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Optimal state information-based control policy for a distributed database system subject to server failures is considered. Fault-
tolerance is made possible by the partitioned architecture of the system and data redundancy therein. Control actions include
restoration of lost data sets in a single server using redundant data sets in the remaining servers, routing of queries to intact servers,
or overhaul of the entire system for renewal. Control policies are determined by solving Markov decision problems with cost criteria
that penalize system unavailability and slow query response. Steady-state system availability and expected query response time of
the controlled database are evaluated with the Markov model of the database. Robustness is addressed by introducing additional
states into the database model to account for control action delays and decision errors. A robust control policy is solved for the
Markov decision problem described by the augmented state model.

Copyright © 2008 N. Eva Wu et al. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

1. INTRODUCTION

A database, as described in [1], is a shared collection of re-
lated data and the description of this data, designed to meet
the information needs of a client. A recent study by Wu et al.
[2] on a distributed database system, as shown in Figure 1,
revealed the benefits of a conscientious design of redundant
architecture and the application of state information-based
control. Such benefits were quantified in terms of mean time
to system failure, steady-state availability, expected response
time, and service overhead. The database system was viewed
as a queuing network [3, 4] and mathematically modeled as
a Markov chain [5]. The control authorities considered in-
cluded the ability to restore the lost data sets in a single server
and the ability to route service requests. In order to obtain
an analytic model of manageable size for scrutinizing the ef-
fects of control, the queuing network was restricted to the
closed type with a query population of three. In addition,
all the event lifetime distributions were assumed to be expo-
nential. A simulation study conducted by Metzler [6] using
Arena [7, 8] with the above restrictions removed supported
the conclusions in [2].

The first objective of this paper is to provide justification
that the control policy applied in the aforementioned study
[2] is optimal in a well defined sense. To that end, a Markov
decision problem [9, 10] is formulated and the solution that

minimizes a total expected discounted cost is sought. For the
purpose of illustration, a simple problem that disregards the
query states is set up, for which the policy developed in [2] is
confirmed to be optimal.

In reality, however, it is not practical to monitor every
state variable in a network. As a result, knowledge on a cer-
tain set of states is inferred based on the observables. On the
other hand, a control action, in response to a state transi-
tion such as an occurrence of a server failure, must wait un-
til a process of diagnosing the failure state [11] is complete.
The time required for diagnosis is assumed to be a random
variable and the outcome of the diagnosis usually has some
degree of uncertainty as well. If servers must communicate
through wireless channels, the likelihood of an erroneous de-
cision and a delayed action is drastically increased. Recogniz-
ing that the assumption of instantaneous accessibility of the
state information in the database system could lead to overly
optimistic conclusions on system performance, Wu et al. [12]
took a further step to analyze the effects of control action de-
lays and decision errors for the same database system. Their
analysis concluded that delays and errors can significantly de-
grade the performance of the database system.

Therefore, the second objective of the paper is to seek a
robust control policy that mitigates the effects of such con-
trol action delays and decision errors. A robust solution ob-
viously has a strong dependence on how uncertainties are
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Figure 1: A queuing network representation of a partitioned
database system with three servers.

modeled. This paper establishes an uncertain database model
following the basic principles presented in [12]. The new
model also captures the effect of routing delays of queries
from a failed server to remote intact servers. A new Markov
decision problem is then formulated and solved. Due to the
increased dimension of the problem, approximate solutions
are sought via numerical means.

This paper presents a novel model of a replicated data
store wherein a set of information is partitioned and each
partition is stored on multiple servers. This work is moti-
vated by the recognition of the need for greatly enhanced
availability of information management systems in air op-
erations [13]. It addresses the desirability of hardware repli-
cation and state-information-controlled restoration, whereas
published works in the field of distributed database and repli-
cation have discussed specific protocols and software failures
[14].

The paper is organized as follows: Section 2 describes the
baseline model of the controlled database system shown in
Figure 1; Section 3 formulates and solves a Markov decision
problem that justifies the control policy applied to the base-
line model; Section 4 presents an approach to modeling con-
trol action delays and decision errors; Section 5 formulates
and solves, using dynamic programming, a Markov decision
problem with an uncertain model containing delays and er-
rors, and analyzes the robustly controlled system in terms of
system availability and query response time in the presence
of control action delays and decision errors.

2. BASELINE MODEL AND NOTATION FOR
A CONTROLLED DATABASE SYSTEM

The description of a baseline model for a replicated data store
follows to a large extent that of Wu et al. [2]. In particular,
a system of three servers is studied, each storing two parti-
tions out of a total of three. Each partition has one “primary”
server and one “secondary” server.

The distributed database system in Figure 1 contains
three servers in parallel to answer three classes, A,B, and C,
of queries for which relevant information can be found in
the partitioned data sets, A,B, and C, of the database, respec-
tively. Server SMN would contain the data set corresponding
to class M as the primary set and a reproduction of data set
N as the secondary set. Alternate secondary data sets are re-
produced in order to automate restoration of failed servers
within the database. The failure of a server implies the loss of
two sets of data within the server. A system level failure is de-
clared when two servers fail, in which case one set of data is
completely lost. The queues preceding servers SAB, SBC , and
SCA are named QAC, QBC , and QCA, respectively. All queues
are of sufficient capacity in the baseline model. Service is pro-
vided on a first-come-first-served (FCFS) basis at each server.

The three delay elements of average delay 1/λ imply that
there are always three queries present in the system at any
given time. A new query is generated at a delay element with
rate λ upon the completion of the service to a query at one of
the servers. The delay elements are also intended to be reflec-
tive of the response time to the querying customers by other
service nodes in the system that are not explicitly modeled.
Any new query is assumed to have a likelihood of ρIJ to visit
server SIJ , where IJ can be AB, BC, or CA.

The use of a queuing network model for the database is
based on its suitability to involve control actions and to cap-
ture their effects on the system performance. The model is
built in this study with the premise that event life distribu-
tions have been established for the process of query genera-
tion (exp(λ) ≡ 1 − e−γt), the process of service completion
(exp(μ)), the process of server failure (exp(ν)), the process
of data restoration (exp(γ)), and the process of system over-
haul (exp(ω)) when the failed database system is repaired. All
such processes are independent. Standard statistical meth-
ods that involve data collection, parameter estimation, and
goodness of fit tests exist [15] for identifying event life distri-
butions. Alternative distributions and goodness of these as-
sumptions were investigated in [6]. Since all event lives are
assumed to be exponentially distributed, the database sys-
tem can be conveniently modeled as a Markov chain specified
by a state space X, an initial state probability mass function
(pmf) πx(0), and a set of state transition rates Λ.

