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Abstract We present the complete next-to-leading order
calculation of isolated prompt photon production in asso-
ciation with a jet in deep-inelastic scattering. The calcula-
tion involves, direct, resolved, and fragmentation contribu-
tions. It is shown that defining the transverse momenta in
the proton virtual-photon frame (CM∗), as usually done, or
in the laboratory frame, as done in some experiments, is
not equivalent and leads to important differences concern-
ing the perturbative approach. In fact, using the latter frame
may preclude, under certain conditions, the calculation of
the next-to-leading order correction to the important resolved
component. A comparison with the latest ZEUS data is per-
formed and good agreement is found in the perturbatively
stable regions.

1 Introduction

Large transverse momentum phenomena in deep-inelastic
scattering reactions have been extensively studied by the H1
and ZEUS collaborations at HERA. Large-p⊥ particle and jet
spectra have been measured and compared to next-to-leading
order (NLO) QCD calculations. Large-p⊥ photons have also
been observed, in an inclusive way [1,2] or in correlation with
a hadronic jet [1,3]. This latter reaction has been the subject
of theoretical studies some ten years ago [4,5]. The recent
data from ZEUS [3] lead us to extend these studies and to
compare the complete NLO QCD results with the γ -jet cross
sections.

In principle, prompt photon production in deep-inelastic
scattering (DIS) is a very simple process: it goes via the
Compton scattering of a virtual photon on a quark: γ ∗+q →
γ + q and requires only the knowledge of the distribution
function of a quark in the proton. Including higher-order
(HO) corrections considerably complicates the picture and
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new objects have to be introduced. For example, in the scat-
tering γ ∗ + g → q + q̄ + γ , the qq̄ pair may be produced
quasi-collinearly to the virtual photon, one of the parton in the
pair being then scattered at large p⊥: this configuration gen-
erates the virtual-photon structure function (resolved pho-
ton) at lowest order associated to a large logarithm. It is
then necessary to resum such large logarithms and intro-
duce the all-order photon structure function. Furthermore,
in the above process or in γ ∗ + q → q + g + γ , the final
photon may be produced collinearly to a final state quark
or antiquark (bremsstrahlung) leading to a large logarith-
mic enhancement, thus generating the photon fragmentation
function. Thus one is lead to distinguish four types of pro-
cesses, all contributing already at leading order (LO): the
direct-direct (d-d) one where both the virtual photon and the
final real photon couple directly to the hard subprocess; the
resolved-direct (r-d) where the virtual photon couples to the
hard subprocess through its hadronic (perturbative or non-
perturbative) components; the direct-fragmented (d-f) and
the resolved-fragmented (r-f) ones where the final photon
appears as a fragment of a jet unlike in the previous two cases
where it is isolated. At HERA, all four processes correspond-
ing to four topologies have essentially the same order of mag-
nitude [6]. However, when dealing with isolated photon, the
isolation criteria, necessary to suppress the background from
π0 → γ γ , considerably reduce the fragmentation compo-
nents d-f and r-f.

The above discussion of the four topologies is valid as long
as we can define a virtual-photon structure function resum-

ming all the large logarithms ln

(
p2⊥+Q2

Q2

)
[7] where p⊥ is

a characteristic transverse momentum of the reaction (for
instance that of the observed photon in the proton virtual-
photon center-of-mass frame) and Q2 the initial photon virtu-
ality. These terms appear in the calculation of HO corrections
to the Born direct cross sections. If p⊥ is not large enough
(p2⊥ � Q2) it is of course not useful to subtract these loga-
rithms from the direct HO corrections in order to resum them
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in the virtual-photon structure function. On the other hand
for p2⊥ � Q2 this approach is useful: indeed in this case the
resolved cross sections have the same structure as a hadronic
cross section involving two parton distributions convoluted
with hard subprocesses. HO corrections are known, they are
large and can be easily implemented.

The natural frame to observe large-p⊥ phenomena and
to calculate the corresponding NLO cross section in deep-
inelastic scattering (DIS) is the proton virtual-photon center-
of-mass system (hadronic frame or CM∗). The large p∗⊥ of
the final photon provides the scale which can be compared
with the photon virtuality; a large ratio p∗2⊥ /Q2 defines the
kinematical range in which the photon structure function for-
malism is useful. Such an approach, but without the introduc-
tion of the virtual-photon structure function, can be found in
[4]. It contains detailed studies on the jet algorithms and the
scale choice dependence of the cross sections.

