558743 0.272328 9.41𝐸 − 02

FLMS1 1.349448 −0.750309 0.998908 0.499814 −0.199658 1.679808 0.840671 −0.336060 2.79𝐸 − 07

FLMS2 1.349481 −0.750319 0.999085 0.499812 −0.199776 1.680022 0.840677 −0.336151 2.22𝐸 − 07

(10−03, 10−05)

VLMS 1.347530 −0.747896 1.023045 0.527512 −0.177532 1.591528 0.921393 −0.372951 2.20𝐸 − 03

KLMS 1.351936 −0.745468 0.941774 0.405908 −0.002987 1.483573 0.737265 −0.011737 2.57𝐸 − 02

FLMS1 1.347141 −0.749222 1.002343 0.501873 −0.200487 1.679787 0.840078 −0.337043 2.39𝐸 − 06

FLMS2 1.347230 −0.749253 1.002398 0.501947 −0.200409 1.679837 0.840063 −0.337117 2.40𝐸 − 06

True values 1.350000 −0.750000 1.000000 0.500000 −0.200000 1.680000 0.840000 −0.336000

Table 6: Comparison of proposed results against true values of INCAR model for 20 dB SNR.

𝜇 Method Design parameters MSE
𝑝
1

𝑝
2

𝑎
1

𝑎
2

𝑎
3

𝑞
2
𝑎
1

𝑞
2
𝑎
2

𝑞
2
𝑎
3

(10−04, 10−08)

VLMS 1.349454 −0.744427 1.111856 0.406555 −0.186142 1.348684 1.163043 −0.409249 3.01𝐸 − 02

KLMS 1.355797 −0.738500 0.777289 0.235371 0.385983 1.384078 0.601534 0.270259 1.22𝐸 − 01

FLMS1 1.353185 −0.747387 0.997633 0.499185 −0.199222 1.681031 0.838613 −0.335203 3.43𝐸 − 06

FLMS2 1.353038 −0.747304 0.997603 0.499176 −0.199241 1.680798 0.838613 −0.335052 3.37𝐸 − 06

(10−03, 10−05)

VLMS 1.344572 −0.743960 0.921542 0.588116 −0.222840 1.580521 0.967188 −0.370809 5.22𝐸 − 03

KLMS 1.351239 −0.745972 0.971052 0.517420 −0.160944 1.518107 0.630421 0.060205 2.87𝐸 − 02

FLMS1 1.355256 −0.749658 1.000849 0.497428 −0.198812 1.683680 0.847624 −0.336714 1.36𝐸 − 05

FLMS2 1.355106 −0.749508 1.000717 0.497390 −0.198819 1.683638 0.847686 −0.336603 1.35𝐸 − 05

True values 1.350000 −0.750000 1.000000 0.500000 −0.200000 1.680000 0.840000 −0.336000
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(b) SNR = 20 dB, 𝜇 ∈ (10−04, 10−08)
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(c) SNR = 10 dB, 𝜇 ∈ (10−04, 10−08)
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(d) SNR = 3 dB, 𝜇 ∈ (10−04, 10−08)
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(e) SNR = 30 dB, 𝜇 ∈ (10−03, 10−05)
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(g) SNR = 10 dB, 𝜇 ∈ (10−03, 10−05)
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(h) SNR = 3 dB, 𝜇 ∈ (10−03, 10−05)

Figure 6: Comparison on the basis of absolute error from true values for INCAR model in case study 2.
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Table 7: Comparison of proposed results against true values of INCAR model for 10 dB SNR.