2.1. Model specification

State space X

A state name is coded with a 6-digit number indicative
of all queue lengths and server states in the system. With
some abuse of notations, a valid state representation is given
by QABQBCQCASABSBCSCA, where queue length QAB, QBC ,
QCA ∈ {0, 1, 2, 3} with total length L≡ QAB +QBC +QCA ≤ 3
limited by the three entities available in the closed-queue sys-
tem. The server states SAB, SBC , SCA ∈ {0, 1, 2} are further
defined as “2” ≡ data are lost in both the primary and the
secondary sets in a server, “1” ≡ the data in the primary set
have been restored and data in the secondary set have not
been restored, and “0” ≡ data in both primary set and sec-
ondary set in a server are intact. A server is said to be in the
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down state if it is either at states “1” or “2.” For example, state
110020 indicates that server SAB is up with one customer in
its queue, server SBC is down with both sets of data lost and
one customer in its queue, and server SCA is up and idle. Note
that the queue length includes the customer being served.
There are 540 valid states in the baseline system. The total
number of states is reduced to 147 when all the states repre-
senting system level failures are aggregated into seven states
memorizing the possible queue length distributions and ex-
ploiting the symmetry of the three servers. A set of alterna-
tive state names are assigned from X = {1, 2, . . . , 147} with
000000 mapped to x = 1 and the aggregated system failure
state mapped to x = 141, . . . , 147. Although the symmetry of
the system allows further reduction on the number of states
to 56, the 147-state model is retained for clarity of presenta-
tion.

Initial state pmf {πx(0), x = 1, 2, . . . , 147}
It is assumed that the database system starts operation from
state x = 1(000000), that is, the initial state probability is
given by vector π(0) = [1 0 . . . 0].

Set of state transition functions pi, j(t)

Events that trigger the transitions and the corresponding
transition rates are given as follows. A newly generated query
enters one of the servers with rate (3−L)×λ/3. A query is an-
swered at a server with rate μ. A complete data loss occurs at a
server with rate ν. Data in the primary data set of a server are
restored with rate γ or repaired with overhaul rate ω. Data in
the secondary data set of the server are restored with rate γ,
following the restoration of the primary data set. The failed
database system is always renewed with overhaul rate ω.

Let X ∈ X denote the random state variable at time t.
The set of state transition functions is given by

pi, j(t) ≡ P
[
X(t) = j | X(0) = i

]
, i, j = 1, 2, . . . , 147.

(1)

The continuous-time Markov chain can be solved from
the forward Chapman-Kolmogorov equation [5, 10]

Ṗ(t) = P(t)Q
(
u(x)

)
, P(0) = I , P(t) = [pi, j(t)

]
(2)

and Q(u(x)) is called an infinitesimal generator or a rate
transition matrix whose (i, j)th entry is given by the rate as-
sociated with the transition from current state i to next state
j. (See [2] for the complete rate transition.) Control variable
u(x) will be defined shortly. State probability mass function
at time t,

π(t) = [π1(t) π2(t) . . . π147(t)], t ≥ 0, (3)

is computed by

π(t) = π(0)P(t). (4)

At this point, a baseline Markov model for the database
system of Figure 1 has been established. Since transition rate
matrix Q is dependent on control actions, the state transition
functions pi, j(t) are being controlled, as are the state proba-
bilities.

2.2. Control Policy

Our intention is to eliminate all single point failures. Our ap-
proach is to base the control actions on the state informa-
tion, which effectively alter the transition rates when loss of
data occurs in a single server. The possible set of control ac-
tions includes restoration, overhaul, and no decision needed.
There is one admissible set of control actions at each state. A
state of no decision needed has an empty admissible set.

Taking into consideration the symmetry of the model,
the control policy considered for this study is summarized
as follows:

u(x) =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

0, upon entering the state of one server

failure, system overhauls;

1, upon entering the state of one server

failure, system restores.

(5)

The presence of control in the transition rate matrix is seen
via u(x) and u(x) = 1 − u(x). The values of u(x) repre-
sent specific control actions associated with data restoration
(u(x) = 1) or system overhaul (u(x) = 1), respectively. Pre-
viously in [2], system overhaul is considered only at state
x = 141 through x = 147.

2.3. Performance measures

Two of the four performance measures defined in [2] are
reintroduced: steady-state availability Asys and expected re-
sponse time E[R]. These will be used later to validate the con-
trol policies that are derived under cost criteria intended to
improve both Asys and E[R].

Steady-state availability

Suppose as soon as the database system reaches a system level
failure, an overhaul process starts. Suppose, with a rate ω, the
system is repaired, and at the completion of the repair, the
system immediately starts to operate again. In this case, the
Markov chain becomes irreducible, and a unique steady-state
distribution exists [5, 10]. The steady-state availability, which
can be roughly thought of as the fraction of time the database
system is upto, is computed in [2] by

Asys = 1− πF(∞), (6)

where πF(∞) is the sum of the system level failure state prob-
abilities determined by solving

π(∞)Q = 0,
147∑

x=1

πx(∞) = 1. (7)

Expected query response time

Query response time is the amount of time elapsing from
the instant a query enters a queue until it completes service
[10]. With server failures, the average response time E[R] is
calculated as the expectation of the ratio of total amount of
time that all queries spend waiting for service in queue, plus
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Figure 2: Markov chain model of the database reflecting only the server states.

their service times to the number of queries that are serviced.
Consider, again, the irreducible chain modeling of the system
in Figure 1. Let Ii, j be the indicator function associated with
transition from state i to state j that indicates a query arrival.
Let Ni be the total number of queries in queue at state i. Then
the total expected number of queries in queue at the steady
state is given by

E[X] =
147∑

i=1

πi(∞)Ni, (8)

and the arrival rate at steady-state is

λs =
147∑

i=1

πi(∞)
147∑

i=1

Ii jqi j . (9)

The calculation of the response time at steady-state then fol-
lows Little’s Law [4, 10] E[X] = λsE[R].

