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Most of drift-less nonholonomic systems cannot be exactly converted to an nonholonomic chained form, a wealth of design tools
developed for the control of nonholonomic chained form are thus not directly applicable to such systems. Nevertheless, there exists
a class of systems that may be locally approximated by the nonholonomic chained form around certain equilibrium points. In this
work, we propose a discontinuous and a smooth time-varying control laws respectively for the approximated nonholonomic
chained form, guaranteeing local exponential convergence of state to the desired equilibrium point. An tractor towing off-axle
trailers is taken as an example to illustrate the approaches.

1. Introduction

The so-called nonholonomic chained form (NCF) has moti-
vated many research activities for about twenty years [1].
Several features such as flatness [2, 3], homogeneity, and
nilpotency make the NCF especially attractive to work with.
These properties have been used for designing control laws
to achieve several control objects such as point stabilization
and trajectory tracking. Concerning the point stabilization
problem of NCF, which is difficult due to Brokett’s well-
known obstruction [4], a number of approaches have been
developed, which may be roughly classified into discontinu-
ous time-invariant feedback [5–7], continuous time-varying
feedback [8–10], and hybrid feedback [11, 12]. The stabiliza-
tion problems of NCF with parameter uncertainties and per-
turbation terms have also been attacked in recent years [13–
17]; however, most of these researches require that the per-
turbation terms satisfy certain cascaded conditions, which
may be very restrictive and thus rule out many interesting
examples such as the tractor-trailers with off-axle hitching
[18] and the ball-plate systems [19]. It is also mentioned that
the dynamics of many nonholonomic driftless systems can
be approximated by NCF locally around certain equilibrium
points. In [18], a time-varying continuous stabilizing scheme

was proposed for such approximate NCF, achieving local
exponential stability of the closed-loop system around the
selected equilibrium point.

In this paper, we consider the local exponential regula-
tion problem of a class of nonholonomic systems convertible
to the approximate NCF. By employing a discontinuous
and/or a smooth time-varying coordinate transformations,
the approximate NCF is converted to linear perturbed ones
with the perturbation terms being second or higher orders
of the converted states; then a discontinuous time-invariant
and/ or a smooth time-varying control laws are derived resp-
ectively, guaranteeing that the state of the approximate NCF
converges to zero exponentially, provided the norm of an in-
itial state is sufficiently small. Compared with the control law
presented in [18] which is continuous but not differentiable,
the time-varying control law proposed in this paper is smo-
oth and can be easily extended to deal with input dynamics.

The paper is organized as follows. Section 2 defines a class
of systems that can be approximated by NCF. In Section 3,
a discontinuous time-invariant and a smooth time-varying
controllers are developed to stabilize the approximate NCF.
In Section 4, a tractor-trailer with off-axle hitching is taken
as an example to illustrate the effectiveness of the proposed
controllers. Section 5 concludes the paper.
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2. A Class of Approximated Chained Forms

Consider the following nonlinear system represented by

ẋ0 = u0, (1)

ẋ = g0(x)u0 + g1(x)u1, (2)

where x0 ∈ �, x ∈ �n are state variables and u0 ∈ �, u1 ∈
� are control inputs. The control vector fields g0(x) ∈
�n, g1(x) ∈ �n are supposed to have the following forms:

g0(x) = Ax + R2(x), g1(x) = b + R1(x), (3)

where

A =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 . . . 0 0

1 0 . . . 0 0

0 1 . . . 0 0

...
...

. . .
...

...

0 0 . . . 1 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, b =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1

0

0

...

0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (4)

R1(x) ∈ �n denotes the first-or higher-order residual term of
x and R2(x) ∈ �n the second or higher-order residual term
of x in the state domain D; or, say more precisely, there exist
three positive constants r, r1, and r2 such that R1(x),R2(x) are
bounded by

‖R1(x)‖2 ≤ r1‖x‖2, ‖R2(x)‖2 ≤ r2‖x‖2
2 (5)

in the compact set Ω = {x : ‖x‖2 ≤ r} ∈ D.
System (1)-(2) is called the approximate NCF if (3)–(5)

are satisfied.

