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This paper is devoted to robust output feedback tracking control design for a class of switched nonlinear cascade systems.Themain
goal is to ensure the global input-to-state stable (ISS) property of the tracking error nonlinear dynamicswith respect to the unknown
structural system uncertainties and external disturbances. First, a nonlinear observer is constructed through state transformation
to reconstruct the unavailable states, where only one parameter should be determined. Then, by virtue of the nonlinear sliding
mode control (SMC), a discontinuous nonlinear output feedback controller is designed using a backstepping like design procedure
to ensure the ISS property. Finally, an example is provided to show the effectiveness of the proposed approach.

1. Introduction

Switched systems are a special class of hybrid systems in
engineering applications and have attracted much attention
from many researchers [1–8]. A switched system consists of
a family of distinct active subsystems subject to a certain
switching rule which chooses one of thembeing active during
a certain time.The research on switched systems is motivated
by two important practical considerations: (i) many real-
world systems exhibit a fundamental characteristic of switch-
ing between different system structures; (ii) multicontroller
switching provides an effective mechanism to handle highly
complex systems and/or systems with large uncertainties.
Therefore, switched systems have been a very active area
of research in the past twenty years and have motivated a
large and growing body of research work on a diverse array
of issues, including modeling [9, 10], optimization [11, 12],
stability analysis [13–17], and𝐻

∞
control [18–20].

Output feedback tracking control is a fundamentally
important issue in control field and has been extensively

studied over the last several decades. In the literature, sev-
eral approaches have been developed to handle the output
feedback control in the presence of structured or unstruc-
tured uncertainties: variable structure control approach [21],
adaptive control approach [22], output dynamics controller
with almost disturbance decoupling [23], and so forth.
Inspired by these facts, for switched systems, output feedback
tracking control is also a challenging issue for both theoretical
investigation as well as practical applications [24–26]. Such
a problem usually involves observer design [27], controller
design [28], and switching law design [29]. However, to the
best of the authors’ knowledge, the output feedback tracking
control of switched nonlinear cascade systems by designing
nonlinear state observer has not been investigated yet.

In sliding mode control (SMC), sliding mode surface
design and discontinuous reaching control law are two of
the basic control issues. A common practice in SMC is to
design a sliding mode surface according to the null space
dynamics, which must ensure a stable sliding manifold when
the system is in the sliding mode [30]. However, if there
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exist uncertainties in the null space nonlinear dynamics,
sliding mode surface design becomes extremely difficult.
Traditionally, the reaching control law is to force the system
to reach and stay on the sliding mode surface. Nevertheless,
this feature alone is no longer sufficient in the presence of
unmatched uncertainties. Due to the effect of the unmatched
uncertainties, the nonlinear dynamics may become divergent
in a period shorter than the reaching time, if the input-to-
state stable (ISS) property does not hold during the reaching
phase. Hence, ISS property should be guaranteed either in the
sliding phase or in the reaching phase.

In this paper, a class of switched nonlinear cascade sys-
tems with null space dynamics and range space dynamics are
addressed for the tracking control task. Assuming that the full
states are not available for measurement, the main objective
of the paper is to ensure the global ISS property of the
tracking error nonlinear dynamics while achieving a small
tracking error bound. The features of the proposed approach
are the following: (i) a nonlinear observer is designed for the
switched system in which only one parameter needs to be
determined; (ii) the resulting sliding manifold in the sliding
phase possesses the desired ISS property and to certain extent
the optimality through solving aHamilton-Jacoby inequality;
(iii) associated with the sliding mode surface, SMC is applied
to the second subsystem that achieves the desired tracking.

Notations.We use standard notations throughout this paper.
𝜆max(𝐴) and 𝜆min(𝐴) stand for the maximum and minimum
eigenvalues of a symmetric matrix 𝐴, respectively. {𝐴}

𝑛×𝑛

denotes the first 𝑛 rows and 𝑛 columns in 𝐴, and {𝐴}
𝑚×𝑛

denotes the last 𝑚 rows and 𝑛 columns in 𝐴. 𝑅+ denotes
the set of nonnegative real numbers, 𝑅𝑛 denotes an 𝑛-
dimension real vector space, ‖ ⋅ ‖ is the Euclidean norm
and induced matrix norm, and 𝐿

∞
[0,∞) is the space of

uniformly bounded functions on [0,∞).𝐷
𝑥
𝑓 = 𝜕𝑓(𝑥, 𝑦)/𝜕𝑥

and𝐷
𝑦
𝑓 = 𝜕𝑓(𝑥, 𝑦)/𝜕𝑦 are row vectors, and 𝜎(⋅) denotes the

largest singular value of a matrix.

2. System Description and Problem Statement

This paper is concerned with the following switched nonlin-
ear cascade system described by
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1
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1,𝜎(𝑡)
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1
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𝜎(𝑡)

+ Δ𝐵
2,𝜎(𝑡)
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(𝑥, 𝑡) 𝜔
2
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1
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(1)

where 𝑥 = [𝑥
𝑇

1
, 𝑥
𝑇

2
]
𝑇 is a physically measurable state vector,

𝑥
1
∈ 𝑅
𝑛 is the null space dynamics, 𝑥

2
∈ 𝑅
𝑚 is the range

space dynamics, and 𝜔
1

∈ 𝑅
ℎ
1 and 𝜔

2
∈ 𝑅
ℎ
2 are the

external disturbance. 𝜎 : [0,∞) → 𝑀 = {1, 2, . . . , 𝑚} is
the right continuous piecewise constant switching signal to
be designed; 𝑢

𝑖
∈ 𝑅
𝑚 stands for the control input of the

𝑖th subsystem, the mappings 𝑓
1,𝑖
(𝑥
1
, 𝑡) ∈ 𝑅

𝑛, 𝑓
2,𝑖
(𝑥, 𝑡) ∈

𝑅
𝑚, 𝐵
1,𝑖
(𝑡) ∈ 𝑅

𝑛×𝑚, 𝐵
2,𝑖
(𝑡) ∈ 𝑅

𝑚×𝑚, 𝐻
1,𝑖
(𝑥
1
, 𝑡) ∈ 𝑅

𝑛×ℎ
1 , and

𝐻
2,𝑖
(𝑥, 𝑡) ∈ 𝑅

𝑚×ℎ
2 are known and smooth with respect to 𝑥

and continuouswith respect to time 𝑡, andΔ𝐵
2,𝑖
∈ 𝑅
𝑚, 𝑖 ∈ 𝑀,

denote the uncertainties in the control input. The relation
𝑚 ≤ 𝑛 holds for the system (1).

