ON THE STRETCHING OF MAXWELL'S EQUATIONS IN GENERAL ORTHOGONAL COORDINATE SYSTEMS AND THE PERFECTLY MATCHED LAYER

Luc Knockaert and Daniel De Zutter ${ }^{1}$

Abstract

It is shown that the complex coordinate stretching and diagonal anisotropy formulations of the perfectly matched layer are equivalent in a general orthogonal coordinate system setting. The results are obtained by taking advantage of the tensorial invariance of the line element. Keywords Absorbing boundary condition, perfectly matched layer, electromagnetic scattering.

1 INTRODUCTION

In [1] Berenger proposed the perfectly matched layer (PML) to truncate computational domains for use in the numerical solution of Maxwell's equations, without introducing reflections. The original split-field approach of Berenger was reformulated by Chew and Weedon [2] in terms of complex coordinate stretching and by Sacks et al. [3] in terms of perfectly matched anisotropic absorbers. Recently, efforts have been directed, by using a blend of split-field, complex stretching and anisotropic methods, to extend the rectangular PML to cylindrical and spherical coordinate systems [4]-[6] or to more general coordinate systems [7].

In this paper we show that the complex coordinate stretching and diagonal anisotropy formulations are equivalent in a general orthogonal coordinate system setting. The derivations are based on the tensorial invariance of the line element [8], and the different representations of the curl operator in orthogonal coordinate systems. Examples include the classic PML's (cartesian, cylindrical, spherical) and the PML in elliptic cylinder coordinates.

[^0]
2 MAIN RESULT

In a general coordinate system, the line element $d s$ and the fundamental tensor $g_{i j}[8]$ are related by

$$
\begin{equation*}
d s^{2}=\sum_{i, j} g_{i j} d q_{i} d q_{j} \tag{1}
\end{equation*}
$$

In a three-dimensional orthogonal system, where the fundamental tensor is diagonal, this can be written as

$$
\begin{equation*}
d s^{2}=h_{1}(\mathbf{q})^{2} d q_{1}^{2}+h_{2}(\mathbf{q})^{2} d q_{2}^{2}+h_{3}(\mathbf{q})^{2} d q_{3}^{2} \tag{2}
\end{equation*}
$$

It is known that the curl in an orthogonal system is given by

$$
\begin{equation*}
\operatorname{curl}_{3} \mathbf{V}=\frac{1}{h_{1} h_{2}}\left[\frac{\partial}{\partial q_{1}}\left(h_{2} V_{2}\right)-\frac{\partial}{\partial q_{2}}\left(h_{1} V_{1}\right)\right] \tag{3}
\end{equation*}
$$

with similar expressions for the other components, obtained by cyclic permutation. Hence, denoting a diagonal square matrix as

$$
\{a, b, c\}=\left(\begin{array}{ccc}
a & 0 & 0 \tag{4}\\
0 & b & 0 \\
0 & 0 & c
\end{array}\right)
$$

the curl of a vector in any orthogonal coordinate system can be written as

$$
\begin{equation*}
\operatorname{curl} \mathbf{V}=\left\{\frac{1}{h_{2} h_{3}}, \frac{1}{h_{1} h_{3}}, \frac{1}{h_{1} h_{2}}\right\} \cdot \operatorname{carl}_{q}\left(\left\{h_{1}, h_{2}, h_{3}\right\} \cdot \mathbf{V}\right) \tag{5}
\end{equation*}
$$

where carl_{q} is the cartesian curl operator

$$
\operatorname{carl}_{q}=\left(\begin{array}{ccc}
0 & -\partial / \partial q_{3} & \partial / \partial q_{2} \tag{6}\\
\partial / \partial q_{3} & 0 & -\partial / \partial q_{1} \\
-\partial / \partial q_{2} & \partial / \partial q_{1} & 0
\end{array}\right)
$$

If we stretch the coordinates by means of continuously differentiable functions

$$
\begin{equation*}
Q_{i}=Q_{i}\left(q_{i}\right) \quad i=1,2,3 \tag{7}
\end{equation*}
$$

orthogonality is maintained, since the line element - which is the fundamental invariant - can be written as

$$
\begin{equation*}
d s^{2}=h_{1}(\mathbf{q})^{2} \frac{d q_{1}^{2}}{d Q_{1}^{2}} d Q_{1}^{2}+h_{2}(\mathbf{q})^{2} \frac{d q_{2}^{2}}{d Q_{2}^{2}} d Q_{2}^{2}+h_{3}(\mathbf{q})^{2} \frac{d q_{3}^{2}}{d Q_{3}^{2}} d Q_{3}^{2} \tag{8}
\end{equation*}
$$