Remark 1. Without loss of generality, it is specially assumed
in (4) that {A,b} is in the canonical controllable form. For
the controllable pair {A,b} not in this form, one can always
find a linear state transformation to convert it to this form.

Remark 2. It is noted that the approximate NCF (1)-(2) is
not flat with certain defects [2] and thus difficult to control.

The approximate NCF represents a large class of non-
holonomic systems that cannot be converted to NCF in
which R(x) = 0. The examples of approximate NCF include
tractor-trailers with off-axle hitching [18] and the ball-plate
systems [19].

3. Local Exponential Regulation of
the Approximate NCF

In this section, a discontinuous and a smooth time-varying
control laws are derived to solve the local exponential regula-
tion problem of the approximate NCF defined in (1)–(5).

3.1. Local Exponential Regulation of the Approximate NCF
for x0(0) /= 0. The control law for the first control input is
designed as

u0 = −k0x0, (6)

with k0 > 0, so that x0(t) = x0(0)e−k0t /=0(∀x0(0) /= 0, 0 ≤
t <∞).

Substituting (6) into (2) results

ẋ = −k0x0(Ax + R2(x)) + (b + R1(x))u1. (7)

Inspired by the well-known σ-process [5], we introduce
the following discontinuous state transformation:

y = T−1(x0)x, x = T(x0)y (8)

with

T(x0) = xm0 diag
{

1, x0, x2
0, . . . , xn−1

0

}
,

T−1(x0) = x−m0 diag
{

1, x−1
0 , x−2

0 , . . . , x−(n−1)
0

}
,

(9)

and m a positive integer to be determined.

Remark 3. The discontinuous coordinate transformation
(8)-(9) is a generalization of the ordinary σ−process pro-
posed in [5] with m = 0 for NCF. It is seen in what follows
that the term xm0 with m > 0 is crucial for the controller
design of the approximate NCF.

The transformation matrix T(x0) is clearly nonsingular
for x0(0) /=0, 0 ≤ t <∞.

The dynamics of the transformed state y can be derived
as

ẏ = T−1(x0)ẋ +
d

dt

(
T−1(x0)

)
x

= −k0x0T−1(x0)AT(x0)y + T−1(x0)bu1

+ T−1(x0)(−k0x0R2 + R1u1) +
d

dt

(
T−1(x0)

)
T(x0)y.

(10)

Direct calculation reveals that

T−1(x0)b = x−m0 b,

x0T
−1(x0)AT(x0) = A,

d

dt

(
T−1(x0)

)
T(x0)

= k0 diag{m,m + 1,m + 2, . . . ,m + n− 1}.

(11)

Substituting the above identities into (10) results in

ẏ = A1y + x−m0 bu1 + T−1(x0)(−k0x0R2 + R1u1), (12)

where

A1 = k0
(−A + diag{m,m + 1,m + 2, . . . ,m + n− 1}).

(13)
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Remark 4. As {A,b} is controllable, so is {A1,b}; hence, the
eigenvalues ofA1−bK can be arbitrarily assigned by selecting
the control gain K .

The second control input is designed as

u1 = −xm0 K y = −xm0 KT−1(x0)x, (14)

where K = [k1, k2, . . . , kn] is a control gain row vector such
that A1 − bK is Hurwitz.

The closed-loop system of (12) and (14) becomes

ẏ = (A1 − bK)y − T−1(x0)
(
k0x0R2 + R1xm0 K y

)

= (A1 − bK)y + R,
(15)

where

R = −T−1(x0)
(
k0x0R2 + K yxm0 R1

)
. (16)

System (15) is a linear stable one perturbed by a residual
term R. If R can be shown to be second or higher order of
‖y‖, then (15) is locally exponential stable.

