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Abstract The soft wall model in holographic QCD has
Regge trajectories but wrong operator product expansion
(OPE) for the two-point vectorial QCD Green function. We
modify the dilaton potential to comply with the OPE. We
study also the axial two-point function using the same mod-
ified dilaton field and an additional scalar field to address
chiral symmetry breaking. OPE is recovered adding a bound-
ary term and low energy chiral parameters, Fπ and L10,
are well described analytically by the model in terms of
Regge spacing and QCD condensates. The model nicely sup-
ports and extends previous theoretical analyses advocating
Digamma function to study QCD two-point functions in dif-
ferent momentum regions.

1 Introduction

QCD Green functions describe three ranges of energies (i)
deep euclidean, where perturbative QCD and OPE expan-
sion methods can be applied, (ii) an intermediate Minkowski
region, where resonances are described by Regge trajectories
and (iii) the strong interacting, low-energy region, described
by chiral perturbation theory (χPT) [1].

Regge trajectories, i.e. a linear growth of the square of
the resonance masses like M2

V (n) = σn GeV2 for the vec-
tors, were conjectured long ago, before QCD, and very well
verified phenomenologically [2]. This relation, thought to
be valid in QCD for large number of colours, Nc, has been
proven by ’t Hooft only in 2 dimensions [3–5]. Also other
arguments have been proposed for the validity of Regge the-
ory aside from the experimental evidence: lattice, flux tube,
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confinement [6–8]: we insist on these theoretical motivations
of Regge trajectories through this paper since we believe that
QCD dynamics favours this physical picture.

Low energy QCD properties, like the chiral symmetry
breaking (χSB) parameters, Fπ and the Gasser-Leutwyler
coefficients Li ’s of the O(p4) chiral Lagrangian have been
studied in the framework of holographic models of QCD,
based on the AdS/CFT correspondence [9–11]. Several five
dimensional set-ups have been proposed. The basic feature
of Hard-Wall (HW) models is to simulate confinement by
cutting drastically the extradimension of the AdS5 in the IR,
producing an infinite spectrum of Kaluza-Klein (KK) states
to be identified with vector resonances of increasing masses.
χSB in the axial sector is triggered either by a scalar field in
the bulk [12,13] or by appropriate boundary conditions [14].
These models were actually anticipated by a deconstruction
model [15]. Also the Sakai-Sugimoto model [16], a string
set- up, shares this feature of an infinite spectrum of KK
states. A recent review of all these models and their relation
with the light-front holographic QCD approach is Ref. [17].

All these models have a good description of the deep
euclidean region; for instance the correct two point func-
tion recover the partonic log, and a pretty well description
of low energy QCD, obtaining the chiral parameters Fπ and
the Gasser-Leutwyler coefficients Li ’s which are close to the
physical values. In fact, it was observed that these HW mod-
els [12–14] have the same two point vectorial Green function
as the one obtained by Migdal long ago who proposed an ad
hoc prescription to perform the analytic continuation of the
perturbative deep Euclidean QCD result to the Minkowski
region [18,19].

In order to reproduce resonances masses with a Regge
spacing, one can consider a 5D model with AdS metric and
an additional field, the dilaton [20]. However, in this model it
can be shown that the partonic log of the two point vectorial
Green function
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�V (−q2) = −
∞∑

n=0

FV (n)2

q2 − MV (n)2 ∼

Q2→∞
Nc

24π2 ln

(
�2

V

Q2

)

(1)

with the Euclidean momentum Q2 .= −q2, receives 1/Q2-
corrections differently from what holds in perturbative QCD
operator product expansion (OPE)1 [21–24]. Nevertheless,
we find extremely interesting to have a model where the
Regge region would be analytically related to the deep
Euclidean region even though with the wrong OPE. This
will be exactly our starting point: OPE tells us the correct
Green functions in the deep Euclidean in terms of gluon
and quarks condensates. Is it possible to modify the dila-
ton profile, φ(z) �→ φ(z) + δφ(z), such to comply with
QCD requirements in the intermediate (Regge) region and
UV (OPE) region? Once this question has been answered
in the affirmative, we are naturally led to address another
important problem, that does not have a satisfying answer in
this “linear confinement” holographic approach [20]: how to
implement the effects of chiral symmetry breaking into our
model. If we look at the expansion of both vector-vector and
axial-axial correlator �V,A(Q2) for large Euclidean momen-
tum, QCD predicts

�V,A(Q2) ∼

Q2→∞
Nc

24π2 ln

(
�2

V

Q2

)

+αs
〈
G2
〉

24π

1

Q4 − 14π

9
cV,A αs

〈
ψ̄ψ

〉2 1

Q6 (2)

with cV = 1 and cA = −11/7. We should then be able
to take into account the difference appearing at order 1/Q6

in the OPE expansion of the vector and axial correlators.
On the other hand, in the low and intermediate region in
Minkowskian momentum, chiral symmetry is broken at the
level of the mass spectra of resonances, with the appearance
of the pion as the corresponding pseudo-Goldston boson of
χSB. If we were able to deal with these aspects in a holo-
graphic model, we would have, in principle, closed the circle,
since we would have a description of all three energy ranges
of QCD. In fact, implementing the correct OPE and mass
spectrum for the axial sector, we will propose our post-diction
of Fπ and L10 [one of the the chiral O(p4) coefficients] in
terms of our input parameters, i.e. the Regge spacing and
the QCD condensates. Our model, beside being a novel pro-
posal for holographic QCD, links naturally to previous 4D
QCD work where a phenomenological matching between
low energy and OPE was realised through Regge theory (or
Veneziano model) [1,6,25–29].

We have organized this paper in the following way. In
Sect. 2 we summarize the relevant properties of the existing

1 Due to its definition, �V used in the holographic models [12] differs
by a factor 1/2 from the �V used in [1,6].

Soft Wall model (SW) and focus on the vectorial two-point
function. The issue of χSB is dealt with in Sect. 3. In Sect.
4, the analytic continuation at low energy is described and
the predictions for Fπ and L10 are given as well as some
consequences on duality violations. Conclusions are given
in Sect. 5.

2 Assumptions and aims for the model

2.1 Preliminaries

The Soft-Wall model is a five dimensional model where the
additional coordinate, z, has the range 0 < z < ∞ and
background fields consist in a five-dimensional AdS metric
and a dilaton field �(z). The AdS metric is written as

gMN dxMdxN = 1

z2

(
ημνdxμdxν − dz2

)
, (3)

where ημν = Diag (1,−1,−1,−1), the Greek indices
μ, ν = (0, 1, 2, 3) referring to the usual 4-dimensions, and
the capital Latin ones M, N = (0, 1, 2, 3, z) to the 5 dimen-
sions. It was shown, in [20], that with the choice of a quadratic
profile of the dilaton field

�(z)
.= κ2z2, (4)

the spectrum of vector resonances followed a Regge trajec-
tory. Vector meson resonances are obtained as the modes
associated to a five-dimensional gauge field VM in the exter-
nal metric and dilaton background, with 5D action

S5 = − 1

4g2
5

∫
d4x

∫ ∞

0
dz

√
g e −�(z) gMN gRS

× Tr [FMR FNS] , (5)

with g = | det gMN |, the field strength FMN = ∂MVM −
∂NVM − i [VM , VN ] and g2

5 = 12π2/Nc is the 5D coupling
constant where Nc is the number of colors of QCD. The trace
is understood as the sum over the SU(N f ) flavour indices of
VN = taVa

N , if N f = 2, ta = σ a/2 with σ a being Pauli
matrices.