3. RESTORATION AS SOLUTION TO MARKOV
DECISION PROBLEM

Intuition suggests that by restoring the lost data sets in a
single failed server, overhaul can be avoided, and therefore,
the stationary control policy u(x) given in (5) ought to ren-
der service more available. However, the restoration process
occupies one of the remaining servers, and therefore, may
prolong the average response time of the system to queries.
This section formulates and solves a Markv decision problem
(MDP) for the database system to justify the optimality of the
restoration policy used in [2].

The Markov decision problem considered in this paper
assumes that a cost C(i,u) is incurred at every state tran-
sition, where i is the state entered and u is a control ac-
tion selected from a set of admissible actions [9, 10]. The
solution amounts to determining a stationary policy π =

{u0(x0),u1(x1), . . . } that minimizes the following expected
total discounted cost:

Vπ(x0) = Eπ

∞∑

k=0

αkC(Xk,uk), (10)

where 0 < α < 1 is a discount factor.
To simplify the presentation, state information on repre-

senting service demand is ignored for the moment. In this
case, the inherent symmetry of the database system leads to
a very simple 4-state Markov model as shown in Figure 2.
As a result, the finite population assumption can be relaxed,
that is, the closed queuing network of Figure 1 can either re-
main closed or can be revised to an open queuing network.
In addition, query handling in the event of a server failure
becomes completely unrestricted. Two different methods of
query handling are to be examined in this section.

(1) Each arrival query has equal likelihood to seek infor-
mation in data sets A, B, or C, but only the primary
data set is available for query service in each server, and
the secondary server is there to restore data in a failed
server.

(2) Upon a server failure, queries are rerouted to the two
remaining servers where the secondary data sets also
participate in query service though only one of the two
intact servers can provide service to only two of the
three classes of queries during restoration.

The distinction in these two cases is captured in transi-
tion probabilities and in transition costC(i,u). Fault-tolerant
control policies are now developed for the two cases.

3.1. Secondary data set reserved for
lost data restoration

This subsection derives the optimal control policy with the
first method for handling queries; each arrival query has
equal likelihood to seek information in data sets A, B, or C,
but only the primary data set is available for query service in
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Table 1: One step cost C(xk ,uk).

State u = 1 u = 0

3 0 0

2 1/γ 1/ω

1 1/ω 1/ω

0 1/γ 1/ω

0.9
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1.6
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1.8

γ
/ω
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Optimal control regions
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u = 0 optimal

Figure 3: Optimal policy on the (α, γ/ω) graph.

each server, and the secondary server is there to restore data
in a failed server.

Figure 2 shows a discrete time Markov chain model for
this case. This model is obtained by the application of a uni-
formization procedure [10] with a uniform rate ρ = 3ν+ω+γ
that is greater than any total outgoing transition rates at any
state of the original continuous time Markov process. All pa-
rameters in Figure 2 have been defined earlier.

A fault-tolerant control policy essentially determines
whether to occupy one of the two working servers to restore
the data in the failed server or to overhaul the entire system
at the state of one server failure. It is determined by how the
designer penalizes a control action at any given state. Table 1
specifies the one step cost at each state.

Let Xk ∈ {1, 2, 3, 4} denote the random state variable at
t = k/ρ in the discrete time Markov chain. Control action
u(xk) = 1(or 0, orϕ) indicates the system’s decision to (or not
to overhaul, or not to act) restore a failed server. C(xk,uk) in
Table 1 is the cost incurred when control action uk is taken
based on xk. It has been shown that under the condition
0 ≤ C( j,u) < ∞ for all j and all u that belongs to some
finite admissible sets Uj , the minimal cost V∗(i) satisfies the
following optimality equation [9, 10]:

V(i) = min
u∈Ui

{

C(i,u) + α
∑

j

pi, jV( j)

}

, (11)

where pi, j have been marked in Figure 2. In addition, pol-
icy π∗ is optimal if and only if it yields V∗(i) for all i. The
four optimality equations can be expressed explicitly based
on (11):

V(0) = min
u

{
1
ω

+ α
3ν + γ

ρ
V(0) + α

ω

ρ
V(3)

︸ ︷︷ ︸
u=0

,

1
γ

+ α
ν + ω

ρ
V(0) + α

2ν

ρ
V(1) + α

γ

ρ
V(3)

︸ ︷︷ ︸
u=1

}
;

V(1) = min
u

{
1
ω

+ α
3ν + γ

ρ
V(1) + α

ω

ρ
V(3),

1
ω

+ α
3ν + γ

ρ
V(1) + α

ω

ρ
V(3)

}
;

V(2) = min
u

{
1
ω

+ α
2ν + γ

ρ
V(2) + α

ω

ρ
V(3),

1
γ

+ α
γ

ρ
V(0) + α

2ν

ρ
V(1) + α

ν + ω

ρ
V(2)

}
;

V(3) = min
u

{
α

3ν

ρ
V(2) + α

ω + γ

ρ
V(3),

α
3ν

ρ
V(2) + α

ω + γ

ρ
V(3)

}
.

(12)

The above equations are solved for V∗(i), for i =
0, 1, 2, 3, using Mathematica [16]. Figure 3 is created with
ω = 10ν and α ∈ [0, 1). It can be seen that, when the ra-
tio of γ to ω is above the blue curve, u = 1 (restoration)
is optimal at all states, whereas u = 0 (overhaul) is optimal
when γ/ω is below the red curve. Between the two curves,
{u(2) = ϕ, u(0) = ϕ} is optimal, for transition from state
“2” to state “0” implies restoration of primary data set, which
cannot occur with control action u(2) = 0. Therefore, the
mid-region optimal policy does not take place in the opera-
tion of the database system.

Note that γ/ω = 5 in [2], which lies above the blue curve
in Figure 3 for any α ∈ [0, 1). Therefore, the always-restore
policy implemented in [2] is optimal under the cost structure
defined in Table 1.

3.2. Secondary data set available for both query
service and data restoration

This subsection considers the second method of query han-
dling upon a server failure: overhaul can only occur at
state “1,” which implies that queries of the failed server are
rerouted to the two remaining servers where the secondary
data sets also participate in query service though only one of
the two intact servers can provide service to only two of the
three classes of queries during restoration.
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The uniformized Markov chain model is shown in
Figure 4. In this case,

u(x) =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

0, upon entering the state of one server

failure, system awaits,

1, upon entering the state of one server

failure, system restores,

(13)

overhaul is held until a second server fails, and all classes of
queries rely on the service of the two operating servers in the
meantime.