Corresponding to the switching signal 𝜎(𝑡), we have the
switching sequence

∑ = {(𝑥
𝑇

1
(𝑡
0
) , 𝑥
𝑇

2
(𝑡
0
))
𝑇

; (𝑖
0
, 𝑡
0
) , (𝑖
1
, 𝑡
1
) , . . . , (𝑖

𝑘
, 𝑡
𝑘
) , . . . ,

| 𝑖
𝑘
∈ 𝑀, 𝑘 = 0, 1, . . . } ,

(2)

which means that the 𝑖
𝑘
th subsystems are active when 𝑡 ∈

[𝑡
𝑘
, 𝑡
𝑘+1

). In addition, we assume that the state of the system
(1) does not jump at the switching instants; that is, the
trajectory 𝑥(𝑡) is everywhere continuous.

In this paper, the following assumptions are adopted to
develop the main results.

Assumption 1. There exist two positive constants 𝑏
1
and 𝑏

2

such that for all 𝑥
1
∈ 𝑅
𝑛, 𝑡 ≥ 0,

0 < 𝑏
2

1
𝐼
𝑚
≤ 𝐵
𝑇

1,𝑖
(𝑡) 𝐵
1,𝑖
(𝑡) ≤ 𝑏

2

2
𝐼
𝑚
, 𝑖 ∈ 𝑀, (3)

where 𝐼
𝑚
is the identity matrix. Moreover, 𝐵

2,𝑖
(𝑡), 𝑖 ∈ 𝑀 are

assumed to be invertible.

Assumption 2. The uncertainties 𝜔
1
(𝑡), 𝜔
2
(𝑡) and 𝜂

𝑖
(𝑥, 𝑡), 𝑖 ∈

𝑀 in (1) are bounded as

𝜔1 (𝑡)
 ≤ 𝑙1,

𝜔2 (𝑡)
 ≤ 𝑙2,

Δ𝐵2,𝑖 (𝑥, 𝑡)
 ≤ 𝑙𝑏,

𝑖 ∈ 𝑀,

(4)

where 𝑙
1
, 𝑙
2
, and 𝑙

𝑏
are known positive constants.

In this paper, the output of the system (1) is required to
track a given reference model: 𝑦 ⇒ 𝑦

𝑑
= 𝑥
1𝑟
; that is, the 𝑥

1

subpart is required to track the desired reference model

�̇�
1𝑟
= 𝑓
𝑟
(𝑥
1𝑟
, 𝑟 (𝑡) , 𝑡) , (5)

where 𝑟(𝑡) is a smooth reference input. Define the tracking
error as 𝑧

1
= 𝑥
1
− 𝑥
1𝑟
. Then, the error dynamics of the 𝑥

1
-

subpart can be transformed into
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(6)

Assumption 3. There exists a smooth function 𝜓(⋅) such that
the following matching condition holds:

𝑓
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1
, 𝑡) − 𝑓

𝑟
(𝑥
1𝑟
, 𝑟 (𝑡) , 𝑡)
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1
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1𝑟
, 𝑟 (𝑡) , 𝑡) , 𝑖 ∈ 𝑀,

(7)

where ̇𝜉 = 𝑔
1,𝑖
(𝜉, 𝑡) is asymptotically stable.



Mathematical Problems in Engineering 3

According to Assumption 3, the error dynamics (6) and
system (1) with the tracking objective (5) can be rewritten as
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1
.

(8)

Definition 4 (input-to-state stable (ISS) [31, 32]). Consider a
nonlinear dynamical system of the form

�̇� = 𝑓 (𝑥, 𝑢) , (9)

where𝑥 and 𝑢 are the states and the inputs of (9), respectively.
The system (9) is said to be locally input-to-state stable if there
exist a class𝐾𝐿 function𝛽, a class𝐾 function 𝛾, and constants
𝑘
1
, 𝑘
2
∈ 𝑅
+ such that

‖𝑥 (𝑡)‖ ≤ 𝛽 (
𝑥0

 , 𝑡) + 𝛾 (
𝑢𝑇 (⋅)

𝐿
∞

) ,

∀𝑡 ≥ 0, 0 ≤ 𝑇 ≤ 𝑡,

(10)

for all 𝑥
0
∈ 𝐷 and 𝑢 ∈ 𝐷

𝑢
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0
‖ < 𝑘

1
and
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< 𝑘
2
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input-to-state stable or globally ISS if 𝐷 = 𝑅
𝑛, 𝐷
𝑢
= 𝑅
𝑚, and

(10) is satisfied for any initial state and any bounded input 𝑢.

Control Objective. Under Assumptions 1–3, design a nonlin-
ear observer for the system (1). Based on the observer, design
a controller 𝑢

𝜎(𝑡)
and a switching law 𝜎(𝑡) such that

(i) the tracking error norm ‖𝑧
1
(𝑡)‖ in (8) tends to a ball

𝐵
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in finite time, where the ball 𝐵

𝑠
is defined as
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1
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𝑧1 (𝑡)
 ≤ 𝑠} , (11)

where 𝑠 is a positive constant;
(ii) the closed-loop system (8) possesses ISS property

with respect to the disturbances 𝜔
𝑖

= [𝜔
1
, 𝜔
2
,

Δ𝐵
2,𝑖
]
𝑇, 𝑖 ∈ 𝑀.

3. Nonlinear Observer Design

This section is devoted to the design of a nonlinear observer
for the system (1). Motivated by the work in [32, 33], a non-
linear observer is constructed through a state transformation
which converts the system (1) into a new form such that the
observer gain can be designed in a straightforward manner.