We shall work in the axial gauge Vz = 0. The AdS/CFT
correspondence prescribes that the boundary value of the 5D
gauge field Vμ has to be identified with the classical source
vμ coupled to the the 4-dimensional vectorial current JaV μ =:
q̄ γμ taq :,

lim
z→0

V

a
μ,z(x, z) = vaμ(x). (6)

The corresponding equation of motion for the gauge field,
derived from the Lagrangian (5), is more easily written in
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terms of the 4-dimensional Fourier transform fV (−q2, z) of
the field VM ,

fV (−q2, z) v̂μ(q)
.=
∫

d4x e −iq·x
Vμ,0(x, z), (7)

where v̂μ is the Fourier transform of the source vμ. Using
gauge invariance, one may assume the v̂μ to be transverse
and one obtains

∂2
z fV + ∂z [ln w0(z)] ∂z fV + q2 fV = 0, (8)

with,

w0(z)
.= e −�(z)

z
= e −κ2z2

z
. (9)

Notice that, in order to satisfy the the boundary condition
(6), we have to impose

fV (−q2, 0) = 1. (10)

It is well known that the presence of (an infinite set of)
solutions of the 5D equation of motion (8), satisfying a nor-
malization condition in the extra-dimension z, corresponds
to (an infinite set of) resonances in 4D. Indeed, the corre-
sponding eigenvalue equation for wave functions φn(z) of
the normalizable modes can be obtained from (8) by requir-
ing q2 = MV (n)2, which gives φn(z) = fV (−MV (n)2, z)
and the equation

∂2
z φn −

(
1

z
+ 2κ2z

)
∂z φn + MV (n)2 φn = 0, (11)

with the vanishing boundary conditions

φn(0) = 0 and φn(∞) = 0. (12)

The authors of Ref. [20] showed that, by doing the substitu-
tion

φn(z) = e κ2z2/2 √
z �n(z), (13)

one transforms the Eq. (11) into a Schrödinger equation for
�n(z)

−� ′′
n +

(
κ4z2 + 3

4z2

)
�n = MV (n)2 �n, (14)

which is exactly solvable in terms of generalized Laguerre
polynomials L(α)

n . The solutions φn(z) of the original equa-
tion (11) are then

φn(z) = κ2z2

√
2

n + 1
L(1)
n (κ2z2), (15)

and the required normalization conditions are given for each
representations by

∫ ∞

0
dz w0(z) φm(z) φn(z) = δmn and

∫ ∞

0
dz �m(z)�n(z) = δmn . (16)

The most important result, which characterizes the Soft-
Wall model and makes it a possible improvement, with
respect to the HW models, concerns the resulting mass spec-
trum which was found in [20] to be

MV (n)2 = 4κ2(n + 1) (17)

with n = 0, 1, . . .. Equation (17) shows that the infinite set
of 4D resonances corresponding to the 5D eigenfunctions
follows a Regge trajectory.

Despite this very nice approach to understand the Regge
trajectory, the SW model does not reproduce the correct OPE
of the vector correlator. In fact, the large-Q2 expansion of
two-point function coming from the solution of (8) has a
non vanishing coefficient for the 1/Q2 term, corresponding
a non vanishing dimension-two condensate, in contrast to
what predicted in QCD (a fact that was already pointed out
in [21–23]). Also the values of higher dimension condensates
turn out to be different from those obtained in QCD.

The first purpose of this paper will be build a deformation
of the dilaton field such that the OPE of the vector correlator
corresponds to the real one.

2.2 The vector two-point function

One defines the vector-vector correlator �V ,

i
∫

d4x e −iq·x 〈JaV μ(x) JbV ν(0)
〉

= δab
(
qμqν − q2ημν

)
�V (−q2). (18)

where q is the 4D momentum and the current JaV μ is the one
defined before Eq. (6).

The function fV (−q2, z) satisfying Eqs. (8), (10) and van-
ishing at z → ∞, the so-called bulk-to-boundary propagator,
plays a pivotal role in holographic models, since its knowl-
edge is fundamental in evaluating Green functions of the 4D
theory. Once fV has been found, it can be substituted in the
quadratic part of the 5D action (5), which is the one relevant
for the evaluation of the two-point function. The resulting 5D
expression reduces to a 4D boundary term, quadratic in the
4D source vμ, from which one gets the two-point function as
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Fig. 1 The progression of the squared masses of the ρ resonances according to their label n. The straight line represents the fitted relation. The a
plot follows [20] for MV (n)2 ∼ 0.90n GeV2. The b plot represents the fit obtained in [36] with MV (n)2 ∼ 1.43(13)n GeV2

the limit (with the Euclidean momentum Q2 .= −q2)

Q2�V (Q2) = 1

g2
5

lim
z→0

w0(z) fV (Q2, z) ∂z fV (Q2, z). (19)

Our main concern is that the two-point function �V com-
ing from the model built in 5D has the following properties:

(i) The progression of its poles in the Minkowski region (the
resonances) follows a Regge trajectory.
In the Large-Nc limit of QCD, the two-point function �V

could be written as a sum over an infinite set of stable
vector resonances [33,34]

�V (Q2) =
∞∑

n=0

FV (n)2

Q2 + MV (n)2 , (20)

where FV (n) are named decay constants and the MV (n)

are the masses associated to the resonances of the vec-
torial channel: ρ, ρ′, ρ′′, . . .. We assume that these reso-
nances follow, in a first approximation, a Regge progres-
sion [2],

MV (n)2
∼

n→∞ σn, (21)

where the integer n is the radial excitation number and
σ is related to the confining string tension as explained
in [20] and we can evaluate σ ≈ 0.90 GeV2 from [35]
as illustrated in Fig. 1. As pointed out in [36] by their
authors, one has to organize the rho resonances according
to their radial and their angular-momentum progressions
in order to select the right Regge trajectory. It means that
we should not consider all set of resonances in Fig. 1a

but only the ones in Fig. 1b corresponding to the masses
squared progression MV (n)2 ∼ 1.43(13)n GeV2 or σ ≈
1.43(13) GeV2.2

One assumes here that the Regge behaviour is more and
more valid the larger n is, which, of course, implies
that the description of the lower resonances contributions
would be less precise. From now on this spectrum will
be called the physical spectrum.

(ii) �V has the correct OPE.
One of the very well-known properties of this two point
function is its OPE [37],

�V (Q2) ∼

Q2→∞
1

2

Nc

12π2 ln

(
�2

V

Q2

)

+〈O2〉 1

Q2 + 〈O4〉 1

Q4 + 〈O6〉V 1

Q6 (22)

where in the large-Nc limit the coefficients of the OPE
are given by

⎧
⎪⎨

⎪⎩

〈O2〉 = 0

〈O4〉 = 1
2

1
12π

αs
〈
G2
〉

〈O6〉V = 1
2

(− 28π
9

)
αs

〈
ψ̄ψ

〉2
, (23)

here αs stands for the strong coupling constant,
〈
G2
〉
for

the gluon condensate, and
〈
ψ̄ψ

〉
for the quark conden-

sate.

The requirement that the two-point function obtained from
the SW model (5) with a suitable deformation of the dilaton

2 We thank Pere Masjuan to have pointed out this observation.
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profile, has the correct OPE (22) and (23), is the starting point
of our analysis. Proposals to modify the original SW model
based on the assumption of different profiles for the dilaton
and for the vacuum expectation of a scalar field in the bulk
were done in [30,31].

2.3 Vectorial OPE from a modified dilatonic background

We shall assume that the effects of the OPE on the vector
current two-point functions in QCD can be encoded in a new
profile for the dilaton field of the SW model. More explicitly,
we assume that OPE is related to the behaviour of the dilaton
profile around the UV boundary, z = 0 of the 5D, while
keeping the metric to have the AdS form (3). Moreover, as
we want to keep the Regge behaviour induced by the dilaton
profile �(z), we are led to modify the original quadratic
profile of the SW dilaton by adding new terms which we
collect in a function B,

�(z) �−→ �(z) + B(z). (24)

We assume that the function B can be represented for all
z by a polynomial of degree 2K (with no constant term),

B(z) =
K∑

k=1

b2k

2k
z2k . (25)

Even for a polynomial form of the dilaton profile as given
in (1), the task of solving the corresponding equation of
motion of the vector field is a non trivial one. In the follow-
ing, we show how the ad hoc peculiar form for B(z) allows
us to solve the equation of motion analytically, through an
iterative method, and obtain the corresponding expression
for the vector two-point function. To simplify the writing we
define,

w0(z) e −B(z) .= w(z). (26)

For counting the different orders of perturbation of the
dilaton, we introduce an artificial control parameter θ such
as

w(z) = w0(z)e
−B(

√
θ z). (27)

We shall expand all relevant expressions in (formal) power
series in θ , using this parameter to translate the task of solving
the differential equation for the vector field in the deformed
dilatonic background in a more tractable set of iterative equa-
tions.

At the end of the calculation, we shall match the asymp-
totic expansion of the two-point function to the OPE expan-
sion of QCD. Doing this the dependence of the solution on
the parameter θ disappears. We shall see that each term z2k

in the expression of B(z) drives to a 1/Q2k term in the OPE
of the two point function and since we want to match the
OPE only up to 1/Q6 term, we shall need only a polynomial
of degree 6, i.e. to take K = 3 in (25). The matching with
the QCD OPE uniquely determines the coefficients bk of the
dilaton profile.

Let notice that, of course, other forms for B(z) could give
the same OPE but different exact solutions of the equation
of motion to be interpreted as analytic continuation of the
OPE. Our expression for B is the simplest way to satisfy our
assumptions.3

In the next Sect. 2.4 we explain the technical details of the
iterative method we derived to obtain the vector two-point
function for the modified dilaton background. The complete
expression for the two-point function is in Appendix B.