As the kinematical conditions are often specified in the
laboratory frame and as a large-p⊥ in the laboratory does
not necessarily imply a large p∗⊥ in the CM∗, a lower limit
p∗⊥ > E∗⊥cut can also be imposed by the experiments. This
condition will preserve the validity of a perturbative calcu-
lation and the possibility to define a virtual-photon structure
function. The production of jets and of forward π0 has been
measured with this convention by H1 [8,9] and ZEUS [10].
On the other hand, several experiments have also used the
laboratory frame (LAB frame) to present their results [1–3]
without imposing the requirement p∗⊥ > E∗⊥cut. As we shall
see, the approach involving the definition of the resolved
cross section is not always under control, and we have to
content ourselves with the calculations of unsubtracted direct
contribution. Thus we lose the possibility to supplement them
with HO corrections.

In this paper we consider DIS reactions in which an iso-
lated photon and a jet are observed in the final state, extend-
ing the approach used in the inclusive case [6] with only
a photon observed in the final state. We discuss both cases,
when the transverse momenta are defined in the CM∗ or in the
LAB frames. This study is triggered by recent detailed ZEUS
results [3]. Unfortunately no p∗⊥ constraint has been intro-
duced by this collaboration, thus forbidding, in some kine-
matical domains, direct comparisons with complete NLO
predictions.

The comparison with inclusive isolated cross section done
in our previous paper was favored by the H1 kinematics [1]
having a large domain where the condition p∗2⊥ > E∗2⊥cut
with p∗2⊥ /Q2 � 1 was verified. The situation is less favor-
able with the ZEUS kinematics having a larger range in Q2.
The observation of a photon and a jet in the laboratory does
not necessarily imply a large invariant mass squared sγ j of
this system (when the photon and the jet are almost parallel).
Therefore the addition of a jet is not sufficient to prevent con-
figuration with p∗⊥ < E∗⊥cut. This fact leads us to introduce

a cutoff E∗⊥cut in our calculations and to study the stability
of our results when E∗⊥cut goes to zero. If, in some kinemat-
ical domains, the results are not sensitive to E∗⊥cut we will
compare them with ZEUS data.

The plan of this paper is the following. The next section
is devoted to the calculation of the gamma-jet cross section
in the CM∗. By this we mean that the isolation algorithm
for the photon and jet algorithm are defined in this frame.
The jet algorithm also contains conditions such as “jet of
highest p⊥” in the CM∗. As we fix the kinematical vari-
able pγ and pjet in the laboratory we require the condition
p∗⊥γ > E∗⊥cut. We discuss in detail the introduction of the
resolved component. The four contributions (d-d, d-f, r-d,
and r-f) are calculated and their respective importance is dis-
cussed. Then, in Sect. 3, we discuss calculations performed
in the laboratory frame. By this we mean that the isolation
algorithm and jet algorithm are now defined in the labora-
tory where the kinematical boundaries are also fixed. We
furthermore study the differences between the standard cone
algorithm and the democratic one for the photon isolation and
for the jet definition. We have to introduce a cutoff E∗⊥cut in
order to avoid possible instability of the cross section. Finally
Sect. 4 is devoted to the comparison with the recent ZEUS
data [3].

2 Proton virtual-photon center of mass frame

In this section, devoted to calculations in the CM∗, we study
the four contributions to the γ -jet cross section discussed
in the introduction. Such a frame looks like the laboratory
frame of a hadronic collider; the colliding particles have
collinear trajectories and the large transverse momentum p∗⊥
of the observed final particle fixes the large scale appear-
ing in the distribution functions and in the strong coupling
constant.

However, to be close to the experimental conditions we
impose constraints on the observed kinematical variables,
transverse momenta and rapidity, in the laboratory frame. The
particle momenta are transformed to the CM∗ frame in which
we define the isolation algorithm and the jet algorithm. As
discussed in the introduction we impose a cut on the photon
momentum p∗⊥γ > E∗⊥cut in order to avoid instabilities of the
cross section and to guarantee the validity of the perturbative
regime. In this section we use the cone algorithm [11] for the
isolation and the longitudinal k⊥-algorithm [12] to define a
jet. When two jets are present, we observe the jet of higher
p∗⊥. For the photon the radius of the isolation cone is R∗ = 1,

and we require a ratio
E∗had⊥

E∗γ
⊥ +E∗had⊥

≤ .1 where E∗had⊥ is the

hadronic energy contained in the isolation cone. For the jet
the radius R∗

jet of the k⊥-algorithm is set equal to R∗
jet = 1.

