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1. Introduction

Consider a general periodically driven quantum hamiltonian system

H(t) = H0 + V (t) (1.1)

with period τ acting in a separable Hilbert spaceH, and letUF denote its Floquet operator, so
that if ξ is the initial state (at time zero) of the system, then Um

F ξ is this state at timemτ . Typ-
ically, the unperturbed hamiltonianH0 is assumed to have purely point spectrum so that the
same is true for e−iτH0 . What happens whenH0 is perturbed by V (t)? A natural physical ques-
tion is if the expectation values of the unperturbed energyH0 remain bounded when V (t)/= 0.
This question is formulated based on many physical models, in particular on the Fermi
accelerator in which a particle can acquire unbounded energy from collisions with a heavy
periodically moving wall. Here quantum mechanics is considered and, more precisely, if

sup
m∈N

∣
∣
〈

Um
F ξ,H0U

m
F ξ
〉∣
∣ (1.2)

is finite or not, where ξ ∈ dom H0 ⊂ H, the domain ofH0.
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Motivated bymodels with hamiltonians as aboveH(t) = H0+V (t), one is suggested to
probe quantum (in)stability through the behavior of an “abstract energy operator” which we
call a probe operator and will be represented by a positive, unbounded, self-adjoint operator
A : dom A ⊂ H → H and with discrete spectrum,

Aϕn = λnϕn, (1.3)

0 ≤ λn < λn+1, such that ifUm
F ξ ∈ dom A for allm ∈ N, then, for eachm, the expectation value

EA
ξ
(m) = 〈Um

F ξ,AU
m
F ξ〉 is finite. It is convenient to write EA

ξ
(m) = +∞ ifUm

F ξ does not belong
to dom A.

We say the system is A-dynamically stable when EAξ (m) is a bounded function of time
m, andA-dynamically unstable otherwise (usually we say just (un)stable). If the function EA

ξ
(m)

is not bounded, one can ask about its asymptotic behavior, that is, how does EAξ (m) behave
as m goes to infinity? Usually this is a very difficult question and sometimes the temporal
average of EA

ξ
(m) is considered, as we will do in this work.

Quantum systems governed by a time periodic hamiltonian have their dynamical
stability often characterized in terms of the spectral properties of the corresponding Floquet
operator. As in the autonomous case, the presence of continuous spectrum is a signature of
unstable quantum systems; this is a rigorous consequence of the famous RAGE theorem [1],
firstly proved for the autonomous case and then for time-periodic hamiltonians [2, 3]. At first
sight a Floquet operator with purely point spectrum would imply stability, but one should
be alerted by examples with purely point spectrum and dynamically unstable [4–6] in the
autonomous case and, recently, also a time-periodic model with energy instability [7] was
found.

Dynamical stability of time-dependent systemswas studied, for example, in references
[2, 8–19]. In [14] it was proved that the applicability of the KAM method gives a uniform
bound at the expectation value of the energy for a class of time-periodic hamiltonians
considered in [20].

For hamiltonians H(t) = H0 + V (t), not necessarily periodic, with H0 a positive self-
adjoint operator whose spectrum consists of separated bands {σj}∞j=1 such that σj ⊂ [λj ,Λj],
upper bounds of the type

〈U(t, 0)ψ,H0U(t, 0)ψ〉 ≤ cte t(1+α)/nα (1.4)

were obtained in [10] if the gaps λj+1 − Λj grow like jα, with α > 0, and if V (t) is strongly
Cn with n ≥ [(1 + α)/2α] + 1. The proof is based on adiabatic techniques that require smooth
time dependence and therefore do not apply to kicked systems. In [11, 13] upper bounds
complementary to those of [10] described above are obtained.

In [2, 8, 9, 15] stability results are obtained through topological properties of the orbits
ξ(t) = U(t, 0)ξ for ξ ∈ H, while in [16–19] lower bounds for averages of the type

1
T

T∑

m=1

〈

Um
F ξ,H0U

m
F ξ
〉 ≥ CTγ (1.5)
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are obtained for periodic hamiltonians H(t) = H0 + V (t) through dimensional properties of
the spectral measure μξ associated with UF and ξ (the exponent γ depends on the measure
μξ).

In this work we study (in)stability of periodic time-dependent systems. As for tight-
binding models (see [21] and references therein) we consider the Laplace-like average of
〈Um

F ξ,AU
m
F ξ〉, that is,

2
T

∞∑

m=0

e−2m/T〈Um
F ξ,AU

m
F ξ〉, (1.6)

where A is a probe energy, ξ is an element of dom A, and UF is the Floquet operator. The
main technical reason for working with this expression for the time average is that it can
be written in terms of (see Theorem 2.3) the eigenvalues of A, that is, Aϕj = λjϕj , and the
matrix elements 〈ϕj, Rz(UF)ξ〉 of the resolvent operator Rz(UF) = (UF − z1)−1 (with z =
e−iEe1/T ) with respect to the orthonormal basis {ϕj} of the Hilbert space (here 1 denotes the
identity operator). Lemma 2.2 relates the long run of Laplace-like average with the usual
Cesàro average. In Section 2we shall prove this abstract results and present some applications
in Section 3.

Since our main results are for temporal Laplace averages of expectation values
of probe energies (see Section 2), in practice we will think of (in)stability in terms
of (un)boundedness of such averages. Note that unbounded Laplace averages imply
unboundedness of expectation values of probe energies themselves.

2. Average Energy and Green Functions

Consider a time-dependent hamiltonian H(t) with H(t + τ) = H(t) for all t ∈ R, acting in
the separable Hilbert space H. Suppose the existence of the propagators U(t, s), so that the
Floquet operator UF = U(τ, 0) is at our disposal. Let A be a probe energy and λj , ϕj as in the
introduction. Also, {ϕj}∞j=1 is an orthonormal basis of H.

The main interest is in the study of the expectation values, herein defined by

EAξ (m) :=

⎧

⎨

⎩

〈

Um
F ξ,AU

m
F ξ
〉

, if Um
F ξ ∈ dom A,

+∞, if Um
F ξ ∈ H \ dom A,

(2.1)

as function of timem ∈ N. Another quantity of interest is the time dependence of the moment
of this probe energy, which takes values in [0,+∞] and is defined by

MA
ξ (m) :=

∞∑

j=1

λj
∣
∣〈ϕj,Um

F ξ〉
∣
∣
2
. (2.2)

Our first remark is the equivalence of both concepts (under certain circumstances).
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Proposition 2.1. IfUm
F ξ ∈ dom A for allm, then

EAξ (m) =MA
ξ (m), ∀m. (2.3)

This holds, in particular, if dom A is invariant under the time evolutionUm
F and ξ ∈ dom A.

Proof. Since dom A ⊂ dom A1/2 [1], one hasUm
F ξ ∈ dom A1/2, for allm, and so

MA
ξ (m) =

∞∑

j=1

∣
∣
∣

〈

λ1/2j ϕj ,U
m
F ξ
〉∣
∣
∣

2

=
∞∑

j=1

∣
∣
∣

〈

A1/2ϕj,U
m
F ξ
〉∣
∣
∣

2

=
∞∑

j=1

∣
∣
∣

〈

ϕj,A
1/2Um

F ξ
〉∣
∣
∣

2

=
∥
∥
∥A1/2Um

F ξ
∥
∥
∥

2

= 〈A1/2Um
F ξ,A

1/2Um
F ξ〉

= 〈Um
F ξ,AU

m
F ξ〉

= EAξ (m),

(2.4)

which is the stated result.