2.4 Iterative construction of the vector two-point function
for the modified dilaton background

As we said before, if we want to reproduce only up to the
1/Q6 term, the calculation has to be done up to order θ3.

Using (27), the equation of motion for the vectorial field
V associated to w0 when expressed in its Fourier transform
fV becomes,

∂2
z fV + ∂z [ln w(z)] ∂z fV − Q2 fV = 0, (28)

and can be decomposed into a hierarchical system of differ-
ential equations order by order in θ .

We can expand fV in power of θ ,

fV = f (0)
V + θ f (1)

V + θ2 f (2)
V + θ3 f (3)

V + O(θ4) (29)

with the boundary conditions

f (n)
V (Q2, 0) = δ0,n and f (n)

V (Q2,∞) = 0. (30)

Then, the associated two-point function (19) has an expan-
sion in θ too,

�V = �
(0)
V + θ�

(1)
V + θ2�

(2)
V + θ3�

(3)
V + O(θ4), (31)

where

Q2�
(k)
V (Q2) = 1

g2
5

lim
z→0

w0(z) f
(0)
V (Q2, z)∂z f

(k)
V (Q2, z),

(32)

3 One could wonder if a complete knowledge of the full OPE expansion
would allow us to write B(z) as an infinite power series. Even in such an
ideal case, that series would probably be only asymptotic and additional
dynamical assumptions on how B extends at any value of z would be
unavoidable, in the same manner that we have to deal with renormalons
prescriptions [32].
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thanks to the boundary conditions (30).
To simplify a little the writing, let us define the differential

operator D such as

Dϕ
.= ∂2

z ϕ + ∂z [ln w0(z)] ∂zϕ − Q2ϕ (33)

then the equation D f (0)
V = 0 corresponds to the unperturbed

equation of motion (8). Organising order by order in θ the
differential equations, one obtains the recursive system,

D f (n)
V =

n−1∑

k=0

z2(n−k)−1 b2(n−k) ∂z f (k)
V , (34)

or explicitly, for the first three orders,

D f (0)
V = 0 (35)

D f (1)
V = z b2 ∂z f

(0)
V (36)

D f (2)
V = z3 b4 ∂z f

(0)
V + z b2 ∂z f

(1)
V (37)

D f (3)
V = z5 b6 ∂z f

(0)
V + z3 b4 ∂z f

(1)
V + z b2 ∂z f

(2)
V . (38)

To solve the system, we can use the Green function
method. Indeed, from the first order correction (36) on, one
has the same differential equation with different source terms.
To solve any equation with a source term S like

D fV = S(Q2, z), (39)

one first solves the equation for the Green function GV (Q2;
x, z),

DGV (Q2; x, z) = δ(x − z), (40)

with the boundaries conditions,

GV (Q2; 0, z) = GV (Q2;∞, z) = 0. (41)

Then, the solution of (39) is given by

fV (Q2, z)=
∫ ∞

0
dx w0(x) GV (Q2; z, x) S(Q2, x). (42)

Therefore, the differential system has for solution the
recursive expression (for n > 0),

f (n)
V (Q2, z) =

∫ ∞

0
dx w0(x) GV (Q2; x, z)

×
[
n−1∑

k=0

x2(n−k)−1 b2(n−k) ∂x f (k)
V (Q2, x)

]
,

(43)

and using (32), the solution for the vector two-point function
is the convoluted expression,

Q2�
(n)
V (Q2) = − 1

g2
5

n−1∑

k=0

b2(n−k)

∫ ∞

0
dx e −κ2x2

x2(n−k−1)

× f (0)
V (Q2, x) ∂x f (k)

V (Q2, x), (44)

where we used the relation,

f (0)
V (Q2, x) = − lim

z→0
w0(z) f

(0)
V (Q2, z)∂zGV (Q2; x, z).

(45)

In order to solve this system recursively, we have to know
first f (0)

V , which is nothing else that the well-known solution

of the unperturbed equation of motion D f (0)
V = 0 i.e. the

original bulk-to-boundary propagator of the SW model. It
could be expressed in several ways, for instance, as a series
of the eigenfunctions, which in the SW model are given in
terms of Laguerre polynomials (15) [20].

However, in order to perform the calculation, we found
more efficient to use the integral representation for f (0)

V given
in [38], i.e.

f (0)
V (Q2, z) = Q2

4κ2

∫ 1

0
du u

Q2

4κ2 −1 exp

[
− u

1 − u
κ2z2

]
;
(46)

moreover, we constructed a similar representation also for
the Green function (cf. Appendix A),

GV (Q2; x, y) = − xy

2

∫ 1

0
dt

t
Q2

4κ2 − 1
2

1 − t

× exp

[
− t

1 − t
κ2(x2 + y2)

]
I1

(
2κ2xy

√
t

1 − t

)
. (47)

Leaving the details of the calculations to the Appendix B, the
final result for �

(1)
V is

�
(1)
V (Q2) = b2

4κ2g2
5

(
4κ2

Q2

)

×
[

1 +
(
Q2

4κ2

)
−
(
Q2

4κ2

)2

ψ ′
(
Q2

4κ2

)]
.

(48)
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In the same way, one can express order by order the analytic
expression for �

(n)
V which takes the general form

Q2�
(n)
V (Q2) =

n∑

k=0

Pk,n

(
Q2

4κ2

)
ψ(k)

(
Q2

4κ2

)
, (49)

where, respectively, Pk,n are polynomials and ψ(k) is the kth
derivative of the Digamma ψ function defined as the loga-
rithmic derivative of the Euler’s � function. The coefficients
of Pk,n depend only on κ2 and the coefficients bk of the dila-
ton (25). The explicit expressions for �(2) and �(3) are given
respectively in Eqs. (B.19) and (B.20) in Appendix B.

Our method provides a framework where we can get an
explicit solution in terms of hypergeometric functions (see
Eqs. (B.15) and (B.16) in Appendix B), which then reduce
to a combination of Digamma functions, and, importantly,
it avoids the appearance of divergent series and divergent
integrals, as it can be seen for instance, in the detailed calcu-
lation of �

(1)
V presented in Appendix B. Moreover, as shown

in Appendix E, the use of such integral representations allows
us to organize the calculation of each order correction in a
very systematic way.

Let us comment here that the �
(0)
V function,

Q2�
(0)
V (Q2) = −2κ2

g2
5

(
Q2

4κ2

)[
γE + ψ

(
Q2

4κ2 + 1

)]
,

(50)

can be associated to the ad hoc models developed in
[26,29,39] with the same Regge progression than us. From
the Regge spectrum point of view itself, �

(0)
V is also simi-

lar to expressions developed in [40] (see references therein)
obtained by resummation over resonances.

2.5 Interpretation of the solution

Given the complete analytic solution of �V ,

�V (Q2) =
3∑

n=0

�
(n)
V (Q2) θn, (51)

we can ask ourself if (i) the poles of �V in the Minkowski
region still follow a Regge trajectory and (ii) a correct OPE
is obtained. We find that:

(i) Since the part of each �
(n)
V containing the Digamma func-

tion and its derivatives have poles only at all negative
integers (−n),

−q2

4κ2 = −n, (52)

0 1 2 3 4
n

Fig. 2 Vectorial Regge spectrum

at 0-th order, only simple poles appear in �
(0)
V , and so

the usual Regge spectrum (noticing also that the residue
in n = 0 is nought),

M(n)2 = 4κ2n = σn, (53)

is reproduced, schematically presented in Fig. 2. How-
ever, in Eq. (51), poles of higher order appear and a
more detailed analysis has to be done to quantify pos-
sible departures from the original Regge spectrum.

(ii) In order to reproduce the correct OPE up to the order
1/Q6, one can perform the asymptotic expansion for
large Q2 of �V (Q2) from the analytic expressions for
the �

(n)
V in Appendix B,

�V (Q2) ∼

Q2→∞
1

2g2
5

ln

(
4κ2e −γE

Q2

)

+ 1

2g2
5

(
2κ2 + θb2

) 1

Q2

+ 1

30g2
5

[
−5

(
2κ2 + θb2

)2 + 20θ2b4

]
1

Q4

+ 4

5g2
5

[
−
(

2κ2 + θb2

)
θ2b4 + 4θ3b6)

] 1

Q6 (54)

and match (54) term by term to the expected OPE

�V (Q2) ∼

Q2→∞
Nc

24π2 ln

(
�2

V

Q2

)

+〈O2〉 1

Q2 + 〈O4〉 1

Q4 + 〈O6〉V 1

Q6 , (55)

with the values of the condensates given in (23). Notice
that �V is automatically fixed to 2κe − γE

2 ≈ 1 GeV,
which is the natural cut-off for our model. It implies
also that
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⎧
⎪⎨

⎪⎩

b2 = −2κ2

b4 = 3
2g

2
5〈O4〉

b6 = 5
16g

2
5〈O6〉V

(56)

which completely fixes w(z) and hence the dilaton pro-
file B(z) in (25). In (56) we have removed the θ depen-
dence since if one uses these expressions in B(

√
θ z), the

artificial parameter θ disappears naturally. From now, we
will no more make explicit the dependence in θ to sim-
plify expressions for the reader except when this depen-
dence is useful for the comprehension.