Another algorithm, the so-called democratic algorithm will
be discussed in Sect. 3.
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We use the CTEQ6M proton structure [13] and the virtual-
photon structure function presented in Ref. [7] and used
in Refs. [6,14]. The fragmentation function is that of the
BFG collaboration (set II) [15]. Details on the NLO cal-
culation can be found in Refs. [6,14,16,17]. We work in
the MS scheme for factorization and renormalization with
�M S(4) = 236 MeV and N f = 4. The factorization and the
renormalization scales are taken equal to p∗2⊥γ +Q2. The kine-
matical constraints are defined in the laboratory. We adopt
those of Ref. [3]. The colliding electron and proton have
energies Ee = 27.6 GeV and E p = 920 GeV corresponding
to the center-of-mass energy

√
s = 319 GeV. The photon

momentum has to lie within the ranges 4 < Eγ
⊥ < 15 GeV

and −.7 < ηγ < 0.9. The jet momentum is required to have
2.5 GeV < E jet

⊥ < 35 GeV and −1.5 < ηjet < 1.8. Con-
straints on the final electron are: E ′

e > 10 GeV, θe > 140◦
(the z axis is pointing toward the proton direction). Finally
the photon virtuality is 10 < Q2 < 350 GeV2. The numer-
ical calculations are carried out using the adaptive Monte
Carlo code BASIS [18].

2.1 Direct-direct contribution

In the d-d contribution the real and virtual photons are
directly coupled to the hard subprocess and the Born term,
γ ∗ q → γ q, is particularly simple: it consists of the Comp-
ton scattering diagrams. The cross section has a 1/̂t behav-
ior1 when the photon is emitted close to the forward direction
(collinear to the initial quark) and a 1/̂s behavior when it is
emitted collinear to the final quark. In the CM∗ the divergent
configurations, in ŝ or t̂ , are forbidden by the requirement
p∗⊥γ > E∗⊥cut.

Real HO corrections to the Born term are given by ampli-
tudes involving an extra gluon coupled to the quark line.
When this gluon is collinear to the initial quark the cross sec-
tion is divergent. This divergence is subtracted and absorbed
in the quark distribution. When this gluon is emitted at
large p∗⊥, the initial virtual photon can produce a collinear
quark–antiquark pair. This is the origin of the virtual-
photon structure function. After integration on the final quark
phase space one gets the expression σ B

qq̄→γ g(Q2, p∗⊥γ , y∗
γ )⊗

Pq̄γ ln

(
p∗2⊥γ +Q2

Q2

)
where the symbol ⊗ indicates a convolu-

tion between the Born cross section and the antiquark distri-
bution in the virtual photon.2 Pq̄γ is the DGLAP branching
function Pq̄γ (z) = 3α

2π
e2[(1 − z)2 + z2]. In the large-p∗⊥

regime,
p∗2⊥γ

Q2 � 1, we can neglect Q2 in the Born cross sec-
tion. In order to resum the structure function we subtract

1 Mandelstam variables with a hat are those of the subprocess.
2 z-dependent factors in the logarithm argument are not indicated. They
are discussed in Ref. [7].
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Fig. 1 The photon rapidity distribution for the direct-direct (upper two
curves, black) and direct-fragmented (lower two curves, colored) terms
at the leading order and the next-to-leading order. The NLO cross sec-

tions are understood with the Pq̄γ ln

(
M2

γ

Q2

)
term subtracted and the cut

E∗⊥cut = 2.5 GeV is implemented (see text)

Table 1 Variation of the d-d γ -jet cross section in pbarns with E∗⊥cut
in two Q2 ranges. The isolation and jet criteria are implemented in the
CM∗

E∗⊥cut (GeV) 10 < Q2 < 350 GeV2 10 < Q2 < 50 GeV2

Born NLO Born NLO

1.5 7.50 2.16 ± 0.05 3.51 2.99 ± 0.03

2.5 6.14 4.21 ± 0.05 3.39 2.91 ± 0.03

σ B(0, p∗⊥γ , y∗
γ ) ⊗ Pq̄γ ln

(
M2

γ

Q2

)
from the d-d HO term thus

defining the HOs corrections. The subtracted term builds,
through the inhomogeneous DGLAP evolution equation, the
resummed structure function Gq

γ ∗(z, Q2, M2
γ ) [7], the basis

of the resolved contributions. We choose M2
γ = p∗2⊥γ + Q2

so that the structure function vanishes when p∗2⊥γ � Q2 and

is proportional to ln
p∗2⊥γ

Q2 for
p∗2⊥γ

Q2 � 1.
Some numerical results are displayed in Fig. 1 for the

cross section dσ d−d/dyγ with the cut E∗⊥cut = 2.5 GeV. The
kinematics has been given at the beginning of Sect. 2; yγ is
the rapidity in the laboratory. As expected the cross section
is largest in the forward direction due to the dominance of
the t̂ term in the scattering amplitude.