First, the system in (1) can be rewritten as the following:
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Define the transformation matrices 𝑇
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𝜃
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can be constructed as

̇̂
𝜁 = 𝐴𝜁 + 𝑇

𝑖
[𝑓
𝑖
(𝑇
+

𝑖
𝜁, 𝑡) + 𝑘

𝑖
(𝑢
𝑖
, 𝑡)]

+ �̇�
𝑖
𝑇
+

𝑖
𝜁 + 𝜃Ξ

−1

𝜃
𝑃
−1

𝐶
𝑇

(𝑦 − 𝐶𝜁) ,

(17)

where 𝑃 is the symmetric positive definite solution of the
following algebraic Lyapunov equation:

𝑃 + 𝐴
𝑇

𝑃 + 𝑃𝐴 − 𝐶
𝑇

𝐶 = 0. (18)



4 Mathematical Problems in Engineering

Theorem 5. Assume that the system in (12) satisfies Assump-
tions 1-2.Then, under arbitrary switchings, the estimation error
of the states has the following property:
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𝑃
−1

𝐶
𝑇

(𝑦 − 𝐶𝜁)

= 𝜃Ξ
−1

𝜃
(𝐴 − 𝑃

−1

𝐶
𝑇

𝐶)Ξ
𝜃
𝑒
𝜁

+ 𝑇
𝑖
[𝑓
𝑖
(𝑇
+

𝑖
𝜁, 𝑡) − 𝑓

𝑖
(𝑇
+

𝑖
𝜁, 𝑡)] + �̇�

𝑖
𝑇
+

𝑖
𝑒
𝜁

+ 𝑇
𝑖
𝐻
𝑖
(𝑇
+

𝑖
𝜁, 𝑡) 𝜔

𝑖
(𝑇
+

𝑖
𝜁, 𝑡) .

(20)

Consider a transformation on the error as 𝑒
𝜁
(𝑡) = Ξ

𝜃
𝑒
𝜁
(𝑡).

Then, we have

̇𝑒
𝜁
= 𝜃 (𝐴 − 𝑃

−1

𝐶
𝑇

𝐶) 𝑒
𝜁

+ Ξ
𝜃
𝑇
𝑖
[𝑓
𝑖
(𝑇
+

𝑖
𝜁, 𝑡) − 𝑓

𝑖
(𝑇
+

𝑖
𝜁, 𝑡)]

+ Ξ
𝜃
�̇�
𝑖
𝑇
+

𝑖
Ξ
−1

𝜃
𝑒
𝜁
+ Ξ
𝜃
𝑇
𝑖
𝐻
𝑖
(𝑇
+

𝑖
𝜁, 𝑡) 𝜔

𝑖
(𝑇
+

𝑖
𝜁, 𝑡) .

(21)

Choosing 𝑉
1
= (1/2)𝑒

𝜁
𝑃𝑒
𝜁
(𝑡), where 𝑃 is the solution of

(18), we obtain

�̇�
1
= − 𝜃𝑉

1
−
𝜃

2
𝑒
𝑇

𝜁
𝐶
𝑇

𝐶𝑒
𝜁

+ 𝑒
𝑇

𝜁
𝑃Ξ
𝜃
𝑇
𝑖
[𝑓
𝑖
(𝑇
+

𝑖
𝜁, 𝑡) − 𝑓

𝑖
(𝑇
+

𝑖
𝜁, 𝑡)]

+ 𝑒
𝑇

𝜁
𝑃Ξ
𝜃
𝑇
𝑖
𝐻
𝑖
(𝑇
+

𝑖
𝜁, 𝑡) 𝜔

𝑖
(𝑇
+

𝑖
𝜁, 𝑡)

+ 𝑒
𝑇

𝜁
𝑃Ξ
𝜃
�̇�
𝑖
𝑇
+

𝑖
Ξ
−1

𝜃
𝑒
𝜁

= − 𝜃𝑉
1
+ 𝑒
𝑇

𝜁
𝑃Ξ
𝜃
𝑇
𝑖
[𝑓
𝑖
(𝑇
+

𝑖
𝜁, 𝑡) − 𝑓

𝑖
(𝑇
+

𝑖
𝜁, 𝑡)]

+ 𝑒
𝑇

𝜁
𝑃Ξ
𝜃
𝑇
𝑖
𝐻
𝑖
(𝑇
+

𝑖
𝜁, 𝑡) 𝜔

𝑖
(𝑇
+

𝑖
𝜁, 𝑡)

+ 𝑒
𝑇

𝜁
𝑃Ξ
𝜃
�̇�
𝑖
𝑇
+

𝑖
Ξ
−1

𝜃
𝑒
𝜁
.

(22)

For any 𝜃 > 1, we can infer that ‖Ξ
𝜃
𝑇
𝑖
[𝑓
𝑖
(𝑇
+

𝑖
𝜁, 𝑡) −

𝑓
𝑖
(𝑇
+

𝑖
𝜁, 𝑡)]‖ ≤ 𝑏

𝑓
‖𝑒
𝜁
‖, ‖Ξ
𝜃
𝑇
𝑖
𝐻
𝑖
(𝑇
+

𝑖
𝜁, 𝑡)‖ ≤ 𝑏

ℎ
, ‖𝜔
𝑖
(𝑇
+

𝑖
𝜁, 𝑡)‖ ≤

𝜀, and ‖Ξ
𝜃
�̇�
𝑖
𝑇
+

𝑖
Ξ
−1

𝜃
‖ ≤ 𝑏
𝑡
, where 𝑏

𝑓
, 𝑏
ℎ
, and 𝑏

𝑡
do not depend

on 𝜃. Then, (16) is transformed into

�̇�
1
≤ − 𝜃𝑉

1
+ 𝜆max (𝑃) (𝑏𝑓 + 𝑏𝑡)


𝑒
𝜁



2

+ 𝜆max (𝑃) 𝑏ℎ𝜀

𝑒
𝜁



≤ − (𝜃 − 𝑐
1
) 𝑉
1
+ 𝑐
2
𝜀√𝑉
1
,

(23)

where 𝑐
1

= 2(𝜆max(𝑃)/𝜆min(𝑃))(𝑏𝑓 + 𝑏
𝑡
) and 𝑐

2
=

𝜆max(𝑃)𝑏ℎ(√2/√𝜆min(𝑃)). If 𝜃 > max{1 + 𝑐
1
} is selected, then

(23) becomes

𝑑√𝑉
1

𝑑𝑡
≤ −

(𝜃 − 𝑐
1
)

2
√𝑉
1
+
𝑐
2
𝜀

2
,

⇒ √𝑉
1
≤ 𝑒
−((𝜃−𝑐

1
)/2)𝑡

√𝑉
1
(0)

+
𝑐
2
𝜀

𝜃 − 𝑐
1

[1 − 𝑒
−((𝜃−𝑐

1
)/2)𝑡

] ,

⇒

𝑒
𝜁


≤ √

𝜆max (𝑃)

𝜆min (𝑃)
𝑒
−((𝜃−𝑐

1
)/2)𝑡


𝑒
𝜁
(0)


+
𝑐
2
𝜀

(𝜃 − 𝑐
1
)√𝜆min (𝑃)

.