Let us notice here, that as we anticipated in Sect. 2.3, (56)
shows that there is one-by-one correspondence between a z2k

term in the function B and a term at 1/Q2k in the OPE.

2.6 Analysis of the vectorial spectrum

From the complete and analytic expression for �V , one
has shown that the poles of the spectrum follow a Regge
behaviour, with masses squared M(n)2 = 4κ2n. The Large-
Nc representation of �V in (20) implies that the residues
associated to the masses poles define the so-called Large-Nc

decay constants

FV (n)2 .= Res
[
�V

(
Q2
)

,−4κ2n
]

, (57)

with FV (0) = 0. They are obtained from the analytic expres-
sions of each �(k) given in Appendix B. Despite this canoni-
cal description of the vectorial correlator, the FV (n)2 cannot
fully reconstruct the analytic expression of �V . For example,
let us focus on the order θ2 associated to the function �

(2)
V .

As expressed in (B.19),

�
(2)
V (Q2) = b4

κ4g2
5

(
4κ2

Q2

)[
− 2 −

(
Q2

4κ2

)(
5 + 6

Q2

4κ2

)

+ 2

(
Q2

4κ2

)2 (
1 + 3

Q2

4κ2

)
ψ ′
(
Q2

4κ2

)]

+ b2
2

16κ4g2
5

[
− 1 + 2

(
Q2

4κ2

)
ψ ′
(
Q2

4κ2

)

+
(
Q2

4κ2

)2

ψ ′′
(
Q2

4κ2

)]
, (58)

and the corresponding residue progression is

Res
[
�

(2)
V

(
Q2
)

,−4κ2n
]

= b4

g2
5

(1 − 6n), (59)

that manifestly does not contain the part proportional to b2
2 in

(58). Then, whatever summation over resonances procedure

is used, one cannot recover the complete function. More gen-
erally, the analytic expression (49) contains derivatives of the
Digamma function, which, due to their expression

ψ(k)
(
Q2

4κ2

)
=(−1)k+1�(k+1)

∞∑

n=0

1
(

Q2

4κ2 + n
)k+1 , (60)

cannot be directly written as series of single poles. Physically,
the previous expression of Digamma derivatives corresponds
to the combination of k+1 propagators, this suggests that the
analytic expression of the vectorial correlator is a combina-
tion of several propagators. If one looks at this problem from
a “perturbation theory” point of view, it could be possible
to re-encode the contributions from several propagators into
only one propagator but with a modified mass. In our case, it
means that the higher order corrections in θ , or equivalently
in the OPE, could be expressed as subleading contribution
to the Regge behaviour, as in Ref. [41], for more details see
Appendix D.

3 Axial two point function

In the previous section, we have presented a SW model with
a deformed dilaton profile which describes Regge theory and
allows us to obtain the correct OPE of the vectorial two-point
function. The natural question is now if it is possible to do a
similar construction for the axial correlator. The problem to
recover the right axial spectrum and the right axial OPE is
more complicated if we assume, as usual, that the coupling
of the 5D vector and axial vector gauge field to the metric
and the dilaton is the same. Actually, under these assump-
tions, the form of the dilaton profile is already fixed by the
requirements of a correct OPE of the vector two-point func-
tion, with the coefficients bn identified to the vectorial OPE
coefficients (56). So we need new ingredients to reproduce
the QCD patterns of chiral symmetry breaking, as we already
mentioned at the beginning of Sect. 2.1.

Let first enlarge the gauge symmetry of the 5D Lagrangian
to the whole group of chiral transformations SU(N f )L ×
SU(N f )R , introducing gauge fields, denoted by LM (x, z)
and RM (x, z) each transforming only under one of the two
SU(N f ) groups. Furthermore, as in [12,13], we introduce
also a 5D scalar field X(x, z) transforming under the bi-
fundamental of the chiral group so that the gauge invariant
action is taken as

S5 = 1

2

∫
d4x

∫ ∞

0
dz

√−g e −�(z) Tr

×
{
gMN (DMX)† (DNX) − m2 |X|2

− 1

4g2
5

gMN gRS
(
F

MR
L F

NS
L + F

MR
R F

NS
R

)}
, (61)
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where DM
X = ∂M

X − i L

M
X + i X R

M , F

MN
L = ∂M

L

N−
∂N

L

M− i[LM, L

N ] and analogous expression for F

MN
R .

The action, can be rewritten in terms of vector and axial
fields, V = 1/2(L + R) and A = 1/2(L − R), and as shown
in [12,13], taking

X

a .= v(z)

2
I

a, (62)

the equation of motion for the Fourier transform over the 4D
space of the axial field A, f A(−q2, z), becomes

∂2
z f A + ∂z [ln w(z)] ∂z f A − Q2 f A = g2

5

(
v(z)

z

)2

f A,

(63)

while the equation of motion for the vector field remains
unchanged.

In this approach, chiral symmetry is broken by the 5D
scalar field, and in particular by a non vanishing profile v(z).
The form of v(z) near the origin z ∼ 0 is dictated in the
AdS/CFT correspondence by asking the field X to be dual to
the bilinear quark q q̄ operator, whose non vanishing VEV is
responsible for spontaneous χSB in QCD. In the following,
we shall assume for the dilaton profile B(z) the one obtained
from the OPE coefficients of the vectorial fields and then use
a suitable form of the profile v(z) to encode the properties of
the axial sector:

– The axial spectrum contains a pion pole at q2 = 0 and
a Regge spectrum starting at q2 = M2

a1
with the same

spacing than the vectorial spectrum.
– The axial OPE has the following expression

�A(Q2) ∼

Q2→∞
Nc

24π2 ln

(
�2

A

Q2

)
+ 〈O2〉 1

Q2

+〈O4〉 1

Q4 + 〈O6〉A 1

Q6 (64)

and

〈O6〉A = −11

7
〈O6〉V . (65)

with the same definitions than in (23).

3.1 Realization of the axial spectrum

In order to satisfy the axial spectral properties, we make the
following first ansatz for the contribution due to the scalar
profile in (63):

(
v(z)

z

)2

= β0 + β∗z δ(z). (66)

0 1 2 3 4
n

Fig. 3 Axial Regge spectrum

Let focus first on the Regge progression of the axial spec-
trum. We notice that, phenomenologically, taking the first
axial pole at q2 = M2

a1
� 2M2

ρ � 2σ is quite an accept-
able approximation for the axial spectrum. Then our pre-
scription to obtain the axial spectrum from the vectorial
one is to perform a “shift” over the vectorial spectrum like
Q2 → Q2 + 4κ2, as suggested from the comparison of the
vectorial and axial mass spectra (see Figs. 2, 3). This fixes
directly in (63)

g2
5β0 = 4κ2 = σ. (67)

The full axial spectrum is not yet realised, indeed, since the
axial spectrum is a shifted version of the vectorial spectrum,
it does not contain yet any pion pole and moreover on the
Euclidean side, this shift implies a modifcation of the OPE
as

�A(Q2) ∼

Q2→∞
1

2g2
5

ln

(
4κ2e −γE

Q2

)
+ 2κ2

g2
5

1

Q2 , (68)

where absence of dimension two operator in the axial OPE
is violated.