We notice that the HOs corrections are negative, as already
observed in the inclusive case [6]. On the contrary, the unsub-
tracted HO corrections are close to zero, the difference HO -
HOs being the contribution of the lowest-order resolved term
that will be discussed in the next subsection. In fact, the NLO
unsubtracted result cannot be distinguished from the d-d LO
curve in Fig. 1. The results in that figure strongly depend
on the value of the cutoff E∗⊥cut. This point is illustrated in
Table 1 where the total MS cross section is displayed. We
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consider two domains in Q2. We see that for low value of
Q2 the NLO cross section is stable with respect to the E∗⊥cut
value while it is not the case when considering the whole Q2

range. In the former case, the Lorentz boost between the lab-
oratory and the CM∗ frames, q⊥ = √

Q2(1 − y) with y the
usual DIS variable (scaled virtual-photon energy in the lab-
oratory), is small and p∗⊥γ remains relatively large and close
to its p⊥γ value in the laboratory, so that the cross section is
insensitive to the cutoff. On the contrary for large values of
Q2, p∗⊥γ may reach small values where perturbation theory
is not reliable (very large HO corrections) and where the the-
oretical predictions become sensitive to the cutoff. The errors
associated to the NLO cross sections are the values resulting
from the Monte-Carlo integration procedure (for the Born
cross sections the errors are at the per-mil level).

2.2 Resolved-direct contribution

The r-d contribution that we consider in this subsection is
made up of two terms, the Born cross section and the HO
corrections to the latter. Here the Born cross section is given
by the convolution of the parton distributions in the virtual
photon with Born subprocesses. In the preceding subsection
we found the lowest-order expression of this distribution.
Here we use the resummed expression calculated at NLO
is the MS factorization scheme [7]. We can compare the
resummed Born contribution of this subsection σBorn(r-d)
with the lowest-order one by considering the unsubtracted
HO contribution and the subtracted d-d contribution HOs

found in the preceding subsection (integrated over yγ ).

σ H O − σ H Os = 6.13 − 4.21 = 1.92 pb

σBorn(r-d) = 2.12 pb

The slight difference can be attributed to the difference
between the lowest-order γ ∗ structure function and the
resummed one (which also contains gluons). HO correc-
tions for the r-d contribution can be borrowed from prompt
photon production in hadronic collision, by using the code
JETPHOX [19] in which a hadronic parton distribution is
replaced by the virtual-photon distribution function. We find
a large effect (E∗⊥cut = 2.5 GeV):

σBorn(r-d) = 2.12 pb,

σNLO(r-d) = 3.30 pb,

which illustrates the interest to consider the HO corrections
in the r-d contribution. Here also the E∗⊥cut dependence is
large. For E∗⊥cut = 1.5 GeV we obtain σBorn = 5.04 pb and
σNLO = 7.24 pb.

The Born and NLO cross sections as a function of yγ are
displayed in Fig. 2. Unlike in the d-d case the cross section
is rather flat in rapidity and even slightly decreasing at large
rapidity: this is understood because the photon can now also
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Fig. 2 The rapidity distribution for the resolved-direct (upper two
curves, black) and resolved-fragmented (lower two curves, colored)
terms at the leading order and the next-to-leading order

be emitted by a quark in the γ ∗, i.e. in the backward direc-
tion. Concerning the HO corrections we see that they are not
negligible.