(24)

Using ‖𝑒
𝜁
(𝑡)‖ ≤ ‖𝑒

𝜁
(𝑡)‖ ≤ 𝜃‖𝑒

𝜁
(𝑡)‖, (24) becomes


𝑒
𝜁


≤ 𝜃√

𝜆max (𝑃)

𝜆min (𝑃)
𝑒
−((𝜃−𝑐

1
)/2)𝑡


𝑒
𝜁
(0)

+

𝜃𝑐
2
𝜀

(𝜃 − 𝑐
1
)√𝜆min (𝑃)

≤ 𝑞
1

𝜃


𝑒
𝜁
(0)

+ 𝛽
1

0
𝜀,

(25)

where 𝑞1
𝜃
= 𝜃√𝜆max(𝑃)/𝜆min(𝑃)𝑒

−((𝜃−𝑐
1
)/2)𝑡

‖𝑒
𝜁
(0)‖ and 𝛽1

0
=

𝜃𝑐
2
/(𝜃 − 𝑐

1
)√𝜆min(𝑃). Thus, ‖𝑒

𝜁
(𝑡)‖ = ‖𝜁(𝑡) − 𝜁(𝑡)‖ ≤

𝑞
1

𝜃
‖𝑒
𝜁
(0)‖ + 𝛽

1

0
𝜀. Furthermore, from Assumption 1, we have

‖𝑇
+

𝑖
(𝑡)‖ ≤ 𝜋

1
and ‖𝑇

𝑖
(𝑡)‖ ≤ 𝜋

2
, where 𝜋

1
and 𝜋

2
are constants.

Based on 𝜁(𝑡) = 𝑇(𝑡)𝑥(𝑡) and 𝜁(𝑡) = 𝑇(𝑡)𝑥(𝑡), we get

𝑒𝑥 (𝑡)
 = ‖𝑥 (𝑡) − 𝑥 (𝑡)‖ =


𝑇
+

𝑖
𝑒
𝜁
(𝑡)


≤ 𝜋
1
𝑞
1

𝜃
𝜋
2

𝑒𝑥 (0)
 + 𝜋1𝛽

1

0
𝜒 = 𝑞
𝜃

𝑒𝑥 (0)
 + 𝛽0𝜒

(26)

with 𝑞
𝜃
= 𝜋
1
𝑞
1

𝜃
𝜋
2
, 𝛽
0
= 𝜋
1
𝛽
1

0
. This completes the proof.
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From (16) and ̇̂
𝜁(𝑡) = 𝑇

𝑖
(𝑡) ̇̂𝑥(𝑡) + �̇�

𝑖
(𝑡)𝑥, the observer to

the original coordinate is

̇̂𝑥 (𝑡) = 𝑇
+

𝑖
(𝑡) [

̇̂
𝜁 (𝑡) − �̇�

𝑖
(𝑡) 𝑥]

= 𝑇
+

𝑖
(𝑡) {𝐴𝜁 + 𝑇

𝑖
[𝑓
𝑖
(𝑇
+

𝑖
𝜁, 𝑡) + 𝑘

𝑖
(𝑢
𝑖
, 𝑡)]

+ �̇�
𝑖
𝑇
+

𝑖
𝜁 + 𝜃Ξ

−1

𝜃
𝑃
−1

𝐶
𝑇

(𝑦 − 𝐶𝜁)

−�̇�
𝑖
(𝑡) 𝑥}

= 𝑇
+

𝑖
(𝑡) 𝐴𝑇

𝑖
𝑥 + 𝑓
𝑖
(𝑥, 𝑡) + 𝑘

𝑖
(𝑢
𝑖
, 𝑡)

+ 𝜃𝑇
+

𝑖
(𝑡) Ξ
−1

𝜃
𝑃
−1

𝐶
𝑇

(𝑦 − 𝐶𝑥)

= 𝐵
𝑖
(𝑡) 𝑥 + 𝑓

𝑖
(𝑥, 𝑡) + 𝑘

𝑖
(𝑢
𝑖
, 𝑡)

+ 𝜃𝑇
+

𝑖
(𝑡) Ξ
−1

𝜃
𝑃
−1

𝐶
𝑇

(𝑦 − 𝐶𝑥) ,

(27)

𝑦 = 𝑥
1
. (28)

Hence, the estimation error dynamics in the 𝑥-coordinate
with 𝑒

𝑥
(𝑡) = 𝑥(𝑡) − 𝑥(𝑡) becomes

̇𝑒
𝑥
= 𝐵
𝑖
(𝑡) 𝑒
𝑥
+ 𝑓
𝑖
(𝑥, 𝑡) − 𝑓

𝑖
(𝑥, 𝑡)

+ 𝐻
𝑖
(𝑥, 𝑡) 𝜔

𝑖
(𝑥, 𝑡) − 𝜃𝑇

+

𝑖
(𝑡) Ξ
−1

𝜃
𝑃
−1

𝐶
𝑇

𝐶𝑒
𝑥
.