The introduction of the Dirac delta function in (66) has
the nice properties to cure this two problems at the same
time. This term in (63) generates only one exact contribu-
tion −β∗/Q2 (for any Q2) such that the pion pole appears
naturally and modifying the OPE as

�A(Q2) ∼

Q2→∞
1

2g2
5

ln

(
4κ2e −γE

Q2

)
+
(

2κ2

g2
5

− β∗
)

1

Q2 ,

(69)

then by taking

β∗ = 2κ2

g2
5

, (70)

the axial OPE properties is satisfied again. The existence of
a pion wave function associated to this mechanism and its
use in the evaluation of low energy chiral parameters will be
exposed in details in a forthcoming paper [42].
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3.2 Realization of the axial OPE

The generation of the rest of the axial OPE terms derives
exactly from the same procedure used in the vectorial section
provided that we add two other terms in the expression (66)
such as

(
v(z)

z

)2

= β0 + β∗z δ(z) + β2z
2 + β4z

4. (71)

With slight modifications, the iterative method we used
to obtain the corrections to the vector two-point function,
can be applied to the axial case too. All the details can be
found in Appendix C. Then one has by identification: �2

A =
4κ2e −γE = �2

V , the coefficients β2 and β4 are fixed by
matching with QCD axial OPE (64), (65):

⎧
⎪⎨

⎪⎩

β2 = − 6κ4

g2
5

β4 = − 10κ2

3g2
5

− 5κ2 〈O4〉 + 45
28 〈O6〉V .

(72)

The polynomial part of the scalar profile v(z) is

v(z) = z
√

β0 + β2z2 + β4z4
∼

z→0

2κ

g5
z − 3κ3

2g5
z3

+
(

−67κ5

48g5
− 5g5κ

4
〈O4〉+ v

45g5

112κ
〈O6〉V

)
z5 ,

(73)

where the first two terms, which are the leading terms near
z = 0, are exactly the ones of a scalar field dual to the bilin-
ear quark qq̄ operator, i.e. the one required in Ref. [30] and
compatible with the approach in [43].

The additional distributional term, proportional to β∗ in
(71) can also be interpreted as a boundary term, such that in
the 5D action it would correspond to a peculiar 4D source
term in the generating functional,

β∗
∫

d4x
∫ ∞

0
dz zδ(z) w(z) Aμ(x, z)2

= β∗
∫

d4x Aμ(x, 0) A

μ(x, 0). (74)

The appearance of the Dirac δ function term, dictated by
the request of correct resonance mass spectrum and OPE for
the axial two-point function, makes our model definitely dif-
ferent from the more usual approaches adopted for instance
in [30] and [44].

4 Analytic continuation in the chiral sector: the
left-right correlator

In previous sections we have explicitly shown how to imple-
ment the constraints on an axial and vectorial two-point func-
tions coming from two different regions in the q2−plane:
the deep Euclidean region where we reproduce the matching
with the OPE of QCD, and the Minkowski region where the
two-point function have poles following Regge trajectories.
Having built explicit expressions for �V and �A valid on
the whole complex plane we now turn to the analysis of their
prediction for chiral quantities defined at low Q2.

4.1 The left-right correlator spectrum

Since we are now interested to the chiral sector, i.e. the low
Q2 expansions, it is more pertinent to consider the �LR cor-
relator,

�LR(Q2) = 1

2

(
�V (Q2) − �A(Q2)

)
. (75)

which is an order parameter of the chiral symmetry breaking
mechanism in QCD.

4.2 Predictions for the chiral constants

The low Q2 limit can be obtained by the analytic continua-
tion of our expressions for the axial and vectorial two-point
function, this allows us to extract from �LR for instance the
following chiral constants

F2
π = 2Res

[
�LR

(
Q2
)

, 0
]

(76)

L10 = 1

2

d

dQ2

[
Q2�LR(Q2)

] ∣∣∣∣
Q2=0

. (77)

One has
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F2
π = β∗ +

[
(π2 − 9)β2

6κ2

]
+
[

90κ2
(
β2b2

(
4ζ(3) + 5 − π2

)− 2
(
π2 − 10

)
β4
)− 45g2

5β2
2

(−4ζ(3) − 5 + π2
)

360κ6

]

= Ncκ
2
(
180ζ(3) + 191 − 41π2

)

72π2 + 5
(
π2 − 10

)

2

〈O4〉
κ2 − 45

(
π2 − 10

)

56

〈O6〉V
κ4 , (78)

using Nc = 3, κ = √
1.43/4 GeV � 0.6 GeV and the values

of the condensates 〈O4〉 = (−0.635±0.04) ·10−3 GeV4 and
〈O6〉V = (14 ± 3) · 10−4 GeV6 from [6], we obtain

Fπ �√
4099.9 + 579 + 1147.8 MeV

� 76 (±3)ext. MeV, (79)

the error in (79) are coming from the errors quoted for σ and
the condensates.

In Fig. 4, the contributions to the final value of Fπ due to
each term in (78) are reported.

The expression for L10 is

L10 = − 1

8g2
5

+
[

60
(
π2 − 6

)
b2κ

6 + 120g2
5β2κ

4
(−6ζ(3) − 3 + π2

)

5760g2
5κ8

]

+
[−12π4β2b2κ

2 − 180π2κ2(3β4 + β2b2) + 360β2b2κ
2(6ζ(3) + 1)

5760κ8

+ −30κ4
(−6b2

2ζ(3) − 84b4 + π2
(
b2

2 + 8b4
))+ 540g2

5β4κ
2(4ζ(3) + 5)

5760g2
5κ8

+ −6g2
5β2

2

(−30(6ζ(3) + 1) + 15π2 + π4
)

5760κ8

]

+
[
π4b3

2κ
2 + 15π2

(
b3

2 + 30b4b2 + 72b6
)
κ2 − 180κ2

(
b3

2ζ(3) + 8b4b2(ζ(3) + 2) + 58b6
)

5760g2
5κ8

]

= Nc(8010ζ(3) + 495 − 585π2 − 46π4)

8640π2

+ −72ζ(3) − 12 + 11π2

64

〈O4〉
κ4 + 5[5216ζ(3) + 67 − 33π2]

1792

〈O6〉V
κ6 , (80)

then with the same numerical values used for the evaluation
of Fπ ,

103L10 � −4.6 − 0.8 + 0.1 � −5.3 (±1)ext. , (81)

the error in (81) are coming from the errors quoted for σ and
the condensates.4

In Fig. 5, the contributions to the final value of L10 due to
each term in (80) are reported.

The values of Fπ and L10 are quite reasonable face with
our model hypothesis, if one admits the usual 30 % error
coming from large-Nc QCD limit, compared to the range of
variation of Fπ in the chiral limit, 66 < Fπ < 84 MeV, and
compared to the value 103L10 = −5.3 ± 0.13 according to
[45] and references therein. We can also notice here that the
value of Fπ is strongly related to the value of κ2 and then to
σ = 4κ2 as illustrated on Fig. 6.

The relative contributions to Fπ and L10 from the gluon
and the quark condensates are consistent with previous eval-
uation [46,47].

4 Let us notice that if we had made the choice for σ � 0.9 GeV2

as in [20] the values obtained would have been Fπ � 80 MeV and
103L10 � −6.2 which remain quite acceptable too.
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Fig. 4 Relative contributions to F2
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Fig. 5 Relative contributions to L10 from Eq. (80). “C.T.” stands for
the contributions coming from the shift g2

5β0 and the contact term
g2

5β∗zδ(z)

4.3 Comments on the duality violation

The so-called duality violation phenomena [48–52] is a man-
ifestation of the loss of the quark-hadron duality, i.e., the two
descriptions of the same Green function of QCD, the one in
the Minkowski region (Re q2 � 0) as a collection (series)
of bound states (resonances) and the one valid in the (deep)
Euclidean region (Re q2 � 0), are not related by analytic
continuation. It implies that each expression is valid only in
their own region. This two regions in the complex q2−plane
are disconnected and separated by the so-called Stokes’ line.
Until now, nobody knows where the QCD Stokes’ line is, but
one suspects that it could be the imaginary axis.

Our model provides analytic expressions for the vectorial
and axial correlators, it is natural to look for such duality
violations, since it is easy to recover the different behaviours
of the functions both in Minkowski and Euclidean regions. In

1 1.5 2 2.5 3
75

80

85

90

95

σ in GeV2

F π
in

M
eV

Fig. 6 Fπ variation according to σ

our analysis a crucial role is played by the second Weinberg
sum rule of �LR , whose importance in duality violations of
QCD sum rules has been studied, also at a quantitative level
in [53].

As we already said in Sect. 2.4, �
(0)
V corresponds to the

model exposed by the authors of [29,39] and their discussion
about the duality violation is still valid in our case, since our
work is a “natural” extension including higher derivatives of
the Digamma function ψ in (49).

The duality violation � = ∑
n �(n)θn (developed in pow-

ers of θ ) is then

�(n)(q2) = �(n)(|q2|) − �(n)(−|q2|), (82)

where the functions �(n) are given in the Appendix B. �(n)

is not vanishing in our model, since,

ψ(k)(−a) − (−1)kψ(k)(a) = dk

dak

[
1

a
+ cot πa

]
, (83)

where for simplicity, a = −|q2|/4κ2. Therefore our model
has a natural implementation for duality violations that will
be investigated in a future work.

