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Abstract It is shown that the complex coordinate stretching and diagonal anisotropy formulations

of the perfectly matched layer are equivalent in a general orthogonal coordinate system setting.

The results are obtained by taking advantage of the tensorial invariance of the line element.
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1 INTRODUCTION

In [1] Berenger proposed the perfectly matched layer (PML) to truncate computational domains

for use in the numerical solution of Maxwell’s equations, without introducing reflections. The

original split-field approach of Berenger was reformulated by Chew and Weedon [2] in terms of

complex coordinate stretching and by Sacks et al. [3] in terms of perfectly matched anisotropic

absorbers. Recently, efforts have been directed, by using a blend of split-field, complex stretching

and anisotropic methods, to extend the rectangular PML to cylindrical and spherical coordinate

systems [4]-[6] or to more general coordinate systems [7].

In this paper we show that the complex coordinate stretching and diagonal anisotropy formu-

lations are equivalent in a general orthogonal coordinate system setting. The derivations are

based on the tensorial invariance of the line element [8], and the different representations of the

curl operator in orthogonal coordinate systems. Examples include the classic PML’s (cartesian,

cylindrical, spherical) and the PML in elliptic cylinder coordinates.
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2 MAIN RESULT

In a general coordinate system, the line element ds and the fundamental tensor gij [8] are related

by

ds2 =
∑

i,j

gijdqidqj (1)

In a three-dimensional orthogonal system, where the fundamental tensor is diagonal, this can be

written as

ds2 = h1(q)
2dq2

1 + h2(q)
2dq2

2 + h3(q)
2dq2

3 (2)

It is known that the curl in an orthogonal system is given by

curl3V =
1

h1h2

[

∂

∂q1
(h2V2)−

∂

∂q2
(h1V1)

]

(3)

with similar expressions for the other components, obtained by cyclic permutation. Hence, de-

noting a diagonal square matrix as

{a, b, c} =













a 0 0

0 b 0

0 0 c













(4)

the curl of a vector in any orthogonal coordinate system can be written as

curlV =

{

1

h2h3
,

1

h1h3
,

1

h1h2

}

· carlq({h1, h2, h3} ·V) (5)

where carlq is the cartesian curl operator

carlq =













0 −∂/∂q3 ∂/∂q2

∂/∂q3 0 −∂/∂q1

−∂/∂q2 ∂/∂q1 0













(6)

If we stretch the coordinates by means of continuously differentiable functions

Qi = Qi(qi) i = 1, 2, 3 (7)

orthogonality is maintained, since the line element — which is the fundamental invariant — can

be written as

ds2 = h1(q)
2 dq2

1

dQ2
1

dQ2
1 + h2(q)

2 dq2
2

dQ2
2

dQ2
2 + h3(q)

2 dq2
3

dQ2
3

dQ2
3 (8)
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Putting

h′i = hi(q)
dqi
dQi

i = 1, 2, 3 (9)

it is clear that the curl in the stretched coordinate system can be written as

curlV =

{

1

h′2h
′

3

,
1

h′1h
′

3

,
1

h′1h
′

2

}

· carlQ({h
′

1, h
′

2, h
′

3} ·V) (10)

where of course carlQ is

carlQ =













0 −∂/∂Q3 ∂/∂Q2

∂/∂Q3 0 −∂/∂Q1

−∂/∂Q2 ∂/∂Q1 0













(11)

Next suppose that we do not have any notion that coordinate stretching has occurred. If overnight

the q−system had changed into the Q−system, then the (pseudo) squared line element would

have been assumed to be

ds2Q = h1(Q)2dQ2
1 + h2(Q)2dQ2

2 + h3(Q)2dQ2
3 (12)

with of course ds2
Q 6= ds2 in general. However, the pseudo curl with respect to the orthogonal

coordinate system defined by the line element (12) can still be defined as

CURLV =

{

1

h̃2h̃3

,
1

h̃1h̃3

,
1

h̃1h̃2

}

· carlQ({h̃1, h̃2, h̃3} ·V) (13)

where h̃i = hi(Q). It is straightforward to show that the curl and the pseudo curl are related by

curlV =

{

1

α2α3
,

1

α1α3
,

1

α1α2

}

· CURL ({α1, α2, α3} ·V) (14)

where

αi = h′i/h̃i =
hi(q)dqi
hi(Q)dQi

i = 1, 2, 3 (15)

Note that when no stretching occurs, curl and CURL are identical, as it should be.

To exploit this, we write down Maxwell’s equations with eiωt time dependence in a non-linear

diagonally anisotropic medium as

curlE = −iω{µ1, µ2, µ3} ·H (16)

curlH = iω{ε1, ε2, ε3} ·E (17)
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where the µi, εi are complex-valued functions of the coordinates q. Introducing the new field

quantities

K = {α1, α2, α3} ·E (18)

L = {α1, α2, α3} ·H, (19)

Maxwell’s equations can be transformed into the stretched coordinate system with the help of

formula (14) to yield

CURLK = −iω{µ1α2α3/α1, µ2α1α3/α2, µ3α1α2/α3} · L (20)

CURLL = iω{ε1α2α3/α1, ε2α1α3/α2, ε3α1α2/α3} ·K (21)

Now if we take

µi =
µ0α

2
i

α1α2α3
, εi =

ε0α
2
i

α1α2α3
i = 1, 2, 3 (22)

then equations (20)-(21) simply turn out to be

CURLK = −iωµ0L (23)

CURLL = iωε0K (24)

Hence the original Maxwell equations in the non-linear diagonally anisotropic medium have been

transformed to a linear isotropic problem. Of course, the non-linear character of the medium has

been absorbed in the q → Q stretching transformation. Note that equations (23)-(24) admit field

decompositions in stretched plane waves

eiωt− ik1Q1(q1)− ik2Q2(q2)− ik3Q3(q3) (25)

where

k2
1 + k2

2 + k2
3 = k2

0 = ω2µ0ε0 (26)

As a final remark, it should be stressed that the stretched variables Qj may be taken to be

complex functions of the qj .