In view of (5), the converted residual term R is bounded
by

‖R‖2 ≤
∥∥T−1

∥∥
2

∥∥k0x0R2 + Kxm0 yR1
∥∥

2

≤ ∥∥T−1
∥∥

2

(
r2k0|x0|‖x‖2

2 + r1‖K‖2|x0|m‖x‖2
∥∥y
∥∥

2

)

≤
(
r2k0|x0|

∥∥T−1
∥∥

2‖T‖2
2

+r1‖K‖2|x0|m
∥∥T−1

∥∥
2‖T‖2

)∥∥y
∥∥2

2

= h(|x0|)
∥∥y
∥∥2

2

(17)

with h(|x0|) defined as

h(|x0|)∼=r2k0max
{
|x0|m+1, |x0|m−n+2

}
max

{
1, |x0|2(n−1)

}

+ r1‖K‖2 max
{
|x0|m, |x0|m−(n−1)

}

×max
{

1, |x0|n−1
}
.

(18)

As |x0| ≤ |x0(0)|, h(|x0|) is thus bounded uniformly
with t provided m − (n − 1) ≥ 0. In view of the facts that
A1 − bK is Hurwitz and lim‖y‖2 → 0(‖R‖2/‖y‖2) = 0, system
(15) is thus locally exponential stable by Lyapunov indirect
approach [20].

The above analysis is summarized as the following propo-
sition.

Proposition 1. Suppose that 0 < |x0(0)| <∞, k0 > 0,m ≥ n−
1, K is selected such that A1−bK is Hurwitz then the following
control law

u0 = −k0x0, u1 = −xm0 K y = −xm0 KT−1(x0)x
(19)

guarantees that the states x0(t), u0(t) globally converge to zero
and x(t), u1(t) converge to zero exponentially for a sufficiently
small ‖y(0)‖2.

Proof. It is obvious that x0(t) = x0(0)e−k0t ,u0(t) = −k0x0(t)
globally converge to zero exponentially. As A1 − bK is
Hurwitz and ‖R‖2 ≤ h(|x0|)‖y‖2

2 with h(|x0|) uniformly
bounded with t, the closed-loop system (15) is locally expo-
nential stable, implying that y(t), x(t) = T(x0(t))y(t) and
u1(t) = −xm0 (t)K y(t) are all convergent to zero exponentially
for a sufficiently small ‖y(0)‖2.

Proposition 1 is only applicable for x0(0) /=0. In the case
of x0(0) = 0, the proposed control law fails to work as the
transformation matrix T(x0) becomes singular. This prob-
lem may be solved by introducing a switching mechanism
that first drives x0 away from zero in finite time and then
switches to the control law (19) to achieve local exponential
regulation for an arbitrarily x0(0) and a sufficiently small
‖x(0)‖2. However, such switching control law is discon-
tinuous and may cause problems when the velocity input
dynamics is included in the model since the discontinuities
of velocity inputs lead to infinite accelerations.

In the next subsection, the controller (19) is modified to
be smooth and time varying for an arbitrary x0(0) so that the
acceleration signals are bounded.

3.2. Local Exponential Regulation of the Approximate NCF for
an Arbitrary x0(0). The control law for the first control input
is designed as

u0 = −k0α(t)− k0(x0 − α(t)) (20)

with α(t) = α0e−k0t , α0 /= 0, k0 > k0 > 0.
Let e0(t) = x0(t) − α(t); then ė0(t) = u0(t) − α̇(t) =

−k0e0(t), so that e0(t) = e0(0)e−k0t , x0(t) = α(t) + e0(t) =
α(t) + e0(0)e−k0t, u0(t) = −k0α(t) − k0e0(0)e−k0t , and
e0(t)/α(t) = (e0(0)/α0)e−(k0−k0)t are all globally convergent
to zero exponentially.

Now we introduce the following smooth time-varying
state transformation:

y = T−1(α)x, x = T(α)y (21)

with

T(α) = αm diag
{

1,α,α2, . . . ,αn−1},

T−1(α) = α−m diag
{

1,α−1,α−2, . . . ,α−(n−1)
}

,
(22)

and m a positive integer to be determined.
As α0 /= 0, the transformation matrix T(α) is clearly non-

singular for all 0 ≤ t <∞.
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The dynamics of the transformed state y can be derived
as

ẏ = T−1(α)ẋ +
d
dt

(
T−1(α)

)
x

= u0T−1(α)AT(α)y + T−1(α)bu1

+ T−1(α)(u0R2 + R1u1) +
d

dt

(
T−1(α)

)
T(α)y

= −k0α

(
1 +

k0e0

k0α

)
T−1(α)AT(α)y + T−1(α)bu1

+ T−1(α)

(
−k0α

(
1 +

k0e0

k0α

)
R2 + R1u1

)

+
d

dt

(
T−1(α)

)
T(α)y.