5 Conclusions

There have been several models describing QCD proper-
ties of the two point vectorial and axial Green function.
Already an interpolation among low energy chiral properties
and perturbative QCD is good [1]. The intermediate region
could be phenomenologically matched with a tower of reso-
nance states equally spaced (à la Regge) [6,8,26,29]. Indeed,
there are excellent dynamical reasons that Regge trajecto-
ries are dynamically generated. Holographic QCD gives us
a fundamental theoretical tool with the SW model to start
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directly from a theory where Regge trajectories are ana-
lytically implemented. The original model [20] had several
difficulties: the absence of a satisfying description of chiral
symmetry breaking and of the axial sector, wrong OPE. For
some further attempts to cure these problems one can refer
to [54,55].

It is natural to modify opportunely the SW model to com-
ply with the OPE. While it was done already for the HW
model [47,56], it is a novelty for the vector correlator in the
SW model: we obtain the solution for the vector field fV pro-
file and the analytic expression �

(n)
V (Q2) in Eq. (49) in terms

of the Digamma function ψ and its derivatives, from the set
of differential equations in (34) (n is related to the order of
OPE that we are addressing)—Appendix A and Appendix B
are dedicated to a description of the calculation. As a result,
we support previous works [26,29,52].

The coefficients of the polynomial of the dilaton profile
(bk’s), fixed by the requirement of a correct vectorial OPE,
appear also in the differential Eq. (63) of the axial vector
field f A, whose expression extends the analogous ones in
Refs. [12,13,15,30] with the presence of a scalar field in the
bulk with a non-trivial vacuum profile, v(z). Several issues
have to be understood in connection also for the determina-
tion of the profile v(z): chiral symmetry breaking, pion pole,
the correct axial spectrum and correct OPE. A coherent, com-
plete and phenomenologically consistent solution emerges:
due the phenomenologically observed relation 8κ2 = M2

a1
the solution for the axial in Eq. (63) can be obtained from the
vectorial one as �A(Q2) = �V (Q2 +4κ2)+ “corrections”.
This solution generates the pion pole , the correct axial spec-
trum and axial OPE, if the profile of the vacuum, v(z), is
not only a polynomial (βk in Eq. (C.24)) but contains also
a Dirac δ-function term, i.e. a boundary term for the axial
field, which is needed in order to comply with the axial
OPE.

In Appendix E we show an original pictorial represen-
tation of the solutions obtained, both for vectors and axial
vectors, up to to the inclusion of the term z6 in the polyno-
mial part of the dilaton.

The necessity for simultaneous local and non-local (the
Dirac δ function contribution) chiral symmetry breaking
mechanism has been already noticed in the literature; for
instance in Ref. [57] in the context of HW with chiral sym-
metry broken by boundary conditions an additional scalar
field with canonical AdS dimensions was added to describe
the pion mass. In Ref. [54] the behaviour � ∼ z2 of the scalar
field in the UV potentially has our same feature: the presence
of an unwanted dimension-two condensate.

Our analytic solution for Fπ and L10 respectively in Eqs.
(78) and (80) are very successfully phenomenologically and
show how these parameter are linked to Regge spacing and
QCD condensates; compared to previous literature [6,8,26,
29] our results are fully analytical.

We think there are many applications. For example, our
model is the fitting framework to analyse the duality viola-
tions since they appear naturally as the analytic continuation
properties of the Digamma function (and its derivatives) cf.
Eq. (83). We enforce and extend here properties established
from ad hoc models in Refs. [29,39,52]; in our case these
properties are based on a (5D) Lagrangian description and
analytic results for the solutions of the corresponding equa-
tions of motion.
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Appendix A: Integral representation of the Green
function

The solution of the unperturbed equation of motion (D f (0)
V =

0) could be expressed with generalized Laguerre polynomials
L(α)
n or by an integral representation [20,38]

f (0)
V (Q2, z) = κ2z2

∞∑

n=0

L(1)
n (κ2z2)

Q2

4κ2 + (n + 1)

= Q2

4κ2

∫ 1

0
du u

Q2

4κ2 −1 exp

[
− u

1 − u
κ2z2

]
.

(A.1)

The associated Green function is given by

GV (Q2; x, y) = −κ2x2y2

2

∞∑

n=0

L(1)
n (κ2x2) L(1)

n (κ2y2)

n + 1

× 1
Q2

4κ2 + (n + 1)
, (A.2)

such that one has explicitly

f (0)
V (Q2, x) = − lim

z→0
w0(z) f

(0)
V (Q2, z)∂zG(Q2; x, z),

(A.3)

since L(1)
n (0) = n + 1.
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It is more useful for our calculations to have an integral
representation for the Green function too. One can express
the Green function as an integral by using the Poisson Kernel
[59]

∞∑

n=0

�(n + 1)

�(n + 1 + α)
L(α)
n (x)L(α)

n (y)tn

= (xyt)−
α
2 (1 − t)−1 exp

[
− t

1 − t
(x+y)

]
Iα

(
2
√
xyt

1 − t

)

(A.4)

where Iα is the Bessel function, |t | < 1 and α > −1, and
since α = 1 in our case, writing

1
Q2

4κ2 + (n + 1)
=
∫ 1

0
dt t

Q2

4κ2 tn, (A.5)

then

GV (Q2; x, y) = −κ2x2y2

2

∫ 1

0
dt t

Q2

4κ2

×
∞∑

n=0

L(1)
n (κ2x2) L(1)

n (κ2y2)

n + 1
tn (A.6)

= − xy

2

∫ 1

0
dt

t
Q2

4κ2 − 1
2

1 − t
exp

[
− t

1 − t
κ2(x2 + y2)

]

× I1

(
2κ2xy

√
t

1 − t

)
. (A.7)

Appendix B: Analytic expression for the vectorial two
point function

The procedure that we use for the evaluation of the analytic
expression for the two point function is quite simple. We
first use the integral representations (A.1) and (A.6), then we
perform the integrations over the exponentials and Bessel’s
functions in the integrand and then there remain only inte-
grals of rational functions. As an example let focus on �

(1)
V

calculation,

�
(1)
V (Q2) = − b2

g2
5

1

Q2

∫ ∞

0
dx w0(x)x∂x f

(0)
V (Q2, x)

× lim
z→0

w0(z) f
(0)
V (Q2, z)GV (Q2; z, x) (B.8)

= b2

g2
5

1

Q2

∫ ∞

0
dx e −κ2x2

f (0)
V (Q2, x) ∂x f

(0)
V (Q2, x)

(B.9)

= b2

g2
5

1

Q2

(
Q2

4κ2

)2 ∫ ∞

0
dx e −κ2x2

×
∫ 1

0
du dv u

Q2

4κ2 −1
v

Q2

4κ2 −1
(

−2κ2x
v

1 − v

)

× exp

[
−
(

u

1 − u
+ v

1 − v

)
κ2x2

]
(B.10)

= b2

g2
5

1

Q2

(
Q2

4κ2

)2 ∫ 1

0
du dv u

Q2

4κ2 −1
v

Q2

4κ2
(1 − u)

1 − uv

(B.11)

= b2

4κ2g2
5

1
(

1 + Q2

4κ2

)2 3F2

(
1,

Q2

4κ2 ,
Q2

4κ2 + 1

2 + Q2

4κ2 , 2 + Q2

4κ2

∣∣∣∣∣ 1

)

(B.12)

= b2

4κ2g2
5

(
4κ2

Q2

)[
1 +

(
Q2

4κ2

)
−
(
Q2

4κ2

)2

ψ ′
(
Q2

4κ2

)]

(B.13)

∼

Q2→∞
b2

8κ2g2
5

[(
4κ2

Q2

)
− 1

3

(
4κ2

Q2

)2
]

. (B.14)

Each step can be applied to the evaluation of any higher
order contributions. One always first performs the integrals
over the fifth dimension ( [0,∞[ ) as in equation (B.10),
then one remains with multiple integrals between [0, 1] of
the parameters entering in the integral representation of f (0)

V
andGV —cf (A.1) and (A.6)—as in (B.11). For higher orders,
this takes a general form which can be expressed as hyper-
geometric functions,

∫ 1

0
du1 . . . dun ua1(1 − u1)

b1 . . . uan (1 − u1)
bn

× 1

(1 − u1 . . . un)c

= B(1 + a1, 1 + b1) . . . B(1 + an, 1 + bn)