Putting

$$
\begin{equation*}
h_{i}^{\prime}=h_{i}(\mathbf{q}) \frac{d q_{i}}{d Q_{i}} \quad i=1,2,3 \tag{9}
\end{equation*}
$$

it is clear that the curl in the stretched coordinate system can be written as

$$
\begin{equation*}
\operatorname{curl} \mathbf{V}=\left\{\frac{1}{h_{2}^{\prime} h_{3}^{\prime}}, \frac{1}{h_{1}^{\prime} h_{3}^{\prime}}, \frac{1}{h_{1}^{\prime} h_{2}^{\prime}}\right\} \cdot \operatorname{carl}_{Q}\left(\left\{h_{1}^{\prime}, h_{2}^{\prime}, h_{3}^{\prime}\right\} \cdot \mathbf{V}\right) \tag{10}
\end{equation*}
$$

where of course carl_{Q} is

$$
\operatorname{carl}_{Q}=\left(\begin{array}{ccc}
0 & -\partial / \partial Q_{3} & \partial / \partial Q_{2} \tag{11}\\
\partial / \partial Q_{3} & 0 & -\partial / \partial Q_{1} \\
-\partial / \partial Q_{2} & \partial / \partial Q_{1} & 0
\end{array}\right)
$$

Next suppose that we do not have any notion that coordinate stretching has occurred. If overnight the q-system had changed into the Q-system, then the (pseudo) squared line element would have been assumed to be

$$
\begin{equation*}
d s_{Q}^{2}=h_{1}(\mathbf{Q})^{2} d Q_{1}^{2}+h_{2}(\mathbf{Q})^{2} d Q_{2}^{2}+h_{3}(\mathbf{Q})^{2} d Q_{3}^{2} \tag{12}
\end{equation*}
$$

with of course $d s_{Q}^{2} \neq d s^{2}$ in general. However, the pseudo curl with respect to the orthogonal coordinate system defined by the line element (12) can still be defined as

$$
\begin{equation*}
\operatorname{CURL} \mathbf{V}=\left\{\frac{1}{\tilde{h}_{2} \tilde{h}_{3}}, \frac{1}{\tilde{h}_{1} \tilde{h}_{3}}, \frac{1}{\tilde{h}_{1} \tilde{h}_{2}}\right\} \cdot \operatorname{carl} \mathrm{ca}_{Q}\left(\left\{\tilde{h}_{1}, \tilde{h}_{2}, \tilde{h}_{3}\right\} \cdot \mathbf{V}\right) \tag{13}
\end{equation*}
$$

where $\tilde{h}_{i}=h_{i}(\mathbf{Q})$. It is straightforward to show that the curl and the pseudo curl are related by

$$
\begin{equation*}
\operatorname{curl} \mathbf{V}=\left\{\frac{1}{\alpha_{2} \alpha_{3}}, \frac{1}{\alpha_{1} \alpha_{3}}, \frac{1}{\alpha_{1} \alpha_{2}}\right\} \cdot \operatorname{CURL}\left(\left\{\alpha_{1}, \alpha_{2}, \alpha_{3}\right\} \cdot \mathbf{V}\right) \tag{14}
\end{equation*}
$$

where

$$
\begin{equation*}
\alpha_{i}=h_{i}^{\prime} / \tilde{h}_{i}=\frac{h_{i}(\mathbf{q}) d q_{i}}{h_{i}(\mathbf{Q}) d Q_{i}} \quad i=1,2,3 \tag{15}
\end{equation*}
$$

Note that when no stretching occurs, curl and CURL are identical, as it should be.
To exploit this, we write down Maxwell's equations with $e^{i \omega t}$ time dependence in a non-linear diagonally anisotropic medium as

$$
\begin{align*}
\operatorname{curl} \mathbf{E} & =-i \omega\left\{\mu_{1}, \mu_{2}, \mu_{3}\right\} \cdot \mathbf{H} \tag{16}\\
\operatorname{curl} \mathbf{H} & =i \omega\left\{\epsilon_{1}, \epsilon_{2}, \epsilon_{3}\right\} \cdot \mathbf{E} \tag{17}
\end{align*}
$$

where the μ_{i}, ϵ_{i} are complex-valued functions of the coordinates \mathbf{q}. Introducing the new field quantities

$$
\begin{align*}
\mathbf{K} & =\left\{\alpha_{1}, \alpha_{2}, \alpha_{3}\right\} \cdot \mathbf{E} \tag{18}\\
\mathbf{L} & =\left\{\alpha_{1}, \alpha_{2}, \alpha_{3}\right\} \cdot \mathbf{H}, \tag{19}
\end{align*}
$$