Figures 5(a) and 5(b) compare the optimal cost-to-go’s of
the two methods of query handling as functions of restora-
tion rate γ at fixed ω = 10ν and ν = 0.001. Different line
types specify different control actions. In Figure 5(b), for ex-
ample, no control action is taken at state “0” unless γ ≥ 1.8ω
where restoration takes place; the system is always overhauled
at state “1;” no control action is taken at state “2” unless
γ ≥ 2.6ω where restoration takes place; and no control ac-
tion is ever taken at state “3.” It is seen that control pol-
icy change occurs at a higher ratio of γ/ω with the second
method (policy change at γ = .026 in Figure 5(b)) than
that with the first method (policy change at γ = .014 in



N. Eva Wu et al. 7

B1 · · · · · ·Bn F1 Fm

CA

I

cλA,C

(1− c)λA,C
rC

To service completion To server data loss

To restoration of primary database

To server data loss

To intermittent error
To recovery from error

Figure 6: Decision error modeling with an intermittent error state.

Figure 5(a)). Despite the slight favor toward overhaul, the
optimality of the “always-restore” policy applied in [2] still
holds with the second method at the nominal parameter val-
ues μ = 12, γ = 0.05, and ω = 0.01, where γ/ω = 5 > 2.6.

4. AUGMENTED MODEL INCLUDING CONTROL
DELAYS AND DECISION ERRORS

This section establishes a full-state model to include the ef-
fects of decision errors and control action delays upon enter-
ing a state of a single server failure. The first two subsections
follow [12] that treated these separately as the effect of de-
cision errors when a control action is taken incorrectly but
immediately upon entering a state, and the effect of delayed
control actions when a correct control action is taken but
after some time delay. There are deterministically diagnos-
able systems for which the only cost of diagnosis is time [11].
The third subsection presents a new model to be used in ro-
bust control policy design that combines the two augmented
models and introduces also delays due to rerouting queries
from failed sever to intact servers.

4.1. Modeling the effect of erroneous decisions

The control action considered in this study is state informa-
tion based. Upon entering a state, for instance, A, any infor-
mation deficiency can result in uncertainty in decision mak-
ing as to whether to take a control action or what control
actions to take. In this case, every decision carries a risk [17].

A decision error in the database system could include
the possibility that upon a server failure, the wrong server
is identified as being failed. More specifically, SAB, for in-
stance, has failed. However, SCA is mistakenly observed as the
failed server. Based on the false information, the control ac-
tion would be for SBC to restore data setC in SCA, whereas SAB
would be expected to continue to work. As a consequence,
none of the servers can process queries for a period of time,
and the database system is said to have entered an intermit-

tent error state. It is assumed that from this state, only tran-
sitions representing service completion can occur. Figure 6
depicts a generic representation of such a case.

Without loss of generality, let A be a state that is entered
upon the loss of both data sets in a server. Let C be the state
entered upon the completion of primary data set restora-
tion associated with the data loss. Let B1 through Bn be the
states representing completion of services at other n servers.
Let G1, . . . ,Gl be the state entered upon the arrival of a new
query in one of the queues. (Gi are not shown explicitly in
Figure 6.) Let F1 through Fm be the states entered upon data
loss at other m servers. An intermittent state I is introduced,
as shown in Figure 6, to allow the representation of imper-
fect decision making upon entering A. Therefore, there is an
intermittent error state for each state that involves outgoing
transitions with weakened control authorities due to some
decision errors. In the database system of Figure 1, 60 states
are added to the original 147 states of baseline model. It is as-
sumed that once the primary data set restoration takes place
for a particular server, the secondary data set restoration pro-
ceeds without a decision error.

Let λA,C denote the transition rate from state A to state
C in the absence of decision error in the restoration of the
primary database associated with the most recent data loss.
Let c be the probability of successful restoration, given that
the event of restoration occurs. (1 − c) then is referred to
as the thinning [5] of the Poisson arrival process associated
with the restoration. The split of rate λA,C into rate cλA,C and
rate (1 − c)λA,C is sometimes also called a decomposition of
a Poisson arrival process into type 1 with probability w and
type 2 with probability (1− c).

An imperfect decision corresponds to the value of c be-
ing less than unity. As a consequence, the authority of con-
trol that is supposed to reinforce the restoration process is
weakened. The smaller the value of c, the weaker the control
authority is.

The rate of recovery from decision error is denoted by rC .
To state the fact that recovery from an intermittent error state
to restoration cannot be faster than the error-free (c = 1)
restoration process, rC ≤ λA,C is enforced. On the other hand,
the outgoing transition rates from the intermittent error state
to the states of data loss in other servers, that is, from I to
Fi, i = 1, 2, . . . ,m, are bounded below by the corresponding
rates going from A to Fi. These transitions further reduce the
likelihood of reaching state C.

It is now shown that decision errors always degrade the
performance in terms of the state transition probability PAC
which is the probability that restoration to state C occurs
given current stateA. It turns out that this probability is read-
ily obtained for a Markov chain

PAC = cλAC
Λ(A)

, (14)

where

Λ(A) = λAB1 + · · · + λABn + · · · + λAF1 + · · · + λAFm + λAC
(15)
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Figure 7: Control action delay modeling with a single-stage delay
state.

without decision error, in which case w = 1 in (14), and

Λ(A)

= λAB1 +· · · +λABn +λAF1 +· · · +λAFm + cλAC + (1− c)λAC
(16)

with decision error, in which case c < 1. Note that (15) and
(16) are the same, and both enter (14). Therefore, (14) is pro-
portional to c, and is largest at c = 1 when there is no decision
error.

4.2. Modeling the effect of delayed control actions

Time required for diagnosis [11] can be regarded as the uni-
versal cause of a control action delay. An example of the con-
trol action delay in the database system shown in Figure 1
would be that a total loss of data in a server is not immedi-
ately observed. As a result, the action of data restoration is
delayed.

As in the previous subsection, let A be a state that is en-
tered upon a total loss of data in a server. Let C be the state
entered upon the completion of primary database restoration
associated with the data loss. States B1 through Bn and states
F1 through Fm also follow the earlier definitions. Figure 7
depicts a proposed model capable of describing a delayed
restoration action by an exponentially distributed random
amount with average δ−1 units of time upon entering state
A. With a single-stage delay for each state entered upon a to-
tal loss of data in a server, another 60 states are added to the
baseline model.