(29)

4. Controller Design and Stability Analysis

Before the controller design, we would like to rewrite the
observer dynamics in (27) as

̇̂𝑥
1
= 𝑓
1,𝑖
(𝑥
1
, 𝑡) + 𝐵

1,𝑖
(𝑡) 𝑥
2
+ Φ
𝑛,𝑖
,

̇̂𝑥
2
= 𝑓
2,𝑖
(𝑥, 𝑡) + 𝐵

2,𝑖
(𝑡) 𝑢
𝑖
+ Φ
𝑚,𝑖
,

(30)

where

Φ
𝑛,𝑖
= {𝜃𝑇

+

𝑖
(𝑡) Ξ
−1

𝜃
𝑃
−1

𝐶
𝑇

}
𝑛×𝑛

(𝑦 − 𝐶𝑥)

= 𝐹
𝑛,𝑖
(𝑦 − 𝐶𝑥) = 𝐹

𝑛,𝑖
𝐶𝑒
𝜁

= 𝐹
𝑛,𝑖
𝐶Ξ
−1

𝜃
𝑒
𝜁
= 𝐹
𝑛,𝑖
𝑒
𝜁
,

Φ
𝑚,𝑖

= {𝜃𝑇
+

𝑖
(𝑡) Ξ
−1

𝜃
𝑃
−1

𝐶
𝑇

}
𝑚×𝑛

(𝑦 − 𝐶𝑥)

= 𝐹
𝑚,𝑖
(𝑦 − 𝐶𝑥) = 𝐹

𝑚,𝑖
𝐶𝑒
𝜁

= 𝐹
𝑚,𝑖
𝐶Ξ
−1

𝜃
𝑒
𝜁
= 𝐹
𝑚,𝑖
𝑒
𝜁
.

(31)

Define �̂�
1
= 𝑥
1
− 𝑥
1𝑟
. In terms of the observer dynamics

(22) and the desired trajectory (4), we have the following
error dynamics:

̇̂𝑧
1
= 𝑔
1,𝑖
(�̂�
1
, 𝑡)

+ 𝐵
1,𝑖
(𝑡) [𝑥
2
+ 𝜓 (𝑥

1
, 𝑥
1𝑟
, 𝑟 (𝑡) , 𝑡)] + Φ

𝑛,𝑖
,

(32)

̇̂𝑥
2
= 𝑓
2,𝑖
(𝑥, 𝑡) + 𝐵

2,𝑖
(𝑡) 𝑢
𝑖
+ Φ
𝑚,𝑖
. (33)

In what follows, we first choose a slidingmode surface for
the error dynamics of the null space dynamics �̂�

1
. Second, we

design a controller for the augmented system in (21) and (32)
such that ISS property is achieved.

Theorem6. If there exist positive definite, radially unbounded,
and smooth functions 𝑉

2,𝑖
(�̂�
1
, 𝑡) and functions 𝛽

𝑖𝑗
(�̂�
1
, 𝑡) ≤

0, 𝑖, 𝑗 = 1, . . . , 𝑚 such that

𝐷
𝑡
𝑉
2,𝑖
+ (𝐷
�̂�
1

𝑉
2,𝑖
) 𝑔
1

+
1

4𝛾
2

1

(𝐷
�̂�
1

𝑉
2,𝑖
) 𝐹
𝑛,𝑖
𝐹
𝑇

𝑛,𝑖
(𝐷
�̂�
1

𝑉
2,𝑖
)
𝑇

+ �̂�
𝑇

1
�̂�
1
+

𝑚

∑

𝑗=1

𝛽
𝑖𝑗
(𝑉
2,𝑗
− 𝑉
2,𝑖
) ≤ 0,

(34)

then, under the nonlinear sliding mode

𝑆 = 𝑥
2
+ 𝜓 = 0 (35)

and the switching law

𝜎 (𝑡) = min {𝑖 | 𝑖 = max
𝑖∈𝑀

{𝑉
1,𝑖
(𝑒
1
, 𝑡)}} , (36)

the tracking error norm ‖𝑧
1
(𝑡)‖ tends to a ball 𝐵

𝑠
in finite time,

where the ball 𝐵
𝑠
is defined as

𝐵
𝑠
= {𝑧
1
(𝑡) :

𝑧1 (𝑡)
 ≤ 𝛾
2

3
𝜀
2

= 𝑠} , (37)

where 𝛾
3
and 𝜀 are positive constants.

Proof. First, we now define the following piecewise Lyapunov
function candidate:

𝑉
2
(𝑒
𝜁
, �̂�
1
, 𝑡) = 𝑉

1
(𝑒
𝜁
) + 𝑉
2,𝜎
(�̂�
1
, 𝑡)

=
1

2
𝑒
𝜁
𝑃𝑒
𝜁
(𝑡) + 𝑉

2,𝜎
(�̂�
1
, 𝑡) ,

(38)

where 𝑉
2,𝜎
(�̂�
1
, 𝑡) is switched among the solution 𝑉

2,𝑖
(�̂�
1
, 𝑡)’s

of (34) in accordance with the piecewise constant switching
signal 𝜎.
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Using the sliding mode surface constructed in (35) and
under the switching law (36), the derivative of 𝑉

2,𝑖
(�̂�
1
, 𝑡) is

�̇�
2,𝑖
= 𝐷
𝑡
𝑉
2,𝑖
+ 𝐷
�̂�
1

𝑉
2,𝑖

× {𝑔
1,𝑖
+ 𝐵
1,𝑖
(𝑡)

× [𝑥
2
+ 𝜓 (𝑥

1
, 𝑥
1𝑟
, 𝑟 (𝑡) , 𝑡)] + Φ

𝑛,𝑖
}

= 𝐷
𝑡
𝑉
2,𝑖
+ 𝐷
�̂�
1

𝑉
2,𝑖
𝑔
1,𝑖
+ 𝐷
�̂�
1

𝑉
2,𝑖
𝐹
𝑛,𝑖
𝑒
𝜁

= 𝐷
𝑡
𝑉
𝑖
+ 𝐷
𝑒
1

𝑉
𝑖
𝑔
1,𝑖
+ 𝛾
2

1
𝑒
𝑇

𝜁
𝑒
𝜁

+
1

4𝛾
2

1

(𝐷
�̂�
1

𝑉
2,𝑖
) 𝐹
𝑛,𝑖
𝐹
𝑇

𝑛,𝑖
(𝐷
�̂�
1

𝑉
2,𝑖
)
𝑇

−



1

2𝛾
1

𝐹
𝑇

𝑛,𝑖
(𝐷
�̂�
1

𝑉
2,𝑖
)
𝑇

− 𝛾
1
𝑒
𝜁



2

≤ 𝐷
𝑡
𝑉
𝑖
+ 𝐷
𝑒
1

𝑉
𝑖
𝑔
1,𝑖
+ 𝛾
2

1
𝜔
2

1
𝜔
1

+
1

4𝛾
2

1

(𝐷
�̂�
1

𝑉
2,𝑖
) 𝐹
𝑛,𝑖
𝐹
𝑇

𝑛,𝑖
(𝐷
�̂�
1

𝑉
2,𝑖
)
𝑇

.