Maxwell's equations can be transformed into the stretched coordinate system with the help of formula (14) to yield

$$
\begin{align*}
\operatorname{CURL} \mathbf{K} & =-i \omega\left\{\mu_{1} \alpha_{2} \alpha_{3} / \alpha_{1}, \mu_{2} \alpha_{1} \alpha_{3} / \alpha_{2}, \mu_{3} \alpha_{1} \alpha_{2} / \alpha_{3}\right\} \cdot \mathbf{L} \tag{20}\\
\operatorname{CURL} \mathbf{L} & =i \omega\left\{\epsilon_{1} \alpha_{2} \alpha_{3} / \alpha_{1}, \epsilon_{2} \alpha_{1} \alpha_{3} / \alpha_{2}, \epsilon_{3} \alpha_{1} \alpha_{2} / \alpha_{3}\right\} \cdot \mathbf{K} \tag{21}
\end{align*}
$$

Now if we take

$$
\begin{equation*}
\mu_{i}=\frac{\mu_{0} \alpha_{i}^{2}}{\alpha_{1} \alpha_{2} \alpha_{3}}, \quad \epsilon_{i}=\frac{\epsilon_{0} \alpha_{i}^{2}}{\alpha_{1} \alpha_{2} \alpha_{3}} \quad i=1,2,3 \tag{22}
\end{equation*}
$$

then equations (20)-(21) simply turn out to be

$$
\begin{align*}
\text { CURLK } & =-i \omega \mu_{0} \mathbf{L} \tag{23}\\
\operatorname{CURL} \mathbf{L} & =i \omega \epsilon_{0} \mathbf{K} \tag{24}
\end{align*}
$$

Hence the original Maxwell equations in the non-linear diagonally anisotropic medium have been transformed to a linear isotropic problem. Of course, the non-linear character of the medium has been absorbed in the $q \rightarrow Q$ stretching transformation. Note that equations (23)-(24) admit field decompositions in stretched plane waves

$$
\begin{equation*}
e^{i \omega t-i k_{1} Q_{1}\left(q_{1}\right)-i k_{2} Q_{2}\left(q_{2}\right)-i k_{3} Q_{3}\left(q_{3}\right)} \tag{25}
\end{equation*}
$$

where

$$
\begin{equation*}
k_{1}^{2}+k_{2}^{2}+k_{3}^{2}=k_{0}^{2}=\omega^{2} \mu_{0} \epsilon_{0} \tag{26}
\end{equation*}
$$

As a final remark, it should be stressed that the stretched variables Q_{j} may be taken to be complex functions of the q_{j}.

3 PERFECTLY MATCHED LAYERS

3.1 CARTESIAN COORDINATES WITH STRETCHING IN z

In cartesian coordinates we have

$$
\begin{equation*}
\left(q_{1}, q_{2}, q_{3}\right)=(x, y, z) \quad\left(h_{1}, h_{2}, h_{3}\right)=(1,1,1) \tag{27}
\end{equation*}
$$

In the stretched coordinate system we have

$$
\begin{equation*}
\left(Q_{1}, Q_{2}, Q_{3}\right)=(X, Y, Z)=(x, y, Z(z)) \tag{28}
\end{equation*}
$$

From equation (15) we obtain

$$
\begin{equation*}
\left(\alpha_{1}, \alpha_{2}, \alpha_{3}\right)=(1,1, d z / d Z) \tag{29}
\end{equation*}
$$

Formula (22) yields

$$
\begin{equation*}
\left\{\mu_{1}, \mu_{2}, \mu_{3}\right\}=\mu_{0}\{d Z / d z, d Z / d z, d z / d Z\} \tag{30}
\end{equation*}
$$

and similarly for the dielectric constants. If we take

$$
\begin{equation*}
Z(z)=z-i \sigma(z) \tag{31}
\end{equation*}
$$

where

$$
\begin{cases}\sigma(z)=0 & z \leq 0 \tag{32}\\ \sigma(z)>0 & z>0\end{cases}
$$

with $\sigma(0)=\sigma^{\prime}(0)=0$, we obtain the classical cartesian PML [3], [5] at the interface $z=0$. From equation (25) the stretched plane wave can be written as

$$
\begin{equation*}
e^{i \omega t-i k_{1} x-i k_{2} y-i k_{3} z} e^{-k_{3} \sigma(z)} \tag{33}
\end{equation*}
$$

exhibiting consistent damping in the half-space $z>0$, provided $k_{3}>0$.