𝜇 Method Design parameters MSE
𝑝
1

𝑝
2

𝑎
1

𝑎
2

𝑎
3

𝑞
2
𝑎
1

𝑞
2
𝑎
2

𝑞
2
𝑎
3

(10−04, 10−08)

VLMS 1.351468 −0.744938 1.047010 0.486303 −0.200102 1.285267 1.225023 −0.427779 3.94𝐸 − 02

KLMS 1.356262 −0.736962 0.956832 0.185102 0.259909 1.220949 0.529005 0.495796 1.64𝐸 − 01

FLMS1 1.356850 −0.745266 1.001581 0.494077 −0.202190 1.670903 0.837135 −0.334630 2.56𝐸 − 05

FLMS2 1.356608 −0.745109 1.001695 0.493895 −0.202230 1.671239 0.837177 −0.334908 2.48𝐸 − 05

(10−03, 10−05)

VLMS 1.349757 −0.747542 0.945167 0.564599 −0.216172 1.511909 1.011739 −0.377157 8.36𝐸 − 03

KLMS 1.355306 −0.750178 1.058421 0.333366 −0.033855 1.341960 0.926972 −0.080043 3.08𝐸 − 02

FLMS1 1.350819 −0.748919 0.998394 0.491951 −0.179965 1.688782 0.847405 −0.340293 7.76𝐸 − 05

FLMS2 1.350853 −0.748833 0.997694 0.492029 −0.179449 1.688987 0.847312 −0.340771 8.13𝐸 − 05

True values 1.350000 −0.750000 1.000000 0.500000 −0.200000 1.680000 0.840000 −0.336000

Table 8: Comparison of proposed results against true values of INCAR model for 3 dB SNR.

𝜇 Method Design parameters MSE
𝑝
1

𝑝
2

𝑎
1

𝑎
2

𝑎
3

𝑞
2
𝑎
1

𝑞
2
𝑎
2

𝑞
2
𝑎
3

(10−04, 10−08)

VLMS 1.350033 −0.747776 1.151411 0.382217 −0.174445 1.266046 1.237098 −0.428614 4.69𝐸 − 02

KLMS 1.356493 −0.736365 0.748964 0.105174 0.542420 1.362022 0.609956 0.290923 1.65𝐸 − 01

FLMS1 1.352386 −0.750941 0.992991 0.491026 −0.198780 1.686456 0.849316 −0.338108 3.38𝐸 − 05

FLMS2 1.352534 −0.750836 0.993316 0.490747 −0.198439 1.686445 0.849539 −0.337726 3.44𝐸 − 05

(10−03, 10−05)

VLMS 1.349324 −0.747288 0.983402 0.533690 −0.203984 1.423701 1.105389 −0.402156 1.77𝐸 − 02

KLMS 1.350614 −0.760252 1.136970 0.030726 0.119125 1.612852 0.232501 0.372932 1.52𝐸 − 01

FLMS1 1.351001 −0.731407 0.993154 0.493843 −0.214263 1.694738 0.819746 −0.318643 1.95𝐸 − 04

FLMS2 1.351107 −0.731604 0.995350 0.492513 −0.216675 1.693931 0.819381 −0.318775 2.01𝐸 − 04

True values 1.350000 −0.750000 1.000000 0.500000 −0.200000 1.680000 0.840000 −0.336000

5. Conclusion

On the basis of the simulation and results presented in the last
section, the following conclusions are drawn.

(i) The adaptive algorithms based on fractional signal
processing approach are used effectively for param-
eter estimation of input nonlinear control autoregres-
sive (INCAR) models for both case studies.

(ii) The variation of step size strategies shows that for
smaller and relatively larger value of step size parame-
ter both order of fractional least mean square (FLMS)
algorithms provide accurate and convergent results
than those of VLMS and KLMS algorithms.

(iii) The variants of signal-to-noise ratio (SNR) in INCAR
models show that the performance of all the algo-
rithm decreases as SNR decreases from higher level
to lower level, but FLMS algorithm still achieved the
values for mean square error around 10−04 to 10−05 for
even SNR = 3 dB.

(iv) Comparative studies between FLMS, VLMS, and
KLMS algorithms for each variants of both case stud-
ies validate the correctness of the adaptive algorithms
based on FLMS algorithm.

In future, one may look for heuristic computing techniques
based on genetic algorithms, swarm intelligence, differential
evolution, genetic programming, and memetic computing

approaches, and so forth, for parameter estimation of INCAR
models.
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