2.3 Direct-fragmentation contribution

The direct-fragmentation contribution, obtained with the
BGF fragmentation functions, is considerably reduced by
the isolation requirement: no parton in the photon cone car-
rying more than 10 % of the total photon + parton energy. It
is roughly 15 % of the inclusive d-f cross section. We obtain,
always with E∗⊥cut = 2.5 GeV, the following results:

σBorn(d-f) = 0.33 pb,

σNLO(d-f) = 0.78 ± 0.01 pb,

which are one order of magnitude smaller than the direct-
direct contribution. The yγ rapidity spectrum is shown is Fig.
1. It is relatively flat. This is related to the fact that the photon
can now be radiated by a parton in the backward direction (̂u
channel pole). This new channel which populates a different
region of phase-space, compared to the d-d term, receives
large HO corrections associated to diagrams involving the
triple gluon coupling. Not unexpectedly, we observed the
same behavior as for the inclusive cross section [6].

2.4 Resolved-fragmentation contribution

The r-f contribution is, after isolation, the smallest of the four
contributions. We have

σBorn(r-f) = 0.19 pb

σNLO(r-f) = 0.50 ± 0.04 pb.

The photon rapidity distribution is shown in Fig. 2. The large
HO corrections are due to many new processes. This process
is in fact similar to a pure hadronic one, such as p + p →
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π0 + jet + X , which is known to receive large higher-order
corrections [20,21].

3 Laboratory frame

The definition of the photon–jet cross section in the labora-
tory frame introduces several new features not present previ-
ously. All these features come from the fact that a large-p⊥
parton in the laboratory does not necessarily correspond to
a large-p⊥ parton in the CM∗. Therefore the simple picture
of two initial collinear partons scattering into two large-p⊥
final partons and of the associated perturbative HO correc-
tions may break down. The spectator jets, for instance those
of the resolved photon, which are low-p⊥ jets in the CM∗
can appear as large-p⊥ jets in the laboratory and must be
included in the definition of the photon–jet cross section.
The jet hierarchy also can be changed; the highest-p⊥ jet in
the CM∗ does not necessarily correspond to the highest one
in the laboratory.

A more adapted approach for a laboratory frame calcu-
lation is that of [5] involving no E∗⊥cut. But this approach
leads to a new singularity in the perturbative calculations—
that of the final collinear contribution of the subprocess
γ ∗+q → q +γ . Therefore at lowest O(α2) order this calcu-
lation requires the introduction of a fragmentation function
to absorb the final state singularity. At present there is no
O(α2αs) calculation available analogous to that performed
in the γ ∗ → q + q + γ channel [22]. Therefore we continue
our CM∗ approach adapted to the laboratory frame which
implies a cut E∗⊥cut.

In this section we study the photon–jet cross section mea-
sured in the laboratory. This means that isolation and jet algo-
rithms are defined in terms of parton momenta in the labora-
tory frame. The jet is the jet of highest-p⊥ in the laboratory.
Moreover, if the highest-p⊥ jet is outside the acceptance in
rapidity we take into account the smaller one. For each of the
four topologies there are specific features that we discuss in
the following subsections.

3.1 Direct-direct contribution

We start this section by discussing two algorithms used
to define isolated photons. They are the cone algorithm,
already used in the CM∗ calculation, and the democratic
k⊥-algorithm [23] used, for instance, in the ZEUS exper-
iment [3]. For the definition of jets we use the longitudi-
nal k⊥ algorithm [12]. All momenta are measured in the
laboratory.

In our case we have at most two partons besides the pho-
ton in the final state: in the direct-direct case the photon is (in
the theoretical sense) isolated while in the direct-fragmented
case it is accompanied by a collinear parton. The cone algo-

rithm is the simplest one to implement. One calculates the
distance between the photon and each parton (i = 1, 2):

Rγ i =
√

δη2
γ i + δφ2

γ i , (1)

where the quantities under the √ are, respectively, the dif-
ference in (pseudo-)rapidities and in azimuthal angles of the
photon and parton i . Then if Rγ i < 1, the parton is in the pho-
ton cone and we have to test if the total transverse hadronic
energy in the cone E⊥i (including also in the d-f case the
energy of the fragment collinear to the photon)

E⊥i < ε(E⊥i + E⊥γ ) (2)

with ε = 0.1 as in the case of ZEUS experiment. If both
partons are outside the photon cone, then one tests if they
form one or two jets depending on whether their distance

R12 =
√

δη2
12 + δφ2

12 is smaller or larger than 1. If R12 < 1
they form one jet with coordinates:

E⊥jet = E⊥i + E⊥ j ,

ηjet = (E⊥i ηi + E⊥ j η j )/E⊥ jet ,

φjet = (E⊥i φi + E⊥ j φ j )/E⊥ jet . (3)

If this jet falls within the detector acceptance we keep the
event. In the case of two jets, we test for the small E⊥ jet if
the largest one does not fall in the acceptance. It may also
happen that both partons satisfy the criterion Rγ i < 1, in
which case we, of course, drop the event since there is no
visible jet in that case.