We introduce the temporal Laplace average of EA
ξ

(see also the appendix) by the
following function of T > 0, which also takes values in [0,+∞]:

LAξ (T) :=
2
T

∞∑

m=0

e−2m/TEAξ (m). (2.5)

Under certain conditions, the next result shows that the upper β+ and lower β− growth
exponents of this average, that is, roughly they are the best exponents so that for large T
there exist 0 ≤ c1 ≤ c2 <∞ with

c1T
β− ≤ LAξ (T) ≤ c2Tβ

+
, (2.6)

and the corresponding exponents for the temporal Cesàro average

CA
ξ (T) =

1
T

T∑

m=0

EAξ (m) (2.7)
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are closely related; this follows at once by Lemma 2.2, which perhaps could be improved
to get equality also between lower exponents. Note that, although not indicated, these
exponents depend on the initial condition ξ.

Lemma 2.2. If (h(m))∞m=0 is a nonnegative sequence and h(m) ≤ Cmn for some C > 0 and n ≥ 0,
then β+e = β+

d
and β−e ≤ β−

d
, where

β+e = lim sup
T→∞

log
(
∑T

m=0h(m)
)

log T
, β−e = lim inf

T→∞

log
(
∑T

m=0h(m)
)

log T
,

β+d = lim sup
T→∞

log
(∑∞

m=0e
−2m/Th(m)

)

log T
, β−d = lim inf

T→∞
log
(∑∞

m=0e
−2m/Th(m)

)

log T
.

(2.8)

Proof. Note that for 0 ≤ m ≤ T we have e−2 ≤ e−2m/T ≤ 1, and so

T∑

m=0

h(m) ≤
T∑

m=0

e2e−2m/Th(m) ≤ e2
∞∑

m=0

e−2m/Th(m). (2.9)

Hence β±e ≤ β±
d
.

On the other hand, for each ε > 0, denoting by �x� the smallest integer larger or equal
to x, one has

∞∑

m=0

e−2m/Th(m) =
�T1+ε�
∑

m=0

e−2m/Th(m) +
∞∑

m=�T1+ε�+1
e−2m/Th(m)

≤
�T1+ε�
∑

m=0

h(m) + C
∞∑

m=�T1+ε�+1
e−2m/Tmn.

(2.10)

Now, for T large enough nT/2 < T1+ε ≤ �T1+ε�. Thus

∞∑

m=�T1+ε�+1
e−2m/Tmn ≤

∫∞

�T1+ε�
e−2t/T tndt. (2.11)

Therefore, for each ε > 0 and T large enough

∞∑

m=0

e−2m/Th(m) ≤
�T1+ε�
∑

m=0

h(m) + C
∫∞

�T1+ε�
e−2t/T tndt

≤
�T1+ε�
∑

m=0

h(m) + C̃e−2T
ε

Tn.

(2.12)
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Since e−2T
ε
Tn → 0 as T → ∞, it follows that

β+d = lim sup
T→∞

log
∑∞

m=0e
−2m/Th(m)

log T

≤ lim sup
T→∞

log
∑�T1+ε�

m=0 h(m)
log T

= lim sup
T→∞

log
∑�T1+ε�

m=0 h(m)
log �T1+ε�

log
⌈

T1+ε⌉

log T

≤ lim sup
T→∞

log
∑�T1+ε�

m=0 h(m)
log�T1+ε�

log (T + 1)1+ε

log T

= (1 + ε)lim sup
T→∞

log
∑�T1+ε�

m=0 h(m)
log �T1+ε�

≤ (1 + ε)β+e .

(2.13)

As ε > 0 was arbitrary, β+d ≤ β+e .

Recall that the Green functions Gξ
z(j) associated with the operators A,UF at ξ ∈ H

and z ∈ C, |z|/= 1, are defined by the matrices elements of the resolvent operator Rz(UF) =
(UF − z1)−1 along the orthonormal basis {ϕj}∞j=1, that is,

G
ξ
z

(

j
)

:= 〈ϕj, Rz(UF)ξ〉. (2.14)

Note that Gξ
z(j) is always well defined since for |z|/= 1 that resolvent operator is bounded.

Theorem 2.3 is the main reason for considering the temporal averages LA
ξ
(T). It presents a

formula that translates the Laplace average of wavepackets at time T into an integral of the
Green functions over “energies” in the circle of radius e1/T in the complex plane (centered at
the origin). As T grows, the integration region approaches the unit circle where the spectrum
of UF lives and Rz(UF) takes singular values, so that (hopefully) A-(in)stability can be
quantitatively detected.

Theorem 2.3. Assume thatUm
F ξ ∈ dom A for allm ≥ 0. Then

LAξ (T) =
1

πe−2/T
1
T

∞∑

j=1

λj

∫2π

0

∣
∣
∣G

ξ
z(j)

∣
∣
∣

2
dE, z = e−iE+1/T . (2.15)

Before the proof of this theorem, we underline that this formula, that is, the expression
on the right-hand side of (2.15), is a sum of positive terms and so it is well defined for all
ξ ∈ H if we let it take values in [0,+∞]; hence, in principle it can happen that this formula is
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finite even for vectorsUm
F ξ not in the domain ofA, where LAξ (T) = +∞. The general case, that

is, ∀ξ ∈ H, can then be gathered in the following inequality:

LAξ (T) ≥
1

πe−2/T
1
T

∞∑

j=1

λj

∫2π

0

∣
∣
∣G

ξ
z(j)

∣
∣
∣

2
dE, z = e−iE+1/T , (2.16)

so that lower bound estimates for this formula always imply lower bound estimates for the
Laplace average.

Proof of Theorem 2.3. First note that, by hypothesis, Um
F ξ ∈ dom A1/2 for each m ∈ N. Denote

by μj the spectral measure of UF associated with the pair (ϕj, ξ) and by F the Fourier
transform F : L2[0, 2π] → l2(Z). By the spectral theorem for unitary operators

〈ϕj,UFξ〉 =
∫2π

0
e−iE

′
dμj

(

E′). (2.17)

For each j let a(j) = (a(j)(m))m∈Z
be the sequence

a(j)(m) =

⎧

⎨

⎩

0, if m < 0,

e−m/T
∫2π
0 e−iE

′mdμj(E′), if m ≥ 0.
(2.18)

Since a(j) ∈ l1(Z)∩ l2(Z) andF is a unitary operator, it follows that ‖a(j)‖l2(Z) = ‖F−1a(j)‖L2[0,2π]
and also

(

F−1a(j)
)

(E) =
1√
2π

∞∑

m=−∞
eiEma(j)(m)

=
1√
2π

∞∑

m=0

eiEme−m/T
∫2π

0
e−iE

′mdμj
(

E′)

=
1√
2π

∫2π

0

( ∞∑

m=0

eim(E−E′)+i/T

)

dμj
(

E′)

=
1√
2π

∫2π

0

1
1 − ei(E−E′+i/T)

dμj
(

E′)

=
1√
2π

∫2π

0

dμj(E′)

ei(E+i/T)
(

e−i(E+i/T) − e−iE′)

= − 1√
2π ei(E+i/T)

∫2π

0

dμj(E′)

e−iE′ − e−i(E+i/T)

= − 1√
2π ei(E+i/T)

〈ϕj, Rz(UF)ξ〉

= − 1√
2π eiEe−1/T

G
ξ
z

(

j
)

,

(2.19)
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with z = e−iE+1/T. Therefore

∣
∣
∣F−1a(j)

∣
∣
∣

2
(E) =

1
2πe−2/T

∣
∣
∣G

ξ
z(j)

∣
∣
∣

2
, (2.20)

and so

∥
∥
∥F−1a(j)

∥
∥
∥

2

L2[0,2π]
=

1
2πe−2/T

∫2π

0

∣
∣
∣G

ξ
z

(

j
)
∣
∣
∣

2
dE. (2.21)

From such relation it follows that

LAξ (T) =
∞∑

m=0

2
T
e−2m/TMA

ξ (m)

=
∞∑

j=1

λj
∞∑

m=0

2
T
e−2m/T |〈ϕj,Um

F ξ
〉|2

=
∞∑

j=1

λj
2
T

∞∑

m=0

∣
∣
∣
∣
∣
e−m/T

∫2π

0
e−iE

′mdμj
(

E′)
∣
∣
∣
∣
∣

2

=
∞∑

j=1

λj
2
T

∥
∥
∥a(j)

∥
∥
∥

2

l2(Z)

=
∞∑

j=1

λj
2
T

∥
∥
∥F−1a(j)

∥
∥
∥

2

L2[0,2π]

=
1

πe−2/T
1
T

∞∑

j=1

λj

∫2π

0

∣
∣
∣G

ξ
z(j)

∣
∣
∣

2
dE,

(2.22)

which is exactly the stated result.