(23)

Simple calculation reveals that

T−1(α)b = α−mb,

αT−1(α)AT(α) = A,

d

dt

(
T−1(α)

)
T(α)

= k0 diag{m,m + 1,m + 2, . . . ,m + n− 1}.

(24)

Substituting the above identities into (23) results in

ẏ = A1

(
1 +

k0e0

k0α

)
y + α−mbu1

+ T−1(x0)

(
−k0α

(
1 +

k0e0

k0α

)
R2 + R1u1

)
,

(25)

where A1 is defined in (13).
The second control input is designed as

u1 = −αmK y = −αmKT−1(α)x, (26)

where K = [k1, k2, . . . , kn] is a control gain row vector select-
ed such that A1 − bK is Hurwitz.

The closed-loop system of (25) and (26) becomes

ẏ =
(
A1 − bK +

k0e0

k0α
A1

)
y

− T−1(α)

(
k0α

(
1 +

k0e0

k0α

)
R2 + R1αmK y

)

=
(
A1 − bK +

k0e0

k0α
A1

)
y + R∗,

(27)

where

R∗ = −T−1(α)

(
k0α

(
1 +

k0e0

k0α

)
R2 + R1αmK y

)
. (28)

In view of (5), the converted residual term R∗ can be
shown to be bounded by

∥∥R∗
∥∥

2 ≤
∥∥T−1

∥∥
2k0|α|

∣∣∣∣∣1 +
k0e0

k0α

∣∣∣∣∣‖R2‖2

+
∥∥T−1

∥∥
2‖K‖2|α|m

∥∥y
∥∥

2‖R1‖2

≤ ∥∥T−1
∥∥

2r2k0|α|
∣∣∣∣∣1 +

k0e0

k0α

∣∣∣∣∣‖x‖
2
2

+
∥∥T−1

∥∥
2r1‖K‖2|α|m‖x‖2

∥∥y
∥∥

2

≤ r2k0

∣∣∣∣∣1 +
k0e0

k0α

∣∣∣∣∣|α|
∥∥T−1

∥∥
2‖T‖2

2

∥∥y
∥∥2

2

+ r1‖K‖2|α|m
∥∥T−1

∥∥
2‖T‖2

∥∥y
∥∥2

2

= h(α, e0)
∥∥y
∥∥2

2

(29)

with h(α, e0) defined as

h(α, e0)

∼= r2k0

∣∣∣∣∣1 +
k0e0

k0α

∣∣∣∣∣max
{
|α|m+1, |α|m−n+2

}

×max
{

1, |α|2(n−1)
}

+ r1‖K‖2 max
{
|α|m, |α|m−(n−1)

}
max

{
1, |α|n−1

}
.

(30)

As α, e0/α = (e0/α0)e−(k0−k0)t are both bounded uni-
formly with t, and h(x0, e0) is thus uniformly bounded
provided m − (n − 1) ≥ 0. Since A1 − bK is Hurwitz and
e0/α converges to zero exponentially, system ẏ = (A1 − bK +
(k0e0/k0α)A1)y is globally exponential stable, and hence the
perturbed system ẏ = (A2 + (k0e0/k0α)A1)y + R∗ is locally
exponential stable by Lyapunov indirect approach [20].

Based on the above analysis, we arrive at the following
results.

Proposition 2. Suppose that α = α(t) = α0e−k0 t , α0 /=0, k0 >
k0 > 0, m ≥ n− 1, K is selected such that A1 − bK is Hurwitz,
then the following control law

u0 = −k0α− k0(x0 − α), u1 = −αmK y (31)

guarantees that the states x0(t), u0(t) globally converge to zero
exponentially and x(t), u1(t) converge to zero exponentially for
a sufficiently small ‖y(0)‖2.