In the democratic-k⊥ algorithm case we treat the photon
as an ordinary parton i = γ, 1, 2, and we order the distances
defined in the following way:

di = E⊥i , di j = min(E⊥i , E⊥ j )

√
δη2

i j + δφ2
i j/R, (4)

with R = 1 as in the Zeus case. If the smallest of these
variables is a di we remove it and call it a jet or an isolated
photon, provided that in the fragmentation case the parton
collinear to the photon satisfies the condition (2). We then
continue the procedure with the remaining distances. If the
smallest variable is a di j with i, j = 1, 2 we combine the
partons to form a jet with the coordinates as in Eq. (3) and
we perform, with this jet, the isolation tests as above. If the
smallest distance is a dγ i , i = 1, 2, we test for the isolation
condition (2): if it is satisfied we calculate the coordinates of
this “isolated photon jet” as in (3) and test whether or not the
remaining jet falls within its cone.

The two algorithms should lead to very similar results [4].
In fact, in case there are only two large E⊥ objects they
are identical. However, when there are three or more objects
there appears some differences. For example, consider the
hierarchy d12 < dγ 1 < dγ < dγ 2, d1, d2. In the cone algo-
rithm, parton 1 is in the photon cone and the photon appears
non-isolated because E⊥γ < E⊥1, thus the energy fraction
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Table 2 The d-d γ -jet cross section calculated with the cone and the
democratic algorithms, in pbarns. The isolation and jet criteria are
implemented in the laboratory

Cone algor. Democratic algor.

Born 6.44 6.44

NLO 4.22 ± 0.03 4.35 ± 0.03
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Fig. 3 The photon rapidity distribution for the direct and resolved
terms at the next-to-leading order, with photon isolation and jets defined
in the laboratory; the lower two curves are the fragmentation compo-
nents. For all components the constraint E∗⊥cut = 2.5 GeV is imple-
mented

criterion is not satisfied: the event would be rejected. In the
k⊥ algorithm the two partons would form a jet and the photon
would appear isolated. Such occurrences are rare, however.
In the example above, the conditions d12 < dγ 1 < dγ mean
that the photon and both partons are “close” to one another
which is possible only if there is a large transverse boost from
the CM∗ frame to the LAB one.

We obtain quasi-identical results for the cross sections cal-
culated with the two algorithms. They are displayed in Table
2. We used the parameters and proton distribution functions
defined in Sect. 2. Unlike in the analysis in the CM∗ of Sect.
2.1 the d-d NLO cross section is insensitive to the E∗⊥cut cut-
off: the cross section is reduced by 1–2.5 % at negative yγ

and unchanged at positive yγ when varying the cutoff from 0
to 2.5 GeV. The fact that the cross sections are not divergent
is due to the photon isolation and the requirement of a jet
in addition to the isolated photon. Therefore in the direct-
direct case we are able to take the limit E∗⊥cut → 0 since the
experimental requirements forbid the final collinear q − γ

configuration. This independence of the cross section on the
cutoff means that the ZEUS cuts are sufficient to constrain
the d-d term to remain in the perturbative regime where the
HOs corrections to the Born term are under control.

In Fig. 3 we display the d-d contribution at NLO (solid
line) to the cross section dσLAB/dyγ calculated with E∗⊥cut =
2.5 GeV and the democratic k⊥-algorithm.

Table 3 Variation with E∗⊥cut of the r-d γ -jet cross section in pbarns, in
various phase-space domains. The isolation and jet criteria are imple-
mented in the laboratory

E∗⊥cut (GeV) 10 < Q2 < 350 GeV2 10 < Q2 < 50 GeV2

Born NLO Born NLO

0.5 2.07 5.02 0.96 2.17

1.5 2.06 4.41 0.96 2.06

2.5 1.70 3.40 0.92 1.81

Let us note that the laboratory isolation criteria, without
imposing an E∗⊥cut condition, lead to a cross section very
similar that of Table 1 where the constraint E∗⊥cut > 2.5
GeV was imposed and jet and isolation defined in the center-
of-mass frame (a cross section of 4.21 ± 0.05 pb was found
in that case).