(39)

If there exist solutions of𝑉
2,𝑖
(⋅) such that the inequality in

(34) is satisfied, (39) becomes

�̇�
𝑖
≤ −�̂�
𝑇

1
�̂�
1
+ 𝛾
2

1
𝑒
𝑇

𝜁
𝑒
𝜁
. (40)

From (22) and (40), we have

̇
𝑉
2
(𝑒
𝜁
, �̂�
1
, 𝑡)

= �̇�
1
(𝑒
𝜁
) + �̇�
2,𝑖
(�̂�
1
, 𝑡)

≤ −𝜃𝑒
𝑇

𝜁
𝑃𝑒
𝜁

+ 𝑒
𝑇

𝜁
𝑃Ξ
𝜃
𝑇
𝑖
[𝑓
𝑖
(𝑇
+

𝑖
𝜁, 𝑡) − 𝑓

𝑖
(𝑇
+

𝑖
𝜁, 𝑡)]

+ 𝑒
𝑇

𝜁
𝑃Ξ
𝜃
𝑇
𝑖
𝐻
𝑖
(𝑇
+

𝑖
𝜁, 𝑡) 𝜔

𝑖
(𝑇
+

𝑖
𝜁, 𝑡)

+ 𝑒
𝑇

𝜁
𝑃Ξ
𝜃
�̇�
𝑖
𝑇
+

𝑖
Ξ
−1

𝜃
𝑒
𝜁
− �̂�
𝑇

1
�̂�
1
+ 𝛾
2

1
𝑒
𝑇

𝜁
𝑒
𝜁

≤ −𝜃𝜆min (𝑃)

𝑒
𝜁



2

+ 𝜆max (𝑃) (𝑏𝑓 + 𝑏𝑡)

𝑒
𝜁



2

+ 𝑒
𝑇

𝜁
𝑃Ξ
𝜃
𝑇
𝑖
𝐻
𝑖
(𝑇
+

𝑖
𝜁, 𝑡) 𝜔

𝑖
(𝑇
+

𝑖
𝜁, 𝑡)

− �̂�
𝑇

1
�̂�
1
+ 𝛾
2

1
𝑒
𝑇

𝜁
𝑒
𝜁

≤ −[𝜃𝜆min (𝑃)

𝑒
𝜁



2

− 𝛾
2

1
− 𝜆max (𝑃) (𝑏𝑓 + 𝑏𝑡)

−
1

4𝛾
2

2

𝜆max(𝑃)
2

𝑏
2

ℎ
]

𝑒
𝜁



2

− �̂�
𝑇

1
�̂�
1
+ 𝛾
2

2

𝜔𝑖 (𝑇
+

𝑖
𝜁, 𝑡)



2

.

(41)

When 𝜃 is selected to be

𝜃𝜆min (𝑃)

𝑒
𝜁



2

− 𝛾
2

1
− 𝜆max (𝑃) (𝑏𝑓 + 𝑏𝑡)

−
1

4𝛾
2

2

𝜆max(𝑃)
2

𝑏
2

ℎ
≥ 0,

(42)

then the inequality (41) becomes

̇
𝑉
2
(𝑒
𝜁
, �̂�
1
, 𝑡) ≤ −�̂�

𝑇

1
�̂�
1
+ 𝛾
2

2

𝜔𝑖 (𝑇
+

𝑖
𝜁, 𝑡)



2

. (43)

Using 𝑒
𝑥,1
(𝑡) = 𝑥

1
(𝑡) − 𝑥

1
(𝑡) = 𝑧

1
(𝑡) − �̂�

1
(𝑡), ‖�̂�

1
(𝑡)‖
2

≥

‖𝑧
1
(𝑡)‖
2

− ‖𝑒
𝑥,1
(𝑡)‖
2, and 𝑒

𝑥,1
(𝑡) = 𝑒

𝜁,1
(𝑡) and according to

𝑒
𝑥
(𝑡) = 𝑇

+

𝑖
Ξ
−1

𝜃
𝑒(𝑡), (43) becomes

̇
𝑉
2
(𝑒
𝜁
, �̂�
1
, 𝑡)

≤ −𝑧
𝑇

1
𝑧
1
+
𝑒𝑥,1 (𝑡)



2

+ 𝛾
2

2

𝜔𝑖 (𝑇
+

𝑖
𝜁, 𝑡)



2

= −𝑧
𝑇

1
𝑧
1
+

𝑒
𝜁,1
(𝑡)


2

+ 𝛾
2

2

𝜔𝑖 (𝑇
+

𝑖
𝜁, 𝑡)



2

≤ −𝑧
𝑇

1
𝑧
1
+

𝑒
𝜁
(𝑡)


2

+ 𝛾
2

2

𝜔𝑖 (𝑇
+

𝑖
𝜁, 𝑡)



2

.

(44)

From (17), 𝑒
𝜁
is bounded as


𝑒
𝜁


≤

𝜆max (𝑃) 𝑏ℎ

[𝜆min (𝑃) 𝜃 − 𝜆max (𝑃) (𝑏𝑓 + 𝑏𝑡)]

𝜔𝑖 (𝑇
+

𝑖
𝜁, 𝑡)

 ,

(45)

where 𝜆min(𝑃)𝜃 − 𝜆max(𝑃)(𝑏𝑓 + 𝑏
𝑡
) > 0 according to (42).