Proof. It is obvious that x0(t),u0(t) globally converge to
zero exponentially. As A1 − bK is Hurwitz and ‖R∗‖2 ≤
h(x0, e0)‖y‖2

2 with h(x0, e0) uniformly bounded with t, the
closed-loop system (27) is locally exponential stable, imply-
ing that y(t), x(t) = T(α(t))y(t) and u1(t) = −αm(t)K y(t)
are all convergent to zero exponentially for a sufficiently
small ‖y(0)‖2.

Remark 5. Compared with the approach presented in [18]
where the control law is continuous but not differentiable,
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βi+1
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θi
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Q0

xi x0

d0

P0
Tractor θ0

Figure 1: A tractor towing n trailer with off-axle hitching.

the proposed control law (31) in this paper is smooth time
varying and hence can be easily extended to include input
dynamics of the approximate NCF (1)-(2) by one-step back-
steeping.

4. An Example: Local Exponential Regulation of
an Off-Axle Tractor-Trailer

Consider a tractor-trailer with a wheeled mobile tractor tow-
ing n off-axle wheeled trailers shown in Figure 1, where
(xi, yi, θi) denote the position and orientation of body i (i =
0, 1, 2, . . . ,n), (vi,ωi = θ̇i) denote the linear and angular
velocities of body i (i = 0, 1, 2, . . . ,n), βi = θi−1 − θi (i =
1, 2, 3, . . . ,n) represent the difference of orientation angles
between body i and body i−1. Pi (i = 0, 1, 2, . . .) is the center
point on the wheel axle of body i and Qi−1 (i = 1, 2, . . . ,n)
the connection point of body i and body i − 1. The distance
between Pi and Qi is di, and the distance between Pi and Qi−1

is fi .
The kinematic equation of the tractor is

ẋ0 = v0 cosθ0, ẏ0 = v0 sin θ0, θ̇0 = ω0. (32)

The kinematic relations of trailer i can be derived as

vi = vi−1 cosβi + di−1θ̇i−1 sin βi,
ẋi = vi cos θi,
ẏi = vi sin θi,

θ̇i = 1
fi

(
vi−1 sin βi − di−1θ̇i−1 cosβi

)
.

(33)

Select x = [x0, y0, θ0,β1,β2, . . . ,βn]T as the state vari-
ables, and u0 = v0 cos θ0,ω0 as the control inputs, the state
equation can be derived from (32)-(33) as

ẋ0 = u0, (34)

ẋ = (A + R2(x))u0 + (b + R1(x))ω0, (35)

where R1,R2 are high-order residual terms satisfying (5) and

A =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 1 0 0 . . . 0

0 0 0 0 . . . 0

0 0 − 1
f1

0 . . . 0

0 0
1
f1

(
1 +

d1

f2

)
− 1
f2

. . . 0

...
...

...
...

. . .
...

0 0 a1,n a2,n . . . − 1
fn

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

b =
[

0 1 1 +
d0

f1
−d0

f1

(
1 +

d1

f2

)
. . . bn

]T

,

(36)

a1,n = (−1)n−2 dn−2 × dn−3 · · · × d2 × d1

fn−1 × fn−2 · · · f1

(
1 +

dn−1

fn

)
,

a2,n = (−1)n−3 dn−2 × dn−3 · · · × d3 × d2

fn−1 × fn−2 · · · f2

(
1 +

dn−1

fn

)
,

bn = (−1)n−1 dn−2 × dn−3 · · · × d1 × d0

fn−1 × fn−2 · · · f1

(
1 +

dn−1

fn

)
,

(37)

The control object can be stated as design control law
u0(·),ω0(·) such that the states (x0, y0, θ0,β1,β2, . . . ,βn) of
the closed-loop system (34)-(35) converge to zero exponen-
tially.

To apply Propositions 1 and 2 obtained in Section 3, it is
required to verify the controllability of {A,b}.

Lemma 1. Suppose that di > 0 (i = 0, 1, . . . ,n − 1) and fi >
0 (i = 1, 2, . . . ,n), then {A,b} is a controllable pair.