Theorem 2.3 clearly remains true if the eigenvalues λj of A have finite multiplicity. In
this case, for each λj consider the corresponding orthonormal eigenvectors ϕj1 , . . . , ϕjk , and
one obtains

LAξ (T) =
1

πe−2/T
1
T

∞∑

j=1

λj

(
k∑

n=1

∫2π

0

∣
∣〈ϕjn , Rz(UF)ξ〉

∣
∣
2
dE

)

, (2.23)

with z as before.
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In case the initial condition is ξ = ϕ1, put η(z) := Rz(UF)ϕ1. Thus, (UF − z)η(z) = ϕ1 and
soUFη

(z) = zη(z) + ϕ1. Hence

〈ϕj,UFη
(z)〉 = z〈ϕj, η(z)〉 + δj,1 (2.24)

and by denoting

Gz

(

j
)

:= Gϕ1
z

(

j
)

, (2.25)

one concludes.

Lemma 2.4.

Gz

(

j
)

=

⎧

⎪⎨

⎪⎩

1
z

(〈ϕ1, UFη
(z)〉 − 1

)

, if j = 1,

1
z

〈

ϕj,UFη(
z)〉, if j > 1.

(2.26)

In Section 3 we discuss some Floquet operators that are known in literature and
analyze their Green functions through the equation

(UF − z1)η(z) = ϕ1. (2.27)

3. Applications

This section is devoted to some applications of the formula obtained in Theorem 2.3. In
general it is not trivial to get expressions and/or bounds for the Green functions of Floquet
operators, and so one of the main goals of the applications that follow is to illustrate how to
approach the method we have just proposed.

3.1. Time-Independent Hamiltonians

As a first example and illustration of the formula proposed in Theorem 2.3, we consider the
special case of autonomous hamiltonians. In this case H(t) = H0 for all t, and we assume
that H0 is a positive, unbounded, self-adjoint operator and with simple discrete spectrum,
H0ϕj = χjϕj , so that {ϕj}∞j=1 is an orthonormal basis of H and 0 ≤ χ1 < χ2 < χ3 < · · ·
with χj → ∞. For q > 0 we can consider Hq

0 as our abstract energy operator A, so that its
eigenvalues are λj = χ

q

j (since A and H0 have the same eigenfunctions, we are justified in
using the notation ϕj for the eigenfunctions of H0). We take UF = e−iH0 (time t = 1) and for
ξ ∈ H

G
ξ
z

(

j
)

=
〈

ϕj, Rz(H0)ξ
〉

=
〈

Rz(H0)ϕj, ξ
〉

=
〈ϕj, ξ〉
e−iχj − z . (3.1)
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Since dom H
q

0 is invariant under the time evolution e−itH0 , then for z = e−iEe1/T and ξ ∈
dom H

q

0 we have

L
q

ξ (T) := L
H

q

0
ξ (T)

=
1

πe−2/T
1
T

∞∑

j=1

χ
q

j

∫2π

0

∣
∣
∣G

ξ
z(j)

∣
∣
∣

2
dE

=
1

πe−2/T
1
T

∞∑

j=1

χ
q

j

∫2π

0

∣
∣〈ϕj, ξ〉

∣
∣
2

|e−iχj − z|2
dE

=
1

πe−2/T
1
T

∞∑

j=1

χ
q

j

∣
∣〈ϕj, ξ〉

∣
∣
2
∫2π

0

dE

|e−iχj − z|2
.

(3.2)

Thus we need to calculate the integral Ij :=
∫2π
0 (dE/|e−iχj −z|2). Let γ be the closed path

in C given by γ(E) = eiE with 0 ≤ E ≤ 2π , αj = e1/Teiχj and βj = e−1/Teiχj , then

Ij =
∫2π

0

dE
(

e−iχj − z)(eiχj − z)

=
∫2π

0

dE
(

e−iχj − e−iEe1/T)(eiχj − eiEe1/T)

=
∫2π

0

dE

e2/T
(

e−1/Te−iχj − e−iE)(e−1/Teiχj − eiE)

= − 1
e2/T

∫2π

0

dE

e−iEe−1/Te−iχj
(

eiE − αj
)(

eiE − βj
)

= − 1
e1/Te−iχj

1
i

∫2π

0

ieiEdE
(

eiE − αj
)(

eiE − βj
)

=
i

e1/Te−iχj

∫

γ

dw
(

w − αj
)(

w − βj
) .

(3.3)

As |αj | > 1 and |βj | < 1, βj is the unique pole in the interior of γ . Thus, by using residues,

Ij =
i

e1/Te−iχj
2πi

1
(

βj − αj
) =

2π
e2/T − 1

(3.4)

and Ij is independent of χj .
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Therefore by (3.2) it follows that

L
q

ξ (T) =
1

πe−2/T
1
T

∞∑

j=1

χ
q

j

∣
∣〈ϕj, ξ〉

∣
∣
2 2π
e2/T − 1

=
2

e−2/T
1
T

1
(

e2/T − 1
)

∞∑

j=1

χ
q

j

∣
∣〈ϕj, ξ〉

∣
∣
2

=
2

(

1 − e−2/T)
1
T

∥
∥
∥H

q/2
0 ξ

∥
∥
∥

2
.

(3.5)

Since (1 − e−2/T) = 2/T +O(1/T2), for large T it is found that

L
q

ξ (T) ≈
∥
∥
∥H

q/2
0 ξ

∥
∥
∥

2
, (3.6)

with (for ξ ∈ dom H
q

0 )

lim
T→∞

L
q

ξ (T) = 〈ξ,Hq

0 ξ〉. (3.7)

Then we conclude that the function

N � m �−→
〈

e−iH0mξ,H
q

0e
−iH0mξ

〉

(3.8)

is bounded for ξ ∈ dom H
q

0 , which is (of course) an expected result (see Proposition 2.1).

3.2. Lower-Bounded Green Functions

As a first theoretical application we get dynamical instability from some lower bounds of the
Green functions. See [21] for a similar result in the one-dimensional discrete Schrödinger
operators context; there, a relation to transfer matrices allows interesting applications to
nontrivial models, what is not available in the unitary setting yet (and it constitutes of
an important open problem). As before, λj denote the increasing sequence of positive
eigenvalues of the abstract energy operator A, the ones we use to probe (in)stability.

Let [·] denotes the integer part of a real number, and | · | indicates Lebesgue measure.