Hence, (44) becomes

̇
𝑉
2
(𝑒
𝜁
, �̂�
1
, 𝑡) ≤ −𝑧

𝑇

1
𝑧
1
+ 𝛾
2

3

𝜔𝑖 (𝑇
+

𝑖
𝜁, 𝑡)



2

≤ −𝑧
𝑇

1
𝑧
1
+ 𝛾
2

3
𝜀
2

,

(46)

where 𝛾
3
= √𝛾

2

2
+ 𝜒2 and 𝜒 = 𝑏

ℎ
/((𝜆min(𝑃)/𝜆max(𝑃)) −

𝜆max(𝑃)(𝑏𝑓 + 𝑏
𝑡
)). Note that lim

𝜃→∞
𝜒 = 0. Equation (47)

shows that the tracking error norm ‖𝑧
1
(𝑡)‖ in (8) tends to a

ball in finite time, which is defined by

𝐵
𝑠
= {𝑧
1
(𝑡) :

𝑧1 (𝑡)
 ≤ 𝛾
2

3
𝜀
2

= 𝑠} , (47)

where 𝐵
𝑠
= {𝑧
1
(𝑡) : ‖𝑧

1
(𝑡)‖ ≤ 𝛾

2

3
𝜀
2

= 𝑠}, 𝜀 = √𝑙2
1
+ 𝑙
2

2
+ 𝑙2
𝜂
.

Remark 7. In the nonlinear uncertain system (32), if 𝑔
1,𝑖
(�̂�
1
, 𝑡)

can be expressed as𝑊
1,𝑖
(�̂�
1
, 𝑡)�̂�
1
, when𝑊

1,𝑖
(�̂�
1
, 𝑡) is a matrix-

valued smooth function, then the HJI inequality (34) can be
simplified into the following differential Riccati inequality:

1

2
�̇�
𝑖
+
1

2
(𝐸
𝑖
𝑊
1,𝑖
+𝑊
𝑇

1,𝑖
𝐸
𝑖
) +

1

4𝛾
2

1

𝐸
𝑖
𝐹
𝑛,𝑖
𝐹
𝑇

𝑛,𝑖
𝐸
𝑖

+ 𝐼
𝑛×𝑛

+

𝑚

∑

𝑗=1

𝛽
𝑖𝑗
(𝐸
𝑗
− 𝐸
𝑖
) ≤ 0,

(48)

where 𝐸
𝑖
(�̂�
1
, 𝑡)�̂�
1
, 𝑖 ∈ 𝑀, are symmetric positive definite

smooth matrices.
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Remark 8. In the observer design, the parameter 𝜃 is the only
key parameter to be determined. It should be designed such
that the two conditions are satisfied in (42) and 𝜃 = max{1, 𝑐

1
}

simultaneously.

Remark 9. Since the estimation error of the states in The-
orem 5 has the property (19), the tracking error simply
converges to a ball showed in (37).

We are now in a position to design the controller to ensure
the ISS stability.

Theorem 10. With the sliding mode surface (35), the switching
law (36), and the following sliding mode controller

𝑢
𝑖
= 𝑢
1,𝑖
+ 𝑢
2,𝑖
, (49)

𝑢
1,𝑖
= − 𝐵

−1

2,𝑖
[𝐷
𝑡
𝑆 + (𝐷

𝑥
1𝑟

𝑆) �̇�
1𝑟

+ 𝐿 (𝑓
1,𝑖
+ 𝐵
1,𝑖
𝑥
2
+ Φ
𝑛,𝑖
) + 𝑓
2,𝑖
+ Φ
𝑚,𝑖
] ,

(50)

𝑢
2,𝑖
= − 𝑘

0

𝐵
𝑇

2,𝑖
𝑆


𝐵
𝑇

2,𝑖
𝑆


, (51)

where 𝐿(𝑥
1
, 𝑥
1𝑟
, 𝑡) = 𝐷

𝑥
1

𝑆 ∈ 𝑅
𝑚×𝑛 and 𝑘

0
is a positive

constant, the system (8) is globally ISS stable with respect to the
external disturbance inputs, and the tracking error norm ‖𝑧

1
‖

is bounded in 𝐵
𝑠
as in Theorem 6.

Proof. Define𝑉
3
= (1/2)𝑆

𝑇

𝑆. Choose the following piecewise
Lyapunov function candidate:

𝑉
3
(𝑒
𝜁
, �̂�
1
, 𝑥, 𝑥
1𝑟
, 𝑡) = 𝑉

1
(𝑒
𝜁
) + 𝑉
2,𝜎
(�̂�
1
, 𝑡) +

1

2
𝑆
𝑇

𝑆

=
1

2
𝑒
𝜁
𝑃𝑒
𝜁
(𝑡) + 𝑉

2,𝜎
(�̂�
1
, 𝑡)

1

2
𝑆
𝑇

𝑆,

(52)

where 𝑉
2,𝜎
(�̂�
1
, 𝑡) is switched among the solution 𝑉

2,𝑖
(�̂�
1
, 𝑡)’s

of (34) in accordance with the piecewise constant switching
signal 𝜎.

Then, we have

�̇�
3
= 𝑆
𝑇

[𝐷
𝑡
𝑆 + (𝐷

𝑥
1𝑟

𝑆) �̇�
1𝑟
+ 𝐿 (𝑓

1,𝑖
+ 𝐵
1,𝑖
𝑥
2
+ Φ
𝑛,𝑖
)

+𝑓
2,𝑖
+ 𝐵
2,𝑖
𝑢
𝑖
+ Φ
𝑚,𝑖
]

≤ − 𝑘
0


𝐵
𝑇

2,𝑖
𝑆

.

(53)

From (44) and (54), we have

̇
𝑉
3
=

̇
𝑉
2
+ �̇� ≤ −𝑧

𝑇

1
𝑧
1
+ 𝛾
2

3

𝜔𝑖 (𝑇
+

𝑖
𝜁, 𝑡)



2

− 𝑘
0


𝐵
𝑇

2,𝑖
𝑆


≤ −𝑧
𝑇

1
𝑧
1
+ 𝛾
2

3
𝜀
2

,

(54)

which implies that the system (8) is globally ISS with respect
to the external disturbance input, and the tracking error norm
‖𝑧
1
‖ is bounded in 𝐵

𝑠
in finite time.

5. Illustrative Example

In this section, we present a simulation example to illustrate
the applicability and effectiveness of the proposed approach.