3 PERFECTLY MATCHED LAYERS

3.1 CARTESIAN COORDINATES WITH STRETCHING IN z

In cartesian coordinates we have

(q1, q2, q3) = (x, y, z) (h1, h2, h3) = (1, 1, 1) (27)
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In the stretched coordinate system we have

(Q1, Q2, Q3) = (X,Y, Z) = (x, y, Z(z)) (28)

From equation (15) we obtain

(α1, α2, α3) = (1, 1, dz/dZ) (29)

Formula (22) yields

{µ1, µ2, µ3} = µ0{dZ/dz, dZ/dz, dz/dZ} (30)

and similarly for the dielectric constants. If we take

Z(z) = z − iσ(z) (31)

where










σ(z) = 0 z ≤ 0

σ(z) > 0 z > 0
(32)

with σ(0) = σ′(0) = 0, we obtain the classical cartesian PML [3], [5] at the interface z = 0. From

equation (25) the stretched plane wave can be written as

eiωt− ik1x− ik2y − ik3ze−k3σ(z) (33)

exhibiting consistent damping in the half-space z > 0, provided k3 > 0.

3.2 CYLINDRICAL COORDINATES WITH STRETCHING IN r

In cylindrical coordinates we have

(q1, q2, q3) = (r, θ, z) (h1, h2, h3) = (1, r, 1) (34)

In the stretched coordinate system we have

(Q1, Q2, Q3) = (R,Θ, Z) = (R(r), θ, z) (35)

From equation (15) we obtain

(α1, α2, α3) = (dr/dR, r/R, 1) (36)

Formula (22) yields

{µ1, µ2, µ3} = µ0{Rdr/rdR, rdR/Rdr,RdR/rdr} (37)
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and similarly for the dielectric constants. If we take

R(r) = r − iσ(r) (38)

where










σ(r) = 0 r ≤ a

σ(r) > 0 r > a
(39)

with σ(a) = σ′(a) = 0, we obtain a cylindrical PML at the interface r = a. Applied to the

outgoing cylindrical wave
i

4
eiωtH

(2)
0 (k0r) (40)

we obtain the stretched cylindrical wave

i

4
eiωtH

(2)
0 (k0r − ik0σ(r)) (41)

exhibiting consistent damping in the region r > a.

3.3 SPHERICAL COORDINATES WITH STRETCHING IN r

In spherical coordinates we have

(q1, q2, q3) = (r, θ, φ) (h1, h2, h3) = (1, r, r sin θ) (42)

In the stretched coordinate system we have

(Q1, Q2, Q3) = (R,Θ,Φ) = (R(r), θ, φ) (43)

From equation (15) we obtain

(α1, α2, α3) = (dr/dR, r/R, r/R) (44)

Formula (22) yields

{µ1, µ2, µ3} = µ0{R
2dr/r2dR, dR/dr, dR/dr} (45)

and similarly for the dielectric constants. If we take

R(r) = r − iσ(r) (46)

where










σ(r) = 0 r ≤ a

σ(r) > 0 r > a
(47)
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with σ(a) = σ′(a) = 0, we obtain a spherical PML at the interface r = a. Applied to the outgoing

spherical wave
1

4πr
eiωt− ik0r (48)

we obtain the stretched spherical wave

1

4πR
eiωt− ik0r − k0σ(r) (49)

exhibiting consistent damping in the region r > a.

3.4 ELLIPTIC COORDINATES WITH STRETCHING IN u

Elliptic cylinder coordinates (u, v, z) are related to the cartesian coordinates (x, y, z) by the

transformatian formulas

x = c coshu cos v, y = c sinhu sin v (50)

where u ≥ 0, 0 ≤ v ≤ 2π and c is a positive constant. The domain u ≤ u0 represents the interior

of the elliptic cylinder
x2

a2 +
y2

b2
≤ 1 (51)

where the major and minor semi-axes a, b of the ellipse and the constants c, u0 are related by

a = c coshu0, b = c sinhu0 (52)

In elliptic cylinder coordinates we have

(q1, q2, q3) = (u, v, z) (h1, h2, h3) = (c∆(u, v), c∆(u, v), 1) (53)

where

∆(u, v) =

√

cosh2 u− cos2 v (54)

In the stretched coordinate system we have

(Q1, Q2, Q3) = (U, V, Z) = (U(u), v, z) (55)

From equation (15) we obtain

(α1, α2, α3) = (∆(u, v)du/∆(U, v)dU,∆(u, v)/∆(U, v), 1) (56)
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Formula (22) yields

{µ1, µ2, µ3} = µ0{du/dU, dU/du,∆
2(U, v)dU/∆2(u, v)du} (57)

and similarly for the dielectric constants. If we take

coshU(u) = coshu− iσ(u) (58)

where










σ(u) = 0 u ≤ u0

σ(u) > 0 u > u0

(59)

with σ(u0) = σ′(u0) = 0, we obtain an elliptic cylinder PML at the interface u = u0. Applied to

the outgoing elliptic cylinder wave with radial Mathieu function [9]

R
(2)
emλ(u) =

√

π/2
∑

n

′im−nDm
n H

(2)
n (cλ coshu) (60)

we obtain a stretched elliptic cylinder wave exhibiting consistent damping in the region u > u0.
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