Theorem 3.1. Suppose that there exist K > 0 and α > 0 such that for each 2N > 0 large enough
there exists a nonempty Borel set J(N) ⊂ S1 such that

∣
∣
∣G

ξ
z

(

j
)
∣
∣
∣ ≥ K

Nα
, N ≤ j ≤ 2N (3.9)
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holds for all z = e−iE+1/T with E ∈ JT (N) = {E′′ ∈ S1 : ∃ E′ ∈ J(N); |E′′ − E′| ≤ 1/T} (the
(1/T)-neighborhood of J(N)). Let δ > 0, then for T large enough such thatN(T) = [Tδ], one has

LAξ (T) ≥ cteλ[Tδ]Tδ(1−2α)−2. (3.10)

Moreover, if λj ≥ cte jγ , γ ≥ 0, then

LAξ (T) ≥ cte Tδ(γ−2α+1)−2. (3.11)

Proof. By the formula in Theorem 2.3, or its more general version (2.16),

LAξ (T) ≥
1

πe−2/T
1
T

∞∑

j=1

λj

∫2π

0

∣
∣
∣G

ξ
z(j)

∣
∣
∣

2
dE

≥ cte
T

2N(T)∑

j=N(T)

λj

∫2π

0

∣
∣
∣G

ξ
z(j)

∣
∣
∣

2
dE

≥ cte
T
λN(T)

2N(T)∑

j=N(T)

∫

JT (N)

∣
∣
∣G

ξ
z(j)

∣
∣
∣

2
dE

≥ cte
T
λN(T)

2N(T)∑

j=N(T)

K2

N(T)2α
|JT (N)|

=
cte
T

|JT (N)|λN(T)
K2

N(T)2α−1

=
cte
T

|JT (N)|λ[Tδ]
1

[Tδ]2α−1

≥ cteλ[Tδ]Tδ(1−2α)−2;

(3.12)

and we have used that |JT (N)| ≥ 1/T . If λj ≥ cte jγ , then

LAξ (T) ≥ cte TδγTδ(1−2α)−2 = cte Tδ(γ−2α+1)−2. (3.13)

The proof is complete.

The above theorem becomes appealingwhen the exponent of T is greater than zero and
instability is obtained, for instance, when δ(γ − 2α + 1) > 2 in case λj ≥ cte jγ . However, up to
now we have not yet been able to find explicit estimates in models of interest; in any event,
we think that the future applications will be useful, and so we point out some speculations.
First, note that it applies even if the set J(N) is a single point! Nevertheless, we expect that
Theorem 3.1 will be applied to models whose Floquet operators have some kind of “fractal
spectrum” (usually singular continuous or uniformly Hölder continuous spectral measures),
and, somehow, α should be related to dimensional properties of those spectra; indeed, this
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was our first motivation for the derivation of this result, and, in our opinion, such applications
are among the most interesting open problems left here.

3.3. Rank-One Kicked Perturbations

Now consider

H(t) = H0 + κPφ
∑

n

δ(t − n2π), (3.14)

with H0 as in Section 3.1, with eigenvectors {ϕj}∞j=1 and χj the corresponding eigenvalues;
Pφ(·) = 〈φ, ·〉φ where κ ∈ R and φ is a normalized cyclic vector for H0, in the sense that
‖φ‖ = 1 and the closed subspace spanned by {Hm

0 φ : m ∈ N} equals H. Let

φ =
∑

j

bjϕj . (3.15)

In this case (see [22–24])

UF = U0
(

1 + αPφ
)

, (3.16)

withU0 = e−i2πH0 and α = (e−i2πκ − 1). Note that φ ∈ dom H
q

0 , ∀q > 0, and so for ξ ∈ dom H
q

0 ,

UFξ = U0ξ + α〈φ, ξ〉 U0φ (3.17)

also belongs to dom H
q

0 ; a simple iteration process shows that Um
F ξ ∈ dom H

q

0 for all m ≥ 0,
and we are justified in using the formula in Theorem 2.3 to estimate Laplace averages.

We are interested in η(z) = Rz(UF)ϕ1. As |z|/= 1, it follows that η(z) belongs to the
Hilbert space, and so one can write

η(z) =
∞∑

j=1

ajϕj . (3.18)

Note that aj = Gz(j), and we have

UFη
(z) − zη(z) = ϕ1. (3.19)
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By the relation

UFη
(z) = U0η

(z) + αU0Pφη
(z)

=
∞∑

j=1

ajU0ϕj + αU0〈φ, η(z)〉φ

=
∞∑

j=1

aje
−i2πχjϕj + α〈φ, η(z)〉

∞∑

j=1

bje
−i2πχjϕj

=
∞∑

j=1

(

aj + α〈φ, η(z)〉bj
)

e−i2πχjϕj ,

(3.20)

and (3.19) it follows that

∞∑

j=1

(

aj + α〈φ, η(z)〉bj
)

e−i2πχjϕj − z
∞∑

j=1

ajϕj = ϕ1, (3.21)

that is,

∞∑

j=1

[

aj
(

e−i2πχj − z
)

+ α〈φ, η(z)〉bje−i2πχj
]

ϕj = ϕ1, (3.22)

and we get the equations

a1
(

e−i2πχ1 − z
)

+ α〈φ, η(z)〉b1e−i2πχ1 = 1,

aj
(

e−i2πχj − z
)

+ α〈φ, η(z)〉bje−i2πχj = 0 for j > 1.
(3.23)

Thus

a1 =
1 − α〈φ, η(z)〉b1e−i2πχ1

e−i2πχ1 − z ,

aj = −α〈φ, η
(z)〉bje−i2πχj

e−i2πχj − z , j > 1.

(3.24)

For the trivial case α = 0 or, equivalently, κ ∈ Z, one has

a1 =
1

e−i2πχ1 − z ,

aj = 0, j > 1,

(3.25)
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and η(z) = ϕ1/(e−i2πχ1 − z). In this case the analysis of Lqϕ1(T) is reduced to

∫2π

0
|a1|2dE =

∫2π

0

dE

|e−i2πχ1 − z|2
=

2π
e2/T − 1

(3.26)

as calculated in Section 3.1. Thus Lqϕ1(T) ≈ ‖Hq

0ϕ1‖ for large T , as expected.
Returning to the general case α/= 0, note that

〈φ, η(z)〉 =
∞∑

j=1

bjaj

= b1

(

1 − α〈φ, η(z)〉b1e−i2πχ1

e−i2πχ1 − z

)

+
∞∑

j=2

bj
(−α)〈φ, η(z)〉bje−i2πχj

e−i2πχj − z

=
b1

e−i2πχ1 − z − 〈φ, η(z)〉
∞∑

j=1

α|bj |2e−i2πχj
e−i2πχj − z .

(3.27)

So

〈φ, η(z)〉 =
b1

(

e−i2πχ1 − z)
⎡

⎣1 +
∞∑

j=1

α|bj |2e−i2πχj
e−i2πχj − z

⎤

⎦

−1

. (3.28)

By denoting

τ(z) = 1 +
∞∑

j=1

α|bj |2e−i2πχj
e−i2πχj − z , (3.29)

by (3.24) we finally obtain the relations

a1 =
1

e−i2πχ1 − z − α|b1|2e−i2πχ1τ(z)−1

(e−i2πχ1 − z)2
,

aj = − αbjb1e
−i2πχj τ(z)−1

(

e−i2πχ1 − z)(e−i2πχj − z) , j > 1.

(3.30)
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3.3.1. A Harmonic Oscillator

Now we present an application of the above relations to a kicked harmonic oscillator with

natural frequency equals to 1; we will write Lqξ = L
H

q

0
ξ .