3.2 Resolved-direct contribution

The structure of the resolved-direct contribution defined in
the laboratory frame is more complicated than the direct-
direct one. The complication arises from the fragments of
the γ ∗ structure function. These fragments may go into the
final photon isolation cone or may be seen as a jet. Moreover,
in the higher-order contributions we also have configurations
with the low p∗⊥ photon in the CM∗ collinear to a parton of
the γ ∗ structure function, which appears at large transverse
momentum in the laboratory. This configuration is divergent
(in the collinear limit) and is forbidden in the CM∗ frame
by the fact that only large p∗⊥ photons are observed. In the
laboratory this configuration is forbidden by the condition
E∗⊥cut > 0. Therefore we expect a strong dependence on
E∗⊥cut of the resolved-direct contribution. This dependence
is shown in Table 3. However, we note that this dependence is
weaker when Q2 < 50 GeV2. With this kinematical require-
ment we obtain a more stable cross section.

The r-d contribution at NLO (long-dash-dotted line) to
the cross section dσLAB/dyγ is displayed in Fig. 3 for
E∗⊥cut = 2.5 GeV: it has the same features as in Fig. 2,
namely very slightly decreasing with yγ and one finds large
HO corrections throughout the whole range (about a factor
2).

3.3 Direct-fragmentation contribution

The yγ distribution of the d-f component, with E∗⊥cut = 2.5
GeV, is shown in Fig. 3. It is essentially flat and rather small,
the same features as in Fig. 2. The HO contribution is roughly
independent of yγ and doubles the Born term. The distribu-
tion is relatively stable under the E⊥cut parameter: if taken
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to zero the d-f component is 13 % larger in the backward bin
decreasing to no variation in the most forward bin.

3.4 Resolved-fragmentation contribution

We have in the r-f HO contribution a piece similar to that in the
r-d HO one. A large-p⊥ parton (in the LAB) can be emitted
collinearly with an initial parton in the resolved virtual pho-
ton and then fragments into a photon. Again this corresponds
to a collinear configuration in the CM∗ frame that we cut by
the requirement E∗⊥cut > 0. Therefore this contribution has
a strong dependence on this cutoff parameter. However, as
seen in Fig. 3 it is the smallest of all four components and
will give a negligible contribution to the full isolated γ -jet
cross section.

4 Comparison to ZEUS data

After this lengthy discussion of each of the components
which build the γ -jet cross section we are now ready to com-
pare the NLO calculation to the most recent ZEUS data. It
is worth stressing that only the sum of all four components
have a physical meaning and can be compared to data as the
relative weight of each component depends on the unphys-
ical scales. It has been stressed above that measuring the
transverse components in the laboratory frame rather than
the CM∗ frame does not guarantee the perturbative stability
of the calculation: indeed it appears from the above discus-
sion that, if the direct components are rather stable under the
E∗⊥cut parameter, this is not the case for the resolved ones
because the ZEUS phase space does not guarantee that the
CM∗ momenta in the hard subprocesses remain large and
also does not eliminate all the collinear singularities associ-
ated to the photon radiation from a quark at large laboratory
transverse momentum. For these reasons we will bracket the
theoretical predictions by two cross sections: one obtained
with E∗⊥cut = 2.5 GeV, which guarantees the perturbative
stability but excludes some γ -jet configurations included in
the data, the other with E∗⊥cut = 0.5 GeV which accounts for
a larger phase space at the cost of letting the theoretical pre-
dictions err in the non-perturbative regime. The results of our
approach are compared with data in Figs. 4, 5, 6, 7 and 8. In all
plots we include the contribution from the leptonic radiation
of the photon (e → e+γ ) based on the DJANGOH [24] gen-
erator, as estimated in [3]. We add it to the hadronic results
obtained in this work, with a numerical accuracy of better
than 2 %, to obtain cross sections comparable to the data.
The interference contribution between leptonic and hadronic
emissions is negligible [3]. Furthermore no hadronization
corrections are applied to our estimates.

In Fig. 4 we display the photon rapidity spectrum and we
note the very good agreement with the data when the cut-
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off E∗⊥cut = 2.5 GeV is selected. Using the lower cutoff
uniformly increases the predictions by about 12 %. In con-
trast, the predictions of [4], as quoted in Ref. [3], where the
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resolved component is treated at lowest order, systematically
underestimate the photon rapidity spectrum by about 20 %.