In a more general case, there can be an N-phased de-
lay implemented in the augmented model by inserting N
states D1 through DN in series between states A and C. Each
state Di retains outgoing transitions to all B1 through Bn, and
F1 through Fm, in addition to transition to Di+1. The total
amount of delay before restoration action is bounded below
by random variable D = D1 + · · · + DN , with a generalized

Erlang distribution [5];

L−1
{

N
Π
i=1

δi
s + δi

}
. (17)

One may use an N-stage Erlang to approach a constant
delay, an N-state hyperexponential to approach a highly un-
certain delay, or a mixture of the two to acquire more general
properties [10] in its distribution.

Note that there are two significant differences between
the decision error model of Figure 6 and the control delay
model of Figure 7. First, the link to restoration of primary
database is present in Figure 7 with a smaller likelihood of
transition, whereas the link to restoration without delay is ab-
sent in Figure 7. In addition, all links to service completion
are absent in Figure 6, but are present in Figure 7. Therefore,
each case has its distinct nature.

4.3. Full-state model of the controlled
database system

Referring again to the closed queuing network view of the
distributed database system in Figure 1, this section presents
its augmented model that incorporates all three sources of
uncertainties: decision errors (Section 4.1), control action
delays (Section 4.2), and routing delays. Routing delays are
incurred when queries at a failed server are rerouted to the
remaining intact servers.

Rerouting of queries becomes desirable when the queries
observe a server failure after they have entered the queue
preceding the server. An exponentially distributed random
routing time is introduced with rate τ/sec for this purpose.
A routing delay is assumed independent of a control ac-
tion delay. The former captures the random time of diag-
nosis, whereas the latter captures random time of transmis-
sion of queries among servers. Model augmentation amounts
to adding new transitions among existing states without the
need for new states.

In order to establish a full state model with all uncer-
tainty types, the representation of the composite state vari-
able is modified to x = QABQBCQCASABSBCSCAU , where
QIJ ∈ {0, 1, 2, 3} and SIJ ∈ {0, 1, 2} as in the baseline model
described in Section 2; newly introduced uncertainty vari-
able U ∈ {0, 1, 2} with “1” = control delayed and “2” =
wrong decision made. This results in a 267 state-model. By
exploiting symmetry, the 256 (147 + 60 + 60) state model can
be reduced to a 96-state model. The binary control variables
are defined as follows: u1 = 1 to restore, u2 = 1 to overhaul,
and u3 = 1 to reroute queries.