Proof. The lemma can be proved by verifying PBH criterion
of linear systems and is omitted here for brevity.

Remark 6. As {A,b} is controllable, it can thus be further
converted to the canonical controllable form (4) by a linear
transformation so that the tractor-trailers system (34)-(35)
can be expressed in approximate NCF (1)-(2).

To illustrate the effectiveness of the proposed control ap-
proaches, a tractor towing one trailer is taken as a simulation
example. The state equation in this special case can be ex-
plicitly obtained as

ẋ0 = v0 cosθ0,

ẏ0 = v0 sin θ0,

θ̇0 = ω0,

β̇1 = −c1v0 sinβ1 +
(
1 + c2 cosβ1

)
ω0,

(38)

where c1 = 1/ f1, c2 = d0/ f1.
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Figure 2: Time trajectories of states and geometric paths of the tractor and the trailer starting from the first initial state.

Under the following coordinate and input transforma-
tions:

x1 = c2
1β1,

x2 = −c1β1 + c1(1 + c2)θ0,

x3 = β1 − (1 + c2)θ0 + c1(1 + c2)y0,

u0 = v0 cosθ0,

u1 = c2
1

(−c1v0 sinβ1 +
(
1 + c2 cosβ1

)
ω0
)
.

(39)

the state equation (38) is converted to the following form:

ẋ3 = (x2 + R23)u0 + R13u1,

ẋ2 = (x1 + R22)u0 + R12u1,

ẋ1 = u1,

ẋ0 = u0,

(40)
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Figure 3: Time trajectories of states and geometric paths of the tractor and the trailer starting from the second initial state.

where

R23 = c1

(
−
(

sinβ1

cos θ0
− β1

)
+ (1 + c2)

(
sin θ0

cosθ0
− θ0

))

+
c1c2

(
cosβ1 − 1

)
sin β1(

1 + c2 cosβ1
)
/ cos θ0

,

R13 = c2
(
cosβ1 − 1

)

c2
1/
(
1 + c2 cosβ1

) ,

R22 = c2
1

(
sin β1

cos θ0
− β1

)
+
c2

1c2
(
1− cosβ1

)
sinβ1(

1 + c2 cosβ1
)
/ cosθ0

,

R12 = c2

c1
(
1− cosβ1

)
/
(
1 + c2 cosβ1

) .

(41)

In the state region D = {(x0, y0, θ0,β1) : |θ0| ≤ θ0M <
π/2, |β1| ≤ β1M}, |R2 j| ( j = 2, 3) can be shown to be
O(‖(θ0,β1)‖3

2) and R1 j ( j = 2, 3) to be O(‖(θ0,β1)‖2
2).

The geometric parameters are set to d0 = f1 = 1. The
controller parameters are selected as m = 2, k0 = 0.2, α0 =
10, k0 = 2, and K = [1.92,−8.26, 14.81] chosen such that the
eigenvalues of A1 − bK are assigned to −(0.02, 0.04, 0.06).

The simulation is implemented for two initial states
(x0(0), y0(0), θ0(0),β1(0)) = (10, 2,−0.2, 0.2) and (x0(0),
y0(0), θ0(0),β1(0)) = (0, 2,−0.2, 0.2). For the first initial
state, where x0(0) /= 0, the control law (19) is applied; for
the second initial state where x0(0) = 0, the control law
(31) is applied. The time plots of state trajectories and
geometric paths of the tractor and the trailer are shown in
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Figures 2 and 3 in respect to the two initial states. It is
observed that the proposed control laws successfully regulate
the state to zero from initial states and produce nice geomet-
ric paths for both the tractor and the trailer.

5. Conclusion

In this paper, we propose a discontinuous and a smooth
time-varying control schemes for a class of nonlinear driftless
systems in the approximated nonholonomic chained form,
achieving local exponential convergence of state to the
desired equilibrium point. The proposed control laws rely
on the discontinuous and the smooth time-varying state
transformations that convert the system to linear stable
one perturbed by two- or higher-order terms of state. An
application example of off-axle tractor-trailers is discussed in
detail for illustrating the effectiveness of the proposed control
approaches.
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