× n+1Fn

(
c, 1 + a1, . . . , 1 + an

2 + a1 + b1, . . . , 2 + an + bn

∣∣∣∣ 1

)
, (B.15)

where B is the Euler’s beta function: B(x, y) = �(x)�(y)
�(x+y) and

the hypergeometric function is

n+1Fn

(
c, 1 + a1, . . . , 1 + an

2 + a1 + b1, . . . , 2 + an + bn

∣∣∣∣ 1

)

=
∞∑

k=0

(c)k(1 + a1)k . . . (1 + an)k
(1)k(2 + a1 + b1)k . . . (2 + an + bn)k

, (B.16)

where the Pochhammer symbols are defined as (a)k = �(a+
k)/�(a). The hypergeometric functions pFq of argument 1
have the particularity that their coefficients are function of
Q2

4κ2 ±1, so that in this case the series in (B.16) can be summed
in terms of Digamma functions and rational function [60] as
summarized in (49), viz.
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�
(0)
V (Q2) = 1

2g2
5

[
γE + ψ

(
Q2

4κ2 + 1

)]

∼

Q2→∞
1

2g2
5

ln

(
Q2

4κ2

)
+ 1

2g2
5

γE

+ 1

4g2
5

(
4κ2

Q2

)
− 1

24g2
5

(
4κ2

Q2

)2

(B.17)

�
(1)
V (Q2) = b2

4κ2g2
5

1
(

1 + Q2

4κ2

)2 3F2

(
1,

Q2

4κ2 ,
Q2

4κ2 + 1

2 + Q2

4κ2 , 2 + Q2

4κ2

∣∣∣∣∣ 1

)

= b2

4κ2g2
5

(
4κ2

Q2

)[
1 +

(
Q2

4κ2

)
−
(
Q2

4κ2

)2

ψ ′
(
Q2

4κ2

)]

∼

Q2→∞
b2

8κ2g2
5

[(
4κ2

Q2

)
− 1

3

(
4κ2

Q2

)2
]

(B.18)

�
(2)
V (Q2) = b4

2κ4g2
5

1
(

1 + Q2

4κ2

)2 (
2 + Q2

4κ2

)2

× 3F2

(
2,

Q2

4κ2 ,
Q2

4κ2 + 1

3 + Q2

4κ2 , 3 + Q2

4κ2

∣∣∣∣∣ 1

)

− b2
2

8κ4g2
5

1
(

1 + Q2

4κ2

)3 (
2 + Q2

4κ2

)

× 4F3

(
2,

Q2

4κ2 ,
Q2

4κ2 + 1,
Q2

4κ2 + 1

1 + Q2

4κ2 , 2 + Q2

4κ2 , 3 + Q2

4κ2

∣∣∣∣∣ 1

)

= b4

κ4g2
5

(
4κ2

Q2

)[
− 2 −

(
Q2

4κ2

)(
5 + 6

Q2

4κ2

)

+2

(
Q2

4κ2

)2 (
1 + 3

Q2

4κ2

)
ψ ′
(
Q2

4κ2

)]

+ b2
2

16κ4g2
5

[
− 1 + 2

(
Q2

4κ2

)
ψ ′
(
Q2

4κ2

)

+
(
Q2

4κ2

)2

ψ ′′
(
Q2

4κ2

)]

∼

Q2→∞
4b4 − b2

2

96κ4g2
5

(
4κ2

Q2

)2

− b4

90κ4g2
5

(
4κ2

Q2

)3

(B.19)

�
(3)
V (Q2) = 6b6

κ6g2
5

3F2

(
3,

Q2

4κ2 ,
Q2

4κ2 + 1

4 + Q2

4κ2 , 4 + Q2

4κ2

∣∣∣∣∣ 1

)

− b2b4

4κ6g2
5

(
Q2

4κ2

)[
1

Q2

4κ2

(
1 + Q2

4κ2

)3 (
2 + Q2

4κ2

)2

× 4F3

(
3,

Q2

4κ2 ,
Q2

4κ2 + 1,
Q2

4κ2 + 1

3 + Q2

4κ2 , 3 + Q2

4κ2 , 2 + Q2

4κ2

∣∣∣∣∣ 1

)

− 2

Q2

4κ2

(
1 + Q2

4κ2

) (
2 + Q2

4κ2

)3 (
3 + Q2

4κ2

)

× 4F3

(
3,

Q2

4κ2 ,
Q2

4κ2 + 2,
Q2

4κ2 + 2

3 + Q2

4κ2 , 3 + Q2

4κ2 , 4 + Q2

4κ2

∣∣∣∣∣ 1

)

+ 1
(

1 + Q2

4κ2

) (
2 + Q2

4κ2

)3 (
3 + Q2

4κ2

)2

× 4F3

(
3,

Q2

4κ2 + 1,
Q2

4κ2 + 2,
Q2

4κ2 + 2

4 + Q2

4κ2 , 4 + Q2

4κ2 , 3 + Q2

4κ2

∣∣∣∣∣ 1

)

+ 2

Q2

4κ2

(
1 + Q2

4κ2

)3 (
2 + Q2

4κ2

)2 (
3 + Q2

4κ2

)

× 4F3

(
3,

Q2

4κ2 ,
Q2

4κ2 + 1,
Q2

4κ2 + 1

2 + Q2

4κ2 , 4 + Q2

4κ2 , 2 + Q2

4κ2

∣∣∣∣∣ 1

)

− 2
(

1 + Q2

4κ2

) (
2 + Q2

4κ2

)3 (
3 + Q2

4κ2

) (
4 + Q2

4κ2

)

× 4F3

(
3, 1 + Q2

4κ2 , 2 + Q2

4κ2 ,
Q2

4κ2 + 2

3 + Q2

4κ2 , 5 + Q2

4κ2 , 3 + Q2

4κ2

∣∣∣∣∣ 1

)]

+ b3
2

16κ6g2
5

[
1

Q2

4κ2

(
1 + Q2

4κ2

)4 (
2 + Q2

4κ2

)

× 5F4

(
3,

Q2

4κ2 , 1 + Q2

4κ2 , 1 + Q2

4κ2 ,
Q2

4κ2 + 1

3 + Q2

4κ2 , 3 + Q2

4κ2 , 3 + Q2

4κ2 , 3 + Q2

4κ2

∣∣∣∣∣ 1

)

− 2

Q2

4κ2

(
1 + Q2

4κ2

)2 (
2 + Q2

4κ2

)2 (
3 + Q2

4κ2

)

× 3F2

(
3,

Q2

4κ2 , 1 + Q2

4κ2

3 + Q2

4κ2 , 3 + Q2

4κ2 , 3 + Q2

4κ2 , 3 + Q2

4κ2

∣∣∣∣∣ 1

)

+ 1
(

1 + Q2

4κ2

) (
2 + Q2

4κ2

)4 (
3 + Q2

4κ2

)

× 5F4

(
3, 1 + Q2

4κ2 , 2 + Q2

4κ2 , 2 + Q2

4κ2 ,
Q2

4κ2 + 2

4 + Q2

4κ2 , 4 + Q2

4κ2 , 4 + Q2

4κ2 , 4 + Q2

4κ2

∣∣∣∣∣ 1

)]

= b6

12κ6g2
5

(
4κ2

Q2

){
6 +

(
Q2

4κ2

)

×
[

20 + 30

(
Q2

4κ2

)
+ 33

(
Q2

4κ2

)2
]

− 6

(
Q2

4κ2

)2
[

1+3

(
Q2

4κ2

)
+5

(
Q2

4κ2

)2
]

ψ ′
(
Q2

4κ2

)}

− b2b4

8κ6g2
5

(
4κ2

Q2

){
− 1 −

(
Q2

4κ2

)[
5 + 9

(
Q2

4κ2

)]

+ 3

(
Q2

4κ2

)2 [
1 + 4

(
Q2

4κ2

)]
ψ ′
(
Q2

4κ2

)

+
(
Q2

4κ2

)3 [
1 +

(
Q2

4κ2

)]
ψ ′′

(
Q2

4κ2

)}

− b3
2

16κ6g2
5

{
− 2 + 6

(
Q2

4κ2

)
ψ ′
(
Q2

4κ2

)

+ 6

(
Q2

4κ2

)2

ψ ′′
(
Q2

4κ2

)
+
(
Q2

4κ2

)3

ψ ′′′
(
Q2

4κ2

)}

∼

Q2→∞
4b6 − b2b4

80κ6g2
5

(
4κ2

Q2

)3

(B.20)
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Appendix C: Analytic expression for the axial two point
function

We shall proceed in analogy with what we did in Sect. 2.4.
We expand,

f A = f (0)
A + θ f (1)