Proposition 3.2. LetH0 be a harmonic oscillator hamiltonian with appropriate parameters so that its
eigenvalues are integers j, j ≥ 1, and UF = U0(1 + αPφ) as aforementioned. Then for any κ ∈ R and
cyclic vector φ forH0, there exists C > 0 so that, for T large enough,

L
q
ϕ1(T) ≤ C, (3.31)

where ϕ1 is the harmonic oscillator ground state. Hence one hasHq

0 -dynamical stability.

Proof. We use the above notation; note that ϕ1 ∈ dom H
q

0 , ∀q > 0 and Theorem 2.3 can be
applied. In this case we have

τ(z) = 1 +
∞∑

j=1

α|bj |2
1 − z = 1 +

α

1 − z
∥
∥φ
∥
∥
2 =

1 − z + α
1 − z , (3.32)

and so

a1 =
1

1 − z − α|b1|2
(1 − z)(e−i2πκ − z) ,

aj = − αbjb1

(1 − z)(e−i2πκ − z) , j > 1.

(3.33)

Now we evaluate Ij :=
∫2π
0 |aj |2dE. For j > 1 and γ(E) = eiE, 0 ≤ E ≤ 2π ,

∫2π

0
|aj |2dE =

∫2π

0

∣
∣
∣
∣
∣

αbjb1

(1 − z)(e−i2πκ − z)

∣
∣
∣
∣
∣

2

dE

= |α|2|bj |2|b1|
2
∫2π

0

dE
∣
∣(1 − e−iEe1/T )(e−i2πκ − e−iEe1/T )∣∣2

=
|α|2|bj |2|b1|

2

ie2/Te−i2πκ

∫

γ

w dw
(

w − β1
)(

w − β2
)(

w − β3
)(

w − β4
) ,

(3.34)
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where β1 = e1/T , β2 = e−1/T , β3 = e1/Tei2πκ, and β4 = e−1/Tei2πκ; only β2 and β4 are poles in the
interior of γ . By residue, for j > 1,

Ij =
2π |α|2|bj |2|b1|

2

e2/Te−i2πκ

(

β2
(

β2 − β1
)(

β2 − β3
)(

β2 − β4
) +

β4
(

β4 − β1
)(

β4 − β2
)(

β4 − β3
)

)

=
2πα|bj |2|b1|

2

(

e2/T − 1
)(

e−i2πκ − e2/T) − 2πα|bj |2|b1|
2
ei2πκ

(

e2/T − 1
)(

ei2πκ − e2/T)

=
2πα

∣
∣bj
∣
∣
2
∣
∣
∣b1
∣
∣
∣

2

(

e2/T − 1
)

(

1
e−i2πκ − e2/T − ei2πκ

ei2πκ − e2/T
)

,

(3.35)

and for j = 1

I1 =
∫2π

0

∣
∣
∣
∣
∣

1
1 − z − α|b1|2

(1 − z)(e−i2πκ − z)

∣
∣
∣
∣
∣

2

dE

=
∫2π

0

dE

(1 − z)(1 − z) − α|b1|
2
∫2π

0

dE

(1 − z)(1 − z)(ei2πκ − z)

− α|b1|2
∫2π

0

dE

(1 − z)(1 − z)(e−i2πκ − z)

+ |α|2|b1|4
∫2π

0

dE

(1 − z)(1 − z)(e−i2πκ − z)(ei2πκ − z) ,

(3.36)

and evaluating the integrals we obtain

I1 =
2π

(

e2/T − 1
) − 2π |b1|2

(

e2/T − 1
) − 2π |b1|2

(

ei2πκ − e2/T) − 2πα|b1|2
(

e2/T − 1
)(

e−i2πκ − e2/T)

+
2πα|b1|4
(

e2/T − 1
)

(

1
e−i2πκ − e2/T − ei2πκ

ei2πκ − e2/T
)

,

(3.37)

and after inserting this in the expression of the average energy we get

L
q
ϕ1(T) =

2
(

1 − e−2/T)T

(

1 − |b1|2 − α|b1|2
(

e−i2πκ − e2/T)
)

− 2|b1|2
e−2/T

(

ei2πκ − e2/T)T

+
2α|b1|2

(

1 − e−2/T)T

(

1
e−i2πκ − e2/T − ei2πκ

ei2πκ − e2/T
)

〈φ,Hq

0φ〉.

(3.38)
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Therefore, for large T there is a constant C(κ, b1) > 0 so that

L
q
ϕ1(T) ≤ C(κ, b1)

(

1 + 〈φ,Hq

0φ〉 +
1
T

)

. (3.39)

This completes the proof.

For harmonic oscillators with eigenvalues ωj, ω/= 1, the evaluations of the resulting
integrals are more intricate and were not carried out.

3.4. Kicked Perturbations by a V in L2(S1)

3.4.1. Kicked Linear Rotor

Consider

H(t) = ωp + V (x)
∑

n∈Z

δ(t − n2π), (3.40)

where p = −i(d/dx), ω ∈ R, and V ∈ L2(S1). The Hilbert space is L2(S1); this model was
considered in [12, 25, 26] and references therein. The Floquet operator is

UF = UV = e−i2πωpe−iV (x). (3.41)

Denote ϕj(x) = eijx/
√
2π , 0 ≤ x < 2π , and j ∈ Z to be the eigenvectors of p2

whose eigenvalues are the square of integers j2; all eigenvalues have multiplicity 2 (the
corresponding eigenvectors are ϕj and ϕ−j), except for the null eigenvalue which is simple.

Consider the case ω = 1; then

(

(UF − z)−1ϕ0

)

(x) =
1√

2π
(

e−iV (x) − z)
, (3.42)

and so

G
ϕ0
z

(

j
)

= 〈ϕj, Rz(UF)ϕ0〉 =
1
2π

∫2π

0

e−ijx

e−iV (x) − zdx. (3.43)

Denote Ij :=
∫2π
0 |Gϕ0

z (j)|2dE. It follows that

Ij =
1

(2π)2

∫2π

0

∣
∣
∣
∣
∣

∫2π

0

e−ijx

e−iV (x) − zdx
∣
∣
∣
∣
∣

2

dE

=
1

(2π)2

∫2π

0

∫2π

0
e−ijxeijy

(∫2π

0

dE
(

e−iV (x) − z)(eiV (y) − z)
)

dxdy.

(3.44)
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For x, y ∈ S1 fixed denote Ixy :=
∫2π
0 (dE/(e−iV (x) − z)(eiV (y) − z)). If γ(E) = eiE, 0 ≤ E ≤ 2π ,

one has

Ixy =
∫2π

0

dE
(

e−iV (x) − e−iEe1/T)(eiV (y) − eiEe1/T)

=
∫2π

0

dE

e−iEe−iV (x)
(

eiE − eiV (x)e1/T
)

e1/T
(

e−1/TeiV (y) − eiE)

= − 1
e1/Te−iV (x)

1
i

∫

γ

dw
(

w − eiV (x)e1/T
)(

w − e−1/TeiV (y)
) ,

(3.45)

and by residues

Ixy = − 2π
e1/Te−iV (x)

(

e−1/TeiV (y) − eiV (x)e1/T
) =

2π
(

e2/T − e−iV (x)eiV (y)
) . (3.46)

Hence

Ij =
1

(2π)2

∫2π

0

∫2π

0
e−ijxeijy

2π
(

e2/T − e−iV (x)eiV (y)
)dxdy

=
1
2π

∫2π

0
e−ijx

(∫2π

0

eijydy
(

e2/T − e−iV (x)eiV (y)
)

)

dx

=
1
2π

∫2π

0

e−ijx

e−iV (x)

(∫2π

0

eijydy
(

e2/TeiV (x) − eiV (y)
)

)

dx.