The same pattern is found in Fig. 5 displaying the photon
transverse momentum spectrum: very good agreement with
E∗⊥cut = 2.5 GeV, overestimate with E∗⊥cut = 0.5 GeV.
The interesting feature, however, is that both cutoffs lead
to similar results in the high pγ

⊥ tail where we expect the
NLO resummed treatment of the resolved component to be
most appropriate (p∗γ

⊥ ≥ √
Q2). There, our predictions can

be taken as solid predictions from NLO perturbative QCD as
all relevant scales are large in the CM∗ frame. Comparing to
the estimates based on [4] and quoted in [3] we are above:
in fact they systematically underestimate the data while still
being compatible with them at large pγ

⊥.
Turning to the Q2 distribution in Fig. 6, our results confirm

the discussion above: excellent agreement and stability under
a change of the cutoff at small Q2, overestimate of the data at
the larger values. Finally we conclude this phenomenological
discussion with the pjet

⊥ spectrum, in Fig. 7, where we notice
a small excess in the predictions for the smallest two bins,

pjet
⊥ < 6 GeV, with a large instability under change of cutoff

in the first bin. In relation with this observation one notes
a large higher correction (up to a factor 2 compared to the
Born term) to the resolved component. The origin of this is
the fact that the collinear fragments of the virtual photon,
which would be rejected by a cutoff in the CM∗ frame can be
seen as jets in the laboratory. In contrast, for pjet

⊥ > 6 GeV
we observe good agreement with data as well as a very good
stability under change of the cutoff, which indicates that NLO
perturbation theory is valid. To further explore the small pjet

⊥
regime we calculate the cross section without resummation
on the resolved component (see Fig. 8): agreement with data
is achieved for the first two bins while above 6 GeV the
cross section is systematically underestimated. A last remark
concerning the comparison between theory and experiment
at small p⊥ is of a more practical nature: the theoretical
jets constructed at the partonic level are compared with the
experimental ones at the hadronic level and hadronization
corrections not taken into account at NLO QCD must be
important.

5 Conclusions

We have discussed at length the full NLO QCD predictions
for γ -jet final states in deep-inelastic scattering at HERA and
compared with ZEUS data where transverse momenta are
defined in the laboratory frame. The motivation for study-
ing these final states is to avoid the photon–quark final state
collinear singularity present in the Born term γ ∗ q → γ q
when the photon, produced longitudinally in the CM∗ frame,
is detected at large transverse momentum in the laboratory
frame due to the transverse boost of the virtual photon. We
have seen that the full NLO QCD calculation, taking into
account the HO corrections to the resummed resolved com-
ponent, again hits this collinear singularity problem which
occurs in the large Q2, low pγ

⊥ or pjet
⊥ regions. So, in deep-

inelastic scattering, doing large p⊥ phenomenology with
momenta defined in the laboratory is not enough to cure this
collinear problem since it re-enters through the back door
when considering higher-order diagrams as are needed for
precision calculations. Of course, working with CM∗ coor-
dinates, or with a cutoff in the CM∗ frame, one would not have
encountered this difficulty. We have seen that with the CM∗
cutoff E∗⊥cut = 2.5 GeV we achieve a very good agreement
with the ZEUS data: at small Q2 (where the cross section is
the largest) or large pγ

⊥ or pjet
⊥ in the laboratory this cutoff

is irrelevant since the laboratory p⊥ cuts are large enough to
impose large p∗⊥ values. At large Q2 or small laboratory p⊥
the predictions become sensitive to the cutoff and the agree-
ment is more fortuitous. However, it should be remembered
that the instability affects only the resolved component which
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represents less that half of the cross section. In the regions
insensitive to the cutoff we have, in our full NLO calculation,
a clear improvement compared to the NLO approach where
the resolved component is treated at lowest order. Of course
further data involving a cut in the CM∗ frame should per-
mit a sounder comparison between theory and experiment.
To be complete a study of the scale dependence of the the-
oretical estimates should have been done. However, in view
of the problems discussed above this is not justified at this
stage. It is enough to remember that the choice of scales
used in this work (M2 = Q2 + p∗2

T ) gave very good agree-
ment with data for related processes, namely π0 production
in DIS [14] and photoproduction (Q2 = 0) of isolated pho-
tons [25] (see [26,27] for the theoretical discussion). In this
respect, we are not as pessimistic as the authors of [28] who
observe, based on a comparison of older data with previous
theoretical calculations, that isolated photon production both
in DIS and photoproduction is underestimated in the NLO
QCD approach.
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