A + θ2 f (2)
A + θ3 f (3)

A + O(θ4) (C.21)

and the associated axial two-point function,

�A = �
(0)
A + θ�

(1)
A + θ2�

(2)
A + θ3�

(3)
A + O(θ4). (C.22)

The expression (71) is also expanded in powers of θ ,

(
v(

√
θ z)

z

)2

= β0 + β2z
2θ + β4z

4θ2 + β∗zδ(z). (C.23)

(The absence of powers of θ for the β∗ term is due to its
invariance under the rescaling z → √

θ z.)
The equation of motion for the axial field (63) becomes

∂2
z f A + ∂z [ln w(z)] ∂z f A − (Q2 + g2

5β0) f A

= g2
5

[
β2z

2θ + β4z
4θ2 + β∗zδ(z)

]
f A, (C.24)

with the boundary conditions

f (n)
A (Q2, 0) = δ0,n and f (n)

A (Q2,∞) = 0. (C.25)

The zero-th order solution of (C.24), neglecting the con-
tribution from the β∗ term, is given by (simply the imple-
mentation of the shift on the integral representation (46))

f (0)
A (Q2, z) =

(
Q2

4κ2 + 1

)∫ 1

0
dx x

Q2

4κ2

× exp

[
− x

1 − x
κ2z2

]
, (C.26)

and the associated Green function,

GA(Q2; x, y) = − xy

2

∫ 1

0
dt

t
Q2

4κ2 + 1
2

1 − t

× exp

[
− t

1 − t
κ2(x2+y2)

]
I1

(
2κ2xy

√
t

1−t

)
. (C.27)

The β∗ term contributes only to the θ0 term, and as it was the
case for the vector correlator in Sect. 2.4, also for the axial
one, we obtain, order by order in θ :

Q2�
(n)
A (Q2) = −β∗δn,0− 1

g2
5

∫ ∞

0
dx e −κ2x2

f (0)
A (Q2, x)

×
n−1∑

k=0

[
g2

5β2(n−k)x
2(n−k)−1 f (k)

A (Q2, x)

+b2(n−k)x
2(n−k−1) ∂x f (k)

A (Q2, x)
]

. (C.28)

Using the same methodology one obtains the following
contributions proportional to the βn coefficients in (C.28)
for the axial two point functions,

�
(1)
A (Q2)

∣∣∣∣
β

= β2

8κ4

(
4κ2

Q2

)2

×
{

3+2

(
Q2

4κ2

)2

−2

[
1 +

(
Q2

4κ2

)]2

ψ ′
(

1 + Q2

4κ2

)}

(C.29)

∼

Q2→∞
β2

24κ4

(
4κ2

Q2

)2

+ β2

24κ4

(
4κ2

Q2

)3

�
(2)
A (Q2)

∣∣∣∣
β

= β4

8κ6

(
4κ2

Q2

){
− 10 − 3

(
Q2

4κ2

)[
5 + 2

(
Q2

4κ2

)]

+ 6

[
1 +

(
Q2

4κ2

)]3

ψ ′
(

1 + Q2

4κ2

)}

+ g2
5β2

2 + 2κ2β2b2

32κ8

(
4κ2

Q2

){
− 5 − 4

(
Q2

4κ2

)

+ 6

[
1 +

(
Q2

4κ2

)]2

ψ ′′
(
Q2

4κ2 + 1

)

+ 2

[
1 +

(
Q2

4κ2

)]3

ψ ′
(
Q2

4κ2

)}
(C.30)

∼

Q2→∞
− β4

40κ6

(
4κ2

Q2

)3

Appendix D: Corrections to the mass spectrum

In this Appendix, we want to show explicitly our assumption
that Regge trajectories are kept in our approach and modified
order by order in θ by sub-leading corrections in n. Indeed,
the parameter θ introduced in Sect. 2.3 acquires a physical
meaning as a true perturbative parameter, when we try to
quantify corrections to the leading Regge mass spectra. We
develop the considerations we did at the end of Sect. 2.6
for the vector resonance mass spectrum. The same argument
would hold for the axial resonances as described in Sect. 4.

As we showed in Sect. 2.4, the vector two-point function
�V (Q2) receives corrections in θ Eq. (51) as

�V (Q2) =
3∑

k=0

�
(k)
V (Q2) θk, (D.31)

which generically take the form
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�
(k)
V (Q2) =

∞∑

n=1

k+1∑

�=1

A(k)
� (n)

(Q2 + 4κ2n)�
, (D.32)

showing the appearance of multiple poles of increasing order
the greater the powers of θ considered in Eq. (49).

The question arises whether it is possible to rewrite (D.32)
in a way that preserves the Regge behaviour, maybe with the
cost of modifying the value of the slope parameter. In fact,
it is possible to answer in the affirmative, provided the value
of θ is small enough. It is possible to show that (D.32) can
be generically rewritten such as

�V (Q2) =
∞∑

n=1

FV (n, θ)2

Q2 + σ(n, θ) n
, (D.33)

where

σ(n, θ) = 4κ2 + σ1(θ)

n
+ · · · (D.34)

corresponding to corrections to the original Regge slope,
σ = 4κ2, and to the residue. The equivalence between the
two expressions (D.32) and (D.33) is non trivial, and relies on
a number of algebraic relations satisfied by the coefficients
A(k)

� (n) that reduce the number of independent parameters

thus allowing the equivalent representation (D.33). Thus, for
a given resonance term, i.e. a fixed value of n, and a given
value of the power of θ considered, the departure from the
original Regge slope can be made parametrically small by
choosing a correspondingly small enough value of θ . Notice
that coefficients of higher power in θ are expected to be size-
able or even greater than the lower ones, following, at most,
an asymptotic series behaviour.

In this context, the knowledge of the complete OPE series
would drive to a complete resummation of the Regge slope
since for the vector correlator there is a one by one corre-
spondence between the dilaton modification coefficients and
the OPE coefficients Eq. (56). We have illustrated here that
the partial information of few OPE terms can be treated in
our model such that the QCD properties on the Minkowski
region are still satisfied, in other words, we assume Regge
trajectories even if it is realized dynamically and impose a
correct OPE.

Appendix E:Diagrammatic representations of the results

In order to simplify the understanding of the calculation pro-
cedure, we can represent graphically the result by construct-
ing diagrammatic rules. Let us define the bulk-connectors
and boundaries-connectors, as illustrated on Figs. 7 and 8.

b2k k timesx z = b2k
∞

0
dx w0(x)GV (Q2;z,x)xk∂x f

(0)
V (Q2,x)

b2k k times
F(x)

z = b2k
∞

0
dx w0(x)GV (Q2;z,x)xk∂xF(x)

β2k k timesx z = g25β2k
∞

0
dx w0(x)GA(Q2;z,x)xk f (0)A (Q2,x)

β2k k times
F(x)

z = g25β2k
∞

0
dx w0(x)GA(Q2;z,x)xkF(x)

Fig. 7 Diagrammatic rules of construction: the bulk-connectors. On the right one has the corresponding operator
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Π (n)
V

F(z) = − 1
g25

∞

0
dz w0(z) f

(0)
V (Q2,z)δ (z)∂zF(z)

= − 1
g25

lim
z→0

w0(z) f
(0)
V (Q2,z)∂zF(z)

Π (n)
A

F(z) = − 1
g25

∞

0
dz w0(z) f

(0)
A (Q2,z)δ (z)∂zF(z)

= − 1
g25

lim
z→0

w0(z) f
(0)
A (Q2,z)∂zF(z)

Fig. 8 Diagrammatic rules of construction: the boundary-connectors. On the right one has the corresponding operator

Fig. 9 All graphical
contributions to the vectorial
two-point function up to �(3)

b2 b2

b2

b4

b2

b2

b2

b4

b2

b6

b2

b4

ΠV = Π (0)
V + Π (1)

V + Π (2)
V + Π (3)

V

One can associate to each connector an integral and just by
multiplying each of them, we obtain the corresponding con-
tribution. The last rule is that to obtain all the contributions
to �

(n)
V , one needs to collect all the possible ways to have a

path with n legs starting from the boundary-connector.

One can see all the possible combinations on Fig. 9 for the
vectorial case and on Fig. 10 for the axial case. For example,
it is easy to recover Eq. (B.8) using this rules.
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b2 b2

b2

b4

β2

β4

b2

β2

β2

b2

β2

β2

ΠA = Π (1)
A + Π (2)

A

Fig. 10 The different contributions to the axial correlator up to �
(2)
A .

The part containing only the contributions from the shift are inside the
dotted blue rectangle (i.e. the path containing only blue lines)
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