(3.47)

The analytical evaluation of these integrals is not a simple task. As an illustration,
consider the particular potential V (x) = x; since by Cauchy’s integral formula

∫2π

0

eijydy
(

e2/Teix − eiy) = −1
i

∫

γ

wj−1dw
(

w − e2/Teix) = 0, if j ≥ 1 (3.48)

and by residue theorem

∫2π

0

eijydy
(

e2/Teix − eiy) = −1
i

∫

γ

dw

w1−j(w − e2/Teix) =
2π

(e2/Teix)1−j
, if j ≤ 0, (3.49)

it is found that

Ij = 0 if j ≥ 1,

Ij =
1
2π

∫2π

0

e−ijx

e−ix
2π

(e2/Teix)1−j
dx =

1
e(2/T)(1−j)

∫2π

0
dx =

2π
e(2/T)(1−j)

, if j ≤ 0.
(3.50)
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Therefore, by (2.16) it follows that for any q > 0

L
p2q

ϕ0 (T) ≥
1

πe−2/T
1
T

∞∑

j=1

j2qI−j =
2
T

∞∑

j=1

j2qe−(2/T)j , (3.51)

and we conclude that (see the appendix)

L
p2q

ϕ0 (m) ≥ ctem2q (3.52)

and also that the sequence m �→ 〈Um
F ϕ0, p

2qUm
F ϕ0〉 is unbounded. This behavior is expected

since the spectrum of UF is absolutely continuous in this case [25], but here we got the
result explicitly without passing through spectral arguments, although in a rather involved
way; indeed, a much simpler derivation is possible by direct calculating Um

F ϕ0 and the
corresponding expectation values.

For V (x) = kx with integer k ≥ 2, similar results are obtained, that is

Ij =

⎧

⎪
⎨

⎪
⎩

0, if j = lk, l ≥ 1,

2π
e2/T (1 − l) , if j = lk, l ≤ 0

(3.53)

and so

L
p2q

ϕ0 (T) ≥
2k2q

T

∞∑

l=1

l2qe−(2/T)l. (3.54)

Therefore, we have the following lower bound for the Laplace average:

L
p2q

ϕ0 (m) ≥ C(k, q) m2q (3.55)

(see appendix). The same is valid if V (x) = kx with k denoting any negative integer number.

3.4.2. Power-Kicked Systems

Due to the difficulty in evaluating the integrals in (3.47), in order to estimate Lp
2q

ϕ0 (T) in some
situations we take an alternative way.

Consider the Kicked models in L2(S1)with Floquet operator

UF = UV = e−i2πωf(p)e−iV (x), (3.56)

corresponding to the hamiltonian

H(t) = ωf
(

p
)

+ V (x)
∑

n∈Z

δ(t − 2πn), (3.57)
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with p, V, ϕj as before and f(p) = pN for someN ∈ N. Let F : L2(S1) → l2(Z) be the Fourier
transform. Then FUVF−1 : l2(Z) → l2(Z) and

FUVF−1 = Fe−i2πωf(p)e−iV (x)F−1 = Fe−i2πωf(p)F−1Fe−iV (x)F−1, (3.58)

where Fe−i2πωf(p)F−1 is represented by a diagonal matrix D whose elements are

D(m,n) = e−i2πωf(n)δmn, (3.59)

and Fe−iV (x)F−1 is represented by a matrixW whose elements are

W(m,n) =
(Fρ)(m − n) = ρ̂(m − n), (3.60)

where ρ(x) = (1/
√
2π)e−iV (x). Denote B = DW ; so

B(m,n) = e−i2πωf(n)ρ̂(m − n), (3.61)

UV = F−1BF. (3.62)

Put η(z) = Rz(UV )ϕ0; then

UVη
(z) − zη(z) = ϕ0, (3.63)

and using (3.62)we obtain

BFη(z) − zFη(z) = Fϕ0. (3.64)

Thus, for each n ∈ Z,

(

BFη(z)
)

(n) −
(

zFη(z)
)

(n) =
(Fϕ0

)

(n), (3.65)

so that

e−i2πωf(n)
∑

j∈Z

ρ̂
(

n − j)Gϕ0
z

(

j
) − zGϕ0

z (n) = δn0. (3.66)

Tridiagonal Case

In order to deal with the above equations, we try to simplify them by supposing that V is
such that ρ̂(m − n) = 0 if |m − n| > 1. Then, for each n ∈ Z fixed (3.66) becomes

e−i2πωf(n)
∑

|n−j|≤1
ρ̂
(

n − j)Gϕ0
z

(

j
) − zGϕ0

z (n) = δn0, (3.67)
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and F−1UVF = B is tridiagonal and has the structure

B =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

. . .

g(−1)ρ̂(0) g(−1)ρ̂(−1)
ρ̂(1) ρ̂(0) ρ̂(−1)

g(1)ρ̂(1) g(1)ρ̂(0) g(1)ρ̂(−1)
g(2)ρ̂(1) g(2)ρ̂(0)

. . .

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

, (3.68)

where g(n) = e−i2πωf(n).
Now, a tridiagonal unitary operator U on l2(Z) is either unitarily equivalent to a

(bilateral) shift operator or an infinite direct sum of 2 × 2 and 1 × 1 unitary matrices, as
shown in [27, Lemma 3.1]. For proving this result it was only used that U is unitary and
Uek = αkek−1 + βkek + γkek+1, where {ek} is the canonical basis of l2(Z), that is,

U =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

. . . αk−1

βk−1 αk

γk−1 βk αk+1

γk βk+1

γk+1
. . .

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

. (3.69)

It then follows that for all k ∈ Z

|αk|2 + |βk|2 + |γk|2 = 1,

γk−1βk−1 + βkαk = 0,

αkγk = 0.

(3.70)

Applying these relations to B = F−1UVF we obtain the following.

(i) If ρ̂(−1)/= 0, then ρ̂(1) = ρ̂(0) = 0 and |ρ̂(−1)| = 1.

(ii) If ρ̂(1)/= 0, then ρ̂(−1) = ρ̂(0) = 0 and |ρ̂(1)| = 1.

(ii) If ρ̂(0)/= 0, then ρ̂(1) = ρ̂(−1) = 0 and |ρ̂(0)| = 1.

The next step is to investigate these cases. If ρ̂(0)/= 0, it reduces to the autonomous case
H(t) = H0 previously considered.

The cases ρ̂(−1)/= 0 and ρ̂(1)/= 0 are similar, so we only discuss that ρ̂(1)/= 0. For n ∈ Z

fixed, (3.67) takes the form

e−i2πωf(n)ρ̂(1)Gϕ0
z (n − 1) − zGϕ0

z (n) = δn0, (3.71)
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and so we can write Gϕ0
z (n) in terms of Gϕ0

z (0) and Gϕ0
z (−1) for all n ∈ Z. More precisely

G
ϕ0
z (n) =

e−i2πω(f(n)+···+f(1))ρ̂(1)n

zn
G
ϕ0
z (0), n ≥ 1,

G
ϕ0
z (−n) = zn−1

e−i2πω(f(−n+1)+···+f(−1))ρ̂(1)n−1
G
ϕ0
z (−1), n ≥ 2;

(3.72)

moreover, for n = 0 in (3.71)we obtain ρ̂(1)Gϕ0
z (−1) − zGϕ0

z (0) = 1, and so for z = e−iEe1/T and
T > 1

1 ≤
∣
∣
∣G

ϕ0
z (−1)