Example 1. Consider a switched nonlinear cascade system as
in (1), where

𝑓
1,1

= 𝑓
1,2

= 𝑊
1
𝑥
1
= [

0 1

−1.6 −2.1
] [

𝑥
11

𝑥
12

] ,

𝐵
1,1
(𝑡) = [

1 + 0.8 sin (𝑡) 0

0 1
] ,

𝐵
1,2
(𝑡) = [

1 + 0.8 cos (𝑡) 0

0 1
] ,

𝐻
1,1

= [
sin (𝑥

11
) cos (𝑥

11
)

cos (𝑥
12
) sin (𝑥

12
)
] ,

𝐻
1,2

= [
cos (𝑥

12
) sin (𝑥

12
)

sin (𝑥
11
) cos (𝑥

11
)
] ,

𝜔
1
= [𝑒
−0.3𝑡

, 𝑒
−0.1𝑡

]
𝑇

, 𝜔
2
= [𝑒
−0.2𝑡

, 𝑒
−0.5𝑡

]
𝑇

,

𝑓
2,1

= 2𝑥
2

11
𝑥
12
cos (𝑥

2
) ,

𝑓
2,1

= 𝑥
12
sin (𝑥

12
𝑥
2
) ,

𝜂
1
= 0.6 sin (𝑥

11
) + 0.6 sin (𝑥

12
) ,

𝜂
2
= −0.6 cos (𝑥

12
) − 0.6 cos (𝑥

2
) .

(55)

The nonlinear observer is designed as in (27). Based on
(18), we have the symmetric positive definite solution

𝑃 = [

[

1 0 −1

0 1 0

−1 0 2

]

]

. (56)

Then, 𝜃 = 86 is selected based on Remark 8 with 𝑏
𝑓

=

4.8416, 𝑏
𝑡
= 1, 𝑏

ℎ
= 1.128, and 𝛾

2
= 1.

The target trajectory is 𝑥
11𝑟

= 0.3 sin(𝜋𝑡) and 𝑥
12𝑟

=

�̇�
11𝑟

= 0.3𝜋 cos(𝜋𝑡). From (8), the error dynamics of the 𝑥
1
-

subpart can be expressed as

�̇�
1
= 𝑊
1
𝑒
1
+ 𝐵
1.𝑖
[𝑥
2
+ 𝜓] + 𝐻

1,𝑖
𝜔
1
, 𝑖 = 1, 2, (57)

where 𝜓(𝑡) = −�̇�
12𝑟

− 1.6𝑥
11𝑟

− 2.1𝑥
12𝑟

.
Let 𝛾
1
= 1. In �̂�

1
-subpart, according to Remark 7, we

first choose 𝑉
𝑖
(�̂�
1
, 𝑡) = (1/2)�̂�

𝑇

1
𝐸
𝑖
�̂�
1
, 𝑖 = 1, 2, where 𝐸

𝑖
are

determined by the differential Riccati inequality (48). When
�̇�
𝑖
= 0 and 𝛽

12
= 𝛽
21
= −1, from the linear algebraic matrix

inequality

1

2
(𝐸
1
𝑊
1
+𝑊
𝑇

1
𝐸
1
) +

1

4𝛾
2

1

𝐸
1
𝐻
1,1
𝐻
𝑇

1,1
𝐸
1

+ 𝐼 + (𝐸
2
− 𝐸
1
) ≤ 0,

1

2
(𝐸
2
𝑊
1
+𝑊
𝑇

1
𝐸
2
) +

1

4𝛾
2

1

𝐸
2
𝐻
1,2
𝐻
𝑇

1,2
𝐸
2

+ 𝐼 + (𝐸
1
− 𝐸
2
) ≤ 0,

(58)
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Figure 1: The response of the state 𝑥
11
.

0 5 10 15 20 25
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1

1.5

2

t (s)

x
1
2

x12

0.3𝜋cos(𝜋t)

Figure 2: The response of the state 𝑥
12
.

and using the singular values of the matrices 𝐻
1,1

and 𝐻
1,2
,

we can get two symmetric positive definite smooth matrices

𝐸
1
= [

0.114799 0.000330

0.000330 0.463736
] ,

𝐸
2
= [

0.039253 −1.025477

−1.025477 0.070260
] .

(59)

Therefore, the switching surface is 𝑆 = 𝑥
2
+𝜓 = 𝑥

2
−�̇�
12𝑟
−

1.6𝑥
11𝑟

− 2.1𝑥
12𝑟

. Moreover, the switching law is chosen as

𝜎 (𝑡) =

{

{

{

1 if �̂�𝑇
1
𝐸
1
�̂�
1
> �̂�
𝑇

1
𝐸
2
𝑧
1
,

2 if �̂�𝑇
1
𝐸
2
𝑧
1
> �̂�
𝑇

1
𝐸
1
𝑧
1
,

(60)

according to (36) in Theorem 6, and the controller is con-
structed according to (49) inTheorem 10.

Let the initial states be (−0.6, 1.9, −0.56)𝑇. Figures 1 and
2 show the responses of the states 𝑥

11
and 𝑥

12
, respectively.

0 5 10 15 20 25
−1.6
−1.4
−1.2
−1

−0.8
−0.6
−0.4
−0.2

0
0.2

z
1
1

t (s)

Figure 3: The evolution of the tracking error 𝑧
11
.

0 5 10 15 20 25

−1
−0.8
−0.6
−0.4
−0.2

0
0.2
0.4
0.6
0.8
1

t (s)

z
1
2

Figure 4: The evolution of the tracking error 𝑧
12
.

The tracking errors 𝑧
11

and 𝑧
12

are shown in Figures 3 and
4, respectively, which demonstrate the tracking errors of the
states 𝑥

11
and 𝑥

12
that are bounded with fast convergence. All

the figures indicate the feasibility of our results.

6. Conclusions

In this paper, we have investigated the tracking control prob-
lem for a class of switched nonlinear cascade systems with
unknown system uncertainties and external disturbances.
A new robust output feedback control approach based on
a nonlinear observer is proposed for the switched system.
Through solving a Hamilton-Jacoby inequality, the nonlinear
control law for the first subsystem specifies a nonlinear sliding
mode surface. By virtue of nonlinear control for the first
subsystem, the resulting sliding manifold in the sliding phase
possesses the desired ISS property. Furthermore, sufficient
conditions for the solvability of the tracking control problem
of the switched systems and design of both switching law and
output feedback controller are presented.
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