The states, the transitions, and the transition rates of
the uncertain model are summarized in Figure 8, based on
which transition matrix Q of a Markov chain can be built
and used in the next section for robust control policy design.
τ in Figure 8 is the newly introduced query transmission rate
when the action for rerouting is called for. Error probability
c relates to c in Figure 6 through c = 1 − c. Subscript “p”
denotes “primary” and “s” denotes “secondary.” Use of sym-
metry is reflected in server state S f and arrival rates λ1, λ2,
and λ3.
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1 0 0 0 0 0 2 2 2 0 0 0 0 0 0 29 29 29 0 0 0 0 0 0 0
2 1 0 0 0 0 4 3 3 0 0 0 1 0 0 32 30 31 0 0 0 0 0 0 0
3 1 1 0 0 0 7 6 5 0 0 0 2 2 0 38 37 36 0 0 0 0 0 0 0
4 2 0 0 0 0 8 7 6 0 0 0 2 0 0 35 33 34 0 0 0 0 0 0 0
5 1 1 1 0 0 0 0 0 0 0 0 3 3 3 39 39 39 0 0 0 0 0 0 0
6 1 2 0 0 0 0 0 0 0 0 0 4 3 0 44 43 40 0 0 0 0 0 0 0
7 2 1 0 0 0 0 0 0 0 0 0 3 4 0 45 41 42 0 0 0 0 0 0 0
8 3 0 0 0 0 0 0 0 0 0 0 4 0 0 48 46 47 0 0 0 0 0 0 0
9 0 0 0 1 0 12 11 10 50 50 50 0 0 0 0 49 49 0 0 1 0 0 1 0
10 0 0 1 1 0 17 16 13 51 51 52 0 0 9 0 50 50 0 0 2 0 0 2 0
11 0 1 0 1 0 18 14 16 51 52 51 0 9 0 0 50 50 0 0 2 0 0 2 0
12 1 0 0 1 0 15 18 17 52 51 51 0 0 0 0 50 50 0 0 2 0 0 2 10
13 0 0 2 1 0 21 20 26 55 54 56 0 0 10 0 52 52 0 0 4 0 0 4 0
14 0 2 0 1 0 24 27 22 54 56 55 0 11 0 0 52 52 0 0 4 0 0 4 0
15 2 0 0 1 0 28 25 23 56 55 54 0 0 0 0 52 52 0 0 4 0 0 4 17
16 0 1 1 1 0 19 22 20 53 55 54 0 10 11 0 51 51 0 0 3 0 0 3 0
17 1 0 1 1 0 23 19 21 54 53 55 0 0 12 0 51 51 0 0 3 0 0 3 13
18 1 1 0 1 0 25 24 19 55 54 53 0 12 0 0 51 51 0 0 3 0 0 3 16
19 1 1 1 1 0 0 0 0 0 0 0 0 17 18 0 53 53 0 0 5 0 0 5 20
20 0 1 2 1 0 0 0 0 0 0 0 0 13 16 0 54 54 0 0 6 0 0 6 0
21 1 0 2 1 0 0 0 0 0 0 0 0 0 17 0 55 55 0 0 7 0 0 7 26
22 0 2 1 1 0 0 0 0 0 0 0 0 16 14 0 55 55 0 0 7 0 0 7 0
23 2 0 1 1 0 0 0 0 0 0 0 0 0 15 0 54 54 0 0 6 0 0 6 21
24 1 2 0 1 0 0 0 0 0 0 0 0 18 0 0 54 54 0 0 6 0 0 6 22
25 2 1 0 1 0 0 0 0 0 0 0 0 15 0 0 55 55 0 0 7 0 0 7 19
26 0 0 3 1 0 0 0 0 0 0 0 0 0 13 0 56 56 0 0 8 0 0 8 0
27 0 3 0 1 0 0 0 0 0 0 0 0 14 0 0 56 56 0 0 8 0 0 8 0
28 3 0 0 1 0 0 0 0 0 0 0 0 0 0 0 56 56 0 0 8 0 0 8 23
29 0 0 0 2 0 32 31 30 50 50 50 0 0 0 0 49 49 57 0 0 0 0 1 0
30 0 0 1 2 0 37 36 33 51 51 52 0 0 29 0 50 50 58 0 0 0 0 2 0
31 0 1 0 2 0 38 34 36 51 52 51 0 29 0 0 50 50 59 0 0 0 0 2 0
32 1 0 0 2 0 35 38 37 52 51 51 0 0 0 0 50 50 60 0 0 0 0 2 0
33 0 0 2 2 0 41 40 46 55 54 56 0 0 30 0 52 52 61 0 0 0 0 4 0
34 0 2 0 2 0 44 47 42 54 56 55 0 31 0 0 52 52 62 0 0 0 0 4 0
35 2 0 0 2 0 48 45 43 56 55 54 0 0 0 0 52 52 63 0 0 0 0 4 0
36 0 1 1 2 0 39 42 40 53 55 54 0 30 31 0 51 51 64 0 0 0 0 3 0
37 1 0 1 2 0 43 39 41 54 53 55 0 0 32 0 51 51 65 0 0 0 0 3 0
38 1 1 0 2 0 45 44 39 55 54 53 0 32 0 0 51 51 66 0 0 0 0 3 0
39 1 1 1 2 0 0 0 0 0 0 0 0 37 38 0 53 53 67 0 0 0 0 5 0
40 0 1 2 2 0 0 0 0 0 0 0 0 33 36 0 54 54 68 0 0 0 0 6 0
41 1 0 2 2 0 0 0 0 0 0 0 0 0 37 0 55 55 69 0 0 0 0 7 0
42 0 2 1 2 0 0 0 0 0 0 0 0 36 34 0 55 55 70 0 0 0 0 7 0
43 2 0 1 2 0 0 0 0 0 0 0 0 0 35 0 54 54 71 0 0 0 0 6 0
44 1 2 0 2 0 0 0 0 0 0 0 0 38 0 0 54 54 72 0 0 0 0 6 0
45 2 1 0 2 0 0 0 0 0 0 0 0 35 0 0 55 55 73 0 0 0 0 7 0
46 0 0 3 2 0 0 0 0 0 0 0 0 0 33 0 56 56 74 0 0 0 0 8 0
47 0 3 0 2 0 0 0 0 0 0 0 0 34 0 0 56 56 75 0 0 0 0 8 0
48 3 0 0 2 0 0 0 0 0 0 0 0 0 0 0 56 56 76 0 0 0 0 8 0
49 0 0 0 3 0 50 50 50 50 50 50 0 0 0 0 49 49 0 0 0 0 0 1 0
50 1 0 0 3 0 52 51 51 52 51 51 0 0 0 0 50 50 0 0 0 0 0 2 0
51 1 1 0 3 0 55 54 53 55 54 53 0 0 0 0 51 51 0 0 0 0 0 3 0
52 2 0 0 3 0 56 55 54 56 55 54 0 0 0 0 52 52 0 0 0 0 0 4 0
53 1 1 1 3 0 0 0 0 0 0 0 0 0 0 0 53 53 0 0 0 0 0 5 0
54 1 2 0 3 0 0 0 0 0 0 0 0 0 0 0 54 54 0 0 0 0 0 6 0
55 2 1 0 3 0 0 0 0 0 0 0 0 0 0 0 55 55 0 0 0 0 0 7 0
56 3 0 0 3 0 0 0 0 0 0 0 0 0 0 0 56 56 0 0 0 0 0 8 0
57 0 0 0 2 1 60 59 58 50 50 50 0 0 0 0 49 49 0 9 0 77 0 1 0
58 0 0 1 2 1 65 64 61 51 51 52 0 0 57 0 50 50 0 10 0 78 0 2 0
59 0 1 0 2 1 66 62 64 51 52 51 0 57 0 0 50 50 0 11 0 79 0 2 0
60 1 0 0 2 1 63 66 65 52 51 51 0 0 0 0 50 50 0 12 0 80 0 2 58
61 0 0 2 2 1 69 68 74 55 54 56 0 0 58 0 52 52 0 13 0 81 0 4 0
62 0 2 0 2 1 72 75 70 54 56 55 0 59 0 0 52 52 0 14 0 82 0 4 0
63 2 0 0 2 1 76 73 71 56 55 54 0 0 0 0 52 52 0 15 0 83 0 4 65
64 0 1 1 2 1 67 70 68 53 55 54 0 58 59 0 51 51 0 16 0 84 0 3 0
65 1 0 1 2 1 71 67 69 54 53 55 0 0 60 0 51 51 0 17 0 85 0 3 61
66 1 1 0 2 1 73 72 67 55 54 53 0 60 0 0 51 51 0 18 0 86 0 3 64
67 1 1 1 2 1 0 0 0 0 0 0 0 65 66 0 53 53 0 19 0 87 0 5 68
68 0 1 2 2 1 0 0 0 0 0 0 0 61 64 0 54 54 0 20 0 88 0 6 0
69 1 0 2 2 1 0 0 0 0 0 0 0 0 65 0 55 55 0 21 0 89 0 7 74
70 0 2 1 2 1 0 0 0 0 0 0 0 64 62 0 55 55 0 22 0 90 0 7 0
71 2 0 1 2 1 0 0 0 0 0 0 0 0 63 0 54 54 0 23 0 91 0 6 69
72 1 2 0 2 1 0 0 0 0 0 0 0 66 0 0 54 54 0 24 0 92 0 6 70
73 2 1 0 2 1 0 0 0 0 0 0 0 63 0 0 55 55 0 25 0 93 0 7 67
74 0 0 3 2 1 0 0 0 0 0 0 0 0 61 0 56 56 0 26 0 94 0 8 0
75 0 3 0 2 1 0 0 0 0 0 0 0 62 0 0 56 56 0 27 0 95 0 8 0
76 3 0 0 2 1 0 0 0 0 0 0 0 0 0 0 56 56 0 28 0 96 0 8 71
77 0 0 0 2 2 80 79 78 50 50 50 0 0 0 0 49 49 0 9 0 57 0 1 0
78 0 0 1 2 2 85 84 81 51 51 52 0 0 77 0 50 50 0 10 0 58 0 2 0
79 0 1 0 2 2 86 82 84 51 52 51 0 77 0 0 50 50 0 11 0 59 0 2 0
80 1 0 0 2 2 83 86 85 52 51 51 0 0 0 0 50 50 0 12 0 60 0 2 78
81 0 0 2 2 2 89 88 94 55 54 56 0 0 78 0 52 52 0 13 0 61 0 4 0
82 0 2 0 2 2 92 95 90 54 56 55 0 79 0 0 52 52 0 14 0 62 0 4 0
83 2 0 0 2 2 96 93 91 56 55 54 0 0 0 0 52 52 0 15 0 63 0 4 85
84 0 1 1 2 2 87 90 88 53 55 54 0 78 79 0 51 51 0 16 0 64 0 3 0
85 1 0 1 2 2 91 87 89 54 53 55 0 0 80 0 51 51 0 17 0 65 0 3 81
86 1 1 0 2 2 93 92 87 55 54 53 0 80 0 0 51 51 0 18 0 66 0 3 84
87 1 1 1 2 2 0 0 0 0 0 0 0 85 86 0 53 53 0 19 0 67 0 5 88
88 0 1 2 2 2 0 0 0 0 0 0 0 81 84 0 54 54 0 20 0 68 0 6 0
89 1 0 2 2 2 0 0 0 0 0 0 0 0 85 0 55 55 0 21 0 69 0 7 94
90 0 2 1 2 2 0 0 0 0 0 0 0 84 82 0 55 55 0 22 0 70 0 7 0
91 2 0 1 2 2 0 0 0 0 0 0 0 0 83 0 54 54 0 23 0 71 0 6 89
92 1 2 0 2 2 0 0 0 0 0 0 0 86 0 0 54 54 0 24 0 72 0 6 90
93 2 1 0 2 2 0 0 0 0 0 0 0 83 0 0 55 55 0 25 0 73 0 7 87
94 0 0 3 2 2 0 0 0 0 0 0 0 0 81 0 56 56 0 26 0 74 0 8 0
95 0 3 0 2 2 0 0 0 0 0 0 0 82 0 0 56 56 0 27 0 75 0 8 0
96 3 0 0 2 2 0 0 0 0 0 0 0 0 0 0 56 56 0 28 0 76 0 8 91
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Figure 8: Transitions and transition rates of the uncertain database state model.
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5. ROBUST CONTROL POLICY DESIGN