∣
∣
∣ + |z|

∣
∣
∣G

ϕ0
z (0)

∣
∣
∣

=
∣
∣
∣G

ϕ0
z (−1)

∣
∣
∣ + e1/T

∣
∣
∣G

ϕ0
z (0)

∣
∣
∣

≤ e
(∣
∣
∣G

ϕ0
z (−1)

∣
∣
∣ +
∣
∣
∣G

ϕ0
z (0)

∣
∣
∣

)

,

(3.73)

and there exists d > 0 so that

∣
∣
∣G

ϕ0
z (−1)

∣
∣
∣

2
+
∣
∣
∣G

ϕ0
z (0)

∣
∣
∣ ≥ d > 0. (3.74)

Therefore, by (2.16), for T > 1 one has

L
p2q

ϕ0 (T) ≥
1

πe−2/T
1
T

∞∑

n=1

n2q
(∫2π

0

∣
∣
∣G

ϕ0
z (n)

∣
∣
∣

2
dE +

∫2π

0

∣
∣
∣G

ϕ0
z (−n)

∣
∣
∣

2
dE

)

=
1

πe−2/T
1
T

∞∑

n=1

n2q
(

1
e2n/T

∫2π

0

∣
∣
∣G

ϕ0
z (0)

∣
∣
∣

2
dE

+e2(n−1)/T
∫2π

0

∣
∣
∣G

ϕ0
z (−1)

∣
∣
∣

2
dE

)

≥ 1
πe−2/T

1
T

∞∑

n=1

n2qe−2n/T
∫2π

0

(∣
∣
∣G

ϕ0
z (0)

∣
∣
∣

2
+
∣
∣
∣G

ϕ0
z (−1)

∣
∣
∣

2
)

dE

≥ d 2
T

∞∑

n=0

(n + 1)2qe−2n/T ,

(3.75)

so that, by the discussion at the end of the appendix,

L
p2q

ϕ0 (m) ≥ C(m + 1)2q, (3.76)

and 〈Um
V ϕ0, p

2qUm
V ϕ0〉 is unbounded. Hence we have instability.
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Pentadiagonal Case

Suppose now that V is such that ρ̂(m−n) = 0 if |m−n| > 2. Then for each n ∈ Z fixed, equation
(3.66) becomes

e−i2πωf(n)
∑

|n−j|≤2
ρ̂
(

n − j)Gϕ0
z

(

j
) − zGϕ0

z (n) = δn0, (3.77)

and F−1UVF is pentadiagonal and has a structure similar to the corresponding operator in
the previous case, just adding the elements whose distance to the diagonal is 2. The elements
in the new upper diagonal are e−i2πωf(n)ρ̂(−2), and those in the new lower diagonal are
e−i2πωf(n)ρ̂(2).

For not repeating the tridiagonal case we suppose that either ρ̂(2) or ρ̂(−2) is different
from zero. If U is a pentadiagonal unitary operator in l2(Z), that is, Uek = ζkek−2 + αkek−1 +
βkek + γkek+1 + θkek+2, one gets the matrix representation

U =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

. . .

βk−2 αk−1 ζk

γk−2 βk−1 αk ζk+1

θk−2 γk−1 βk αk+1 ζk+2

θk−1 γk βk+1 αk+2

θk γk+1 βk+2

. . .

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

. (3.78)

From this we obtain the following relations, for each k ∈ Z,

|ζk|2 + |αk|2 +
∣
∣βk
∣
∣
2 +
∣
∣γk
∣
∣
2 + |θk|2 = 1,

ζkαk−1 + αkβk−1 + βkγk−1 + γkθk−1 = 0,

βk−1θk−1 + αkγk + ζk+1βk+1 = 0,

αk−1θk−1 + ζkγk = 0,

ζkθk = 0.

(3.79)

Suppose that ρ̂(2)/= 0. The case ρ̂(−2)/= 0 is similar. Then by the above relations we obtain
ρ̂(−2) = ρ̂(−1) = ρ̂(0) = ρ̂(1) = 0, and so (3.77) becomes

e−i2πωf(n)ρ̂(2)Gϕ0
z (n − 2) − zGϕ0

z (n) = δn0. (3.80)
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For n = 0 one gets ρ̂(2)Gϕ0
z (−2) − zGϕ0

z (0) = 1 and analogously to the previous case

∣
∣
∣G

ϕ0
z (−2)

∣
∣
∣

2
+
∣
∣
∣G

ϕ0
z (0)

∣
∣
∣

2 ≥ d > 0, (3.81)

with z = e−iEe1/T and T > 1. Since for n ≥ 1

G
ϕ0
z (2n) =

e−i2πω(f(2n)+f(2n−2)+···+f(2))ρ̂(2)n

zn
G
ϕ0
z (0),

G
ϕ0
z (−2n) = zn−1Gϕ0

z (−2)
ρ̂(2)n−1e−i2πω(f(−2(n−1))+···+f(−2))

,

(3.82)

we obtain

L
p2q

ϕ0 (T) ≥
1

πe−2/T
1
T

∞∑

n=1

(2n)2q
(∫2π

0

∣
∣
∣G

ϕ0
z (2n)

∣
∣
∣

2
dE +

∫2π

0

∣
∣
∣G

ϕ0
z (−2n)

∣
∣
∣

2
dE

)

=
1

πe−2/T
1
T

∞∑

n=1

(2n)2q
(

1
e2n/T

∫2π

0

∣
∣
∣G

ϕ0
z (0)

∣
∣
∣

2
dE

+e2(n−1)/T
∫2π

0

∣
∣
∣G

ϕ0
z (−2)

∣
∣
∣

2
dE

)

≥ 1
πe−2/T

1
T

∞∑

n=1

(2n)2qe−2n/T
∫2π

0

(∣
∣
∣G

ϕ0
z (0)

∣
∣
∣

2
+
∣
∣
∣G

ϕ0
z (−2)

∣
∣
∣

2
)

dE

≥ d 2
m

∞∑

n=0

(2(n + 1))2qe−2n/T ,

(3.83)

hence

L
p2q

ϕ0 (T) ≥ C(2(m + 1))2q, (3.84)

and 〈Um
V ϕ0, p

2qUm
V ϕ0〉 is unbounded.

N-Diagonal Case

If V satisfies ρ̂(m − n) = 0 for |m − n| > N, we suppose that either ρ̂(N) or ρ̂(−N) is different
from zero. In case ρ̂(N)/= 0, by unitarity and the structure of F−1UVF we obtain that ρ̂(N −
1) = · · · ρ̂(0) = ρ̂(−1) = · · · = ρ̂(−N) = 0, thus (3.66) becomes, for each n ∈ Z,

e−i2πωf(n)ρ̂(N)Gϕ0
z (n −N) − zGϕ0

z (n) = δn0, (3.85)
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and so

∣
∣
∣G

ϕ0
z (−N)

∣
∣
∣

2
+
∣
∣
∣G

ϕ0
z (0)

∣
∣
∣

2 ≥ d > 0, (3.86)

with z = e−iEe1/T , T > 1. Moreover, for n ≥ 1

G
ϕ0
z (nN) =

e−i2πω(f(nN)+f((n−1)N)+···+f(N))ρ̂(N)n

zn
G
ϕ0
z (0),

G
ϕ0
z (−nN) =

zn−1Gϕ0
z (−N)

ρ̂(N)n−1e−i2πω(f(−N(n−1))+···+f(−N))
.

(3.87)

Similarly to the previous cases we conclude that

L
p2q

ϕ0 (T) ≥ d
2
T

∞∑

n=0

(N(n + 1))2qe−2n/T . (3.88)

Therefore we can state the following result.