This section seeks robust control policies as solutions to the
Markov decision problem:

Vπ∗(x0) = min
π

Eπ

∞∑

k=0

αkC
(
Xk, uk

)
,

x0 ∈X = {1, 2, . . . , 95, 96},
(18)

where 0 < α < 1, π = {u0, u1, . . . } is the control policy
sought, u = (u1,u2,u3), and ui ∈ {0, 1}. u1 = 1 to restore,
u2 = 1 to overhaul, and u3 = 1 to reroute queries, as defined
in Section 4.3. Note that the full-state model enables the de-
signer to consider service demand and to weigh availability
against response time. Thus two cost criteria are established.
The first criterion,

C
(
xk, uk

) = Q1
(
xk
)

+ Q2
(
xk
)

+ Q3
(
xk
)

μ
, (19)

penalizes long queues that cannot effectively reduce in time
due to server failure, and thus favors response time. The sec-
ond criterion, shown in the following table, penalizes pro-
longed service time, again, due to server failure, and thus fa-
vors availability.

The size of the state space suggests numerical means for
solutions. Mathematical programs will be applied to obtain
the solutions. The steady-state availability and the expected
query response time of the controlled database system with
the optimal policy will then be examined under various con-
ditions.

5.1. Optimal policy design via mathematical
programming

The rate transition matrix Q(u(x)) of the 96-state model can
be obtained based on Figure 8 established in Section 4.3. This
Q(u(x)) depends on u(x) = (u1(x),u2(x),u3(x)),ui ∈ {0, 1}.
State probability equation

π̇(t) = π(t)Q
(

u(x)
)

(20)

originated from the forward Chapman-Kolmogorov (2) can
now be uniformized to yield a discrete time Markov chain

π(k + 1) = π(k)
[
I +

1
ρ
Q
(

u(x)
)]

, (21)

where uniform rate ρ can be chosen to be

ρ = 3λ + 3ν + τ + δ + γ + μ + ω. (22)

Recall optimality (11)

V(i) = min
u∈Ui

{

C(i, u) + α
∑

j

pi, jV( j)

}

, i ∈X, (23)

as an alternative characterization of the solution to Markov
decision problem (18), which produces a system of 96 equa-
tions.

Dynamic programming is the most natural numeri-
cal approach to policy design (18) because (11) is derived
through taking limit of a finite horizon dynamic program
[9, 10]

Vk+1( j) = min
u∈Uj

{

C( j, u) + α
∑

r∈X

pj,rVk(r)

}

,

k = 1, 2, . . . ,N − 1,

(24)

where α < 1, and terminal cost V0( j) = 0, forall j ∈ X. In
this case the optimal cost is given by VN (x0), x0 ∈ X. More
specifically, with u taking values in a finite set, the minimal
cost-to-go from x0 of the 96-state Markov decision process
satisfies

lim
N→∞

VN (x0) = V∗(x0
)
, x0 ∈X = {1, 2, . . . , 95, 96},

(25)

whereVN (x0) is the minimal cost-to-go from x0 of an N-step
finite horizon process.

The solution to a dynamic program results from an it-
erative calculation backwards along the horizon from V0( j)
to the first step VN ( j). For the dynamic programming calcu-
lation to converge to the true cost-to-go, N must be signifi-
cantly large, and must be less than 1.

Linear programming [18] can be considered as an alter-
native numerical approach to the solution of the Markov de-
cision problem. In this case, the set of optimality equations is
turned into a set of affine constraints on the set of optimiza-
tion variables {V(i)}, and the problem can be formally stated
as follows:

Maximize V(1) + V(2) + · · · + V(95) + V(96) (26)

subject to V(i) ≥ 0, i ∈X = {1, . . . , 96}, (27)

V(i) ≤
[

C(i, u) + α
∑

i

pi, jV( j)

]∣∣
∣
∣∣

u

∀u ∈ Ui, i ∈X.

(28)

The equivalence of the linear program formulation (26)–
(28) and the optimality equation formulation can be easily
established. First, (27) is trivially satisfied for all i in both
formulations because one-step cost C(i, u) is always nonneg-
ative.