Theorem 3.3. For Kicked systems in L2(S1) with

UV = e−i2πωf(p)e−iV (x) (3.89)

as in (3.56), one can obtain that FUVF−1 : l2(Z) → l2(Z) is represented by the matrix B with
elements B(m,n) = e−i2πωf(n)ρ̂(m − n), where ρ(x) = (2π)−1/2e−iV (x). If V satisfies ρ̂(m − n) = 0
for |m − n| > N ∈ N

∗ and either ρ̂(N) or ρ̂(−N) is different from zero, then V (x) = ±Nx + θ, for
some θ ∈ R, and FUVF−1 is unitarily equivalent to TN (theNth power of T ) where T is the bilateral
shift. Furthermore,

L
p2q

ϕ0 (T) ≥ d
2
T

∞∑

n=0

(N(n + 1))2qe−2n/T . (3.90)

Proof. It is enough to prove that FUVF−1 is unitarily equivalent to TN . Suppose that ρ̂(N)/= 0
(the case for ρ̂(−N)/= 0 is similar); then by the above discussion we obtain

B(m,n) =

⎧

⎨

⎩

0, if m/=n +N,

e−i2πωf(n)ρ̂(N), if m = n +N,
(3.91)

that is, Ben = e−i2πωf(n)ρ̂(N)en+N where {en} is the canonical basis of l2(Z). Since |ρ̂(N)| = 1,
write ρ̂(N) = e−iθ. LetW be the unitary operator defined by

Wen = eiϑnen, n ∈ Z, (3.92)
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where ϑn are elements in [0, 2π). If ϑn satisfies for all n ∈ Z

ϑn+N − ϑn = 2πωf(n) + θ, (3.93)

it follows thatW−1BW = TN . Equation (3.93) is satisfied taking, for example, ϑ0 = ϑ1 = · · · =
ϑN−1 = 0 and another ϑn obeying (3.93).

Although Theorem 3.3 gives a nice illustration of the potential applications of our
expression for the Laplace average, since it is one of the few instances that such average can
be explicitly estimated from below, again it can be derived by more direct methods and one
can also conclude [25] that the spectrum of the corresponding Floquet operators is absolutely
continuous.

4. Conclusions

Although most of our applications of Theorem 2.3 give expected results (sometimes known
results that can be derived in simpler ways), we believe that that formula is interesting and
has a potential to be applied to more sophisticated models as the Fermi accelerator. The
difficulty is to get expressions or estimates for the Green functions, since calculating the
resolvent of an operator is not always an easy task; sometimes we have the expressions for
resolvent operators (e.g., for kicked systems), but the resulting integrals can be too involved.
We have not tried any numerical approach to formula (2.15), which might be useful for some
specific models.

In the case of one-dimensional discrete Schrödinger operators, where the hamiltonian
isHV : l2(Z) → l2(Z) defined by

(HVξ)(n) = ξ(n + 1) + ξ(n − 1) + V (n)ξ(n), (4.1)

V a bounded sequence, a similar formula can be handled in some cases by relating the
resolvent RE+i/T (HV ) to transfer matrices. Then adequate upper bounds of such transfer
matrices, on some set of energies E, result in lower estimates for the corresponding Green
functions, and then transport properties are obtained for interesting models (see [21] and
references therein).

In [27] a class of Floquet operators displaying a pentadiagonal structure was
introduced; for these models there is a transfer matrix formalism. However, such transfer
matrices are too complicated, and analytical estimates seem far from trivial.

Anyway, the technique here is quite general; it asks no particular regularity of the
time-dependence and can be virtually applied to any time-periodic system as soon as the
time evolution is well posed. As already said, the chief difficulty is related to suitable
bounds of matrix elements of the resolvents of unitary (Floquet) operators, a task harder
than we initially envisaged. Herein we put forward for consideration the challenge of getting
additional applications for the formula (2.15) deduced for the Laplace averages, including an
application of Theorem 3.1 to physical models. It is also worth mentioning the question left
open in Lemma 2.2, that is, is it true that β−e = β−

d
?
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Appendix

Laplace Transform of Sequences

Let a = (an)n∈N
be a sequence of positive real numbers. The Laplace transform of a, denoted

by fa, is the function defined by

fa(s) =
∞∑

n=0

e−sna(n), (A.1)

for s in a subset of R. It will also be denoted by fa(s) = L(a).
We say that the Laplace transform of a = (an) exists if the series in (A.1) converges for

some s. For example, if a(n) = en
2
, then the sum in (A.1) diverges for all s ∈ R.

Examples

(1) For the constant sequence a(n) = 1 it follows that

fa(s) =
∞∑

n=0

e−sn =
1

(1 − e−s) , (A.2)

for s > 0. By using Taylor expansion, for small s one finds that 1/(1 − e−s) ≈ 1/s.
(2) Since

∑∞
n=0z

n = 1/(1 − z), for z ∈ C, |z| < 1, it follows that

∞∑

n=0
(n + k)(n + k − 1) · · · (n + 1)zn =

k!

(1 − z)k+1
, (A.3)

for k = 1, 2, 3, . . . , and z as above. Thus, the Laplace transform of ak(n) = (n + k)(n + k −
1) · · · (n + 1) is

fka (s) =
∞∑

n=0

e−snak(n) =
k!

(1 − e−s)k+1
, s > 0. (A.4)

For small s, fka (s) ≈ k!/sk+1.
A sequence of complex numbers a = (an) is said to be exponential of order σ0 (real) if

there existsM > 0 so that |a(n)| ≤ Meσ0n, ∀n. That is, a(n) does not increase faster than eσ0n

as n → ∞. If a = (an) is exponential of order σ0 > 0, then

fa(s) =
∞∑

n=0

e−sna(n) (A.5)

is convergent for any s > σ0.
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Let V denote the set of positive sequences of exponential order σ0. The Laplace
transform L satisfies

L(ca) = cL(a), L(a + b) = L(a) +L(b), (A.6)

where c is a positive number, and a and b are sequences inV. Moreover, if a ∈ V andL(a) = 0,
then

∑∞
n=0e

−sna(n) = 0 and so a(n) = 0 for all n, that is, a = 0. Thus L is injective on V.
The Laplace average (2.5) is related to the Laplace transform of EA

ξ
(n) by

LAξ (T) =
2
T

∞∑

n=0

e−2n/TEAξ (n) =
2
T
fEA

ξ

(
2
T

)

. (A.7)

If a(n) = 1 for all n, then

2
T
fa

(
2
T

)

=
2
T

1
(

1 − e−2/T) ≈ 2
T

1
2/T

= 1 (A.8)

for T large enough. If a(n) = (n + k)(n + k − 1) · · · (n + 1) ≈ nk, then

2
T
fa

(
2
T

)

=
2
T

k!

(1 − e−2/T)k+1
≈ 2
T

k!

(2/T)k+1
= k!

(
T

2

)k

(A.9)

for large T . Hence, if EA
ξ
(T) grows like Tk, then the same law holds for its average Laplace

transform. We have a restricted converse, that is, if LA
ξ
(n) grows with a positive power of n

then, by Lemma 2.2, its Cesàro average is unbounded (with a rather similar behavior at large
times) and so is EA

ξ
(n). These properties are repeatedly used in the text.

One should be aware that there are special situations of unbounded positive sequences
a(n) with bounded average Laplace transforms (so that β+e = β+d = 0); an explicit example is
a(n2) = n and a(n) = 0 for n/∈ {k2 : k ∈ N}. The same phenomenon is well known for Cesàro
averages, and, by Lemma 2.2, such phenomena are connected.
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