Suppose (V(1), . . . ,V(96)) is the linear program solu-
tion. Then there must be one active (equality achieved) con-
straint for each of the affine inequality constraints of the
form V(i) ≤ · · · for each i. Suppose for some j, the con-
straint(s) V( j) is not active. Then V( j) can be increased until
one of the inequality constraints becomes active without vi-
olating the rest of the inequality constraints because αpi, j < 1
as coefficient of V( j) on the right side of the inequality con-
straints (28). This, however, contradicts the assumption that∑

iV(i) is maximum. Therefore, (V(1), . . . ,V(96)) is also the
solution to the optimality equations (28).

Assume now that (V(1), . . . ,V(96)) satisfies the optimal-
ity equations. It then automatically satisfies the inequality
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Figure 9: (a) Switching curves of the optimal policy under dis-
counted queue size. (b) Partial database model containing both con-
trol action delay and decision error.

constraints (28), of which 96 are active, one for each V(i)
appearing on the left side. Suppose

∑
iV(i) is not maximum.

There is at least a V( j) for some j that is smaller than the
corresponding cost in max

∑
iV(i), which implies that the

corresponding constraint(s) for V( j) < · · · is (are) slack or
inactive. This contradicts that V( j) satisfies the optimality
equation. Therefore, (V(1), . . . ,V(96)) must also be the so-
lution of the linear program formulation (28). The equiva-
lence is thus established.

The function linprog in MATLAB’s Optimization Tool-
box [19] solves the maximization problem above. The active
constraints are checked with a MATLAB script to determine
the optimal control policy.

The computational complexity of the dynamic program
and that of the linear program are now compared. Finding
the solution to a linear program generally requires a compu-
tation time proportional to n2m [18] when m ≥ n, where n is
the number of optimization variables, and m is the number
of constraints. The computational complexity of an iterative
dynamic programming solution can be approximated by as-
suming that each iteration is a series of linear programs. The
linear programming solution to the set of optimality equa-
tions is of course a single linear program.

The number of control variables, u, the number of states,
s, and the horizon length, N , are critical to the computation
time of these methods. First, consider the iterative method as
a series of linear programs. Each individual iteration along
the N-step horizon consists of s individual linear programs.
Each individual linear program has u variables and 2u con-
straints. Therefore, the computation time is proportional to
Ns(u22u) = Ns(2u3). Now, consider the method of solv-
ing the optimality equations through linear programming.
The single linear program has s variables and 2us constraints.
Hence, its computation time is proportional to s22us = s32u.

Although the computation time grows faster for the lin-
ear program as the number of states increases, the horizon
N is typically much larger than s2 for small discount factorin
β in α = ρ/(β + ρ). Therefore, the linear program is more
efficient for moderate numbers of states and small discount
factors.

5.2. Availability and response time under
robust control policy

A selected set of results on the robust control policies solved
via mathematical programming are presented in this subsec-
tion, and the system availability and query response time un-
der some of the optimal policies are examined.

5.2.1. Restoration-overhaul switching

Under the cost criterion (19) (minimum total discounted
queue size), the optimal policy depends on the number of
queries in the queue behind the failed server. No action is
taken to overhaul the system until the two active queues are
empty and the buildup of queries behind the failed server
is significant. Figure 9(a) depicts a switching curve of of
the control policy between overhaul and restoration before
(solid) and after (dotted) state D in Figure 9(b) is reached.
Policy switching is determined by the amount of control ac-
tion delay, the decision error probability, and the number
of queries in the failed server. It can be seen that, while the
two active queues are occupied or after the primary data is
successfully restored, restoration is performed on the failed
server as long as the server performing the restoration does
not have any customers waiting in its queue.

Under the cost criterion stated in Table 2 (minimally re-
duced service time), the optimal policy always attempts to
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Figure 10: Response time (upper panel) and availability (lower panel) resulting from robust control policy (solid black) and nominal control
policy (dotted red) versus (a) decision error (1− c) and (b) control delay (1/δ).

Table 2: Discounted service rate with service demand considera-
tion.

Current state xk One-step cost C(xk , uk)

The database is fully functional 0

One unavailable server has a queue 1/μ

Two unavailable servers have a queue 2/μ

All servers are unavailable and have a queue 3/μ

restore the failed server as long as the server performing the
restoration does not have any queries waiting in its queue.
The only exception is when three queries are piled into any
single queue. In this case, overhaul occurs when the uncer-
tainties are significant.

5.2.2. Performance under nominal and robust policies, and
effect of routing delay

This subsection examines the system steady-state availabil-
ity and the expected query response under the robust policy,
where random control delay and decision error are explic-
itly modeled, and under nominal policy where uncertainties
are ignored. The results are similar for policies derived with
either the queue size criterion (19) or the service time crite-
rion (Table 2). The robust policy shows two distinct features
in Figures 10(a) and 10(b); it switches control action when
uncertainties (delay and error) becomes significant, and it
balances between availability and response time in this sit-
uation.

The routing only policy does not attempt to restore the
single failed server. Instead, queries are routed to an empty
queue whenever the subsequent server contains the data for
the query. The system is overhauled upon a second server
failure. It offers some advantage in response time over the
always-restore policy when there is no routing delay, as
shown in Figure 11(a). It is also seen that the robust opti-
mal policy experience improved performance with rerouting
authority. However, a routing delay of about one second is
significant enough to discourage the use of the routing-only
policy, as shown in Figure 11(b).

6. CONCLUSIONS

Uncertainties due to control delays, transmission delays, and
decision errors in the distributed database system degrade
the performance of the database system performance in
terms of availability and response time. Restoration remains
to be the optimal policy over a significant range of uncertain-
ties. Beyond boundaries of the range, however, the optimal
control policy switches to overhaul. By formulating and solv-
ing a Markov decision problem, the robustness of the control
policies is investigated. Boundaries for which optimal actions
alter are shown to exist and are quantified. The robust poli-
cies are shown to provide the best compromise among com-
peting interests.

The authors have also investigated the optimal control
policy for the database under the open queuing network
setting in the face of delays and errors. Simulations with
SimEvents [20] show that response time further depends on
the arrival rate of queries. Simulation results will be reported
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Figure 11: Response time (upper panel) and availability (lower panel) resulting from robust control policy (solid black) and routing only
policy (dotted red) versus (a) control delay (1/δ) and (b) routing delay (1/τ).

separately. Simulation study of larger networks has also been
planned.
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