3.2 CYLINDRICAL COORDINATES WITH STRETCHING IN r

In cylindrical coordinates we have

$$
\begin{equation*}
\left(q_{1}, q_{2}, q_{3}\right)=(r, \theta, z) \quad\left(h_{1}, h_{2}, h_{3}\right)=(1, r, 1) \tag{34}
\end{equation*}
$$

In the stretched coordinate system we have

$$
\begin{equation*}
\left(Q_{1}, Q_{2}, Q_{3}\right)=(R, \Theta, Z)=(R(r), \theta, z) \tag{35}
\end{equation*}
$$

From equation (15) we obtain

$$
\begin{equation*}
\left(\alpha_{1}, \alpha_{2}, \alpha_{3}\right)=(d r / d R, r / R, 1) \tag{36}
\end{equation*}
$$

Formula (22) yields

$$
\begin{equation*}
\left\{\mu_{1}, \mu_{2}, \mu_{3}\right\}=\mu_{0}\{R d r / r d R, r d R / R d r, R d R / r d r\} \tag{37}
\end{equation*}
$$

and similarly for the dielectric constants. If we take

$$
\begin{equation*}
R(r)=r-i \sigma(r) \tag{38}
\end{equation*}
$$

where

$$
\begin{cases}\sigma(r)=0 & r \leq a \tag{39}\\ \sigma(r)>0 & r>a\end{cases}
$$

with $\sigma(a)=\sigma^{\prime}(a)=0$, we obtain a cylindrical PML at the interface $r=a$. Applied to the outgoing cylindrical wave

$$
\begin{equation*}
\frac{i}{4} e^{i \omega t} H_{0}^{(2)}\left(k_{0} r\right) \tag{40}
\end{equation*}
$$

we obtain the stretched cylindrical wave

$$
\begin{equation*}
\frac{i}{4} e^{i \omega t} H_{0}^{(2)}\left(k_{0} r-i k_{0} \sigma(r)\right) \tag{41}
\end{equation*}
$$

exhibiting consistent damping in the region $r>a$.

3.3 SPHERICAL COORDINATES WITH STRETCHING IN r

In spherical coordinates we have

$$
\begin{equation*}
\left(q_{1}, q_{2}, q_{3}\right)=(r, \theta, \phi) \quad\left(h_{1}, h_{2}, h_{3}\right)=(1, r, r \sin \theta) \tag{42}
\end{equation*}
$$

In the stretched coordinate system we have

$$
\begin{equation*}
\left(Q_{1}, Q_{2}, Q_{3}\right)=(R, \Theta, \Phi)=(R(r), \theta, \phi) \tag{43}
\end{equation*}
$$

From equation (15) we obtain

$$
\begin{equation*}
\left(\alpha_{1}, \alpha_{2}, \alpha_{3}\right)=(d r / d R, r / R, r / R) \tag{44}
\end{equation*}
$$

Formula (22) yields

$$
\begin{equation*}
\left\{\mu_{1}, \mu_{2}, \mu_{3}\right\}=\mu_{0}\left\{R^{2} d r / r^{2} d R, d R / d r, d R / d r\right\} \tag{45}
\end{equation*}
$$

and similarly for the dielectric constants. If we take

$$
\begin{equation*}
R(r)=r-i \sigma(r) \tag{46}
\end{equation*}
$$

where

$$
\begin{cases}\sigma(r)=0 & r \leq a \tag{47}\\ \sigma(r)>0 & r>a\end{cases}
$$

with $\sigma(a)=\sigma^{\prime}(a)=0$, we obtain a spherical PML at the interface $r=a$. Applied to the outgoing spherical wave

$$
\begin{equation*}
\frac{1}{4 \pi r} e^{i \omega t-i k_{0} r} \tag{48}
\end{equation*}
$$

we obtain the stretched spherical wave

$$
\begin{equation*}
\frac{1}{4 \pi R} e^{i \omega t-i k_{0} r-k_{0} \sigma(r)} \tag{49}
\end{equation*}
$$

exhibiting consistent damping in the region $r>a$.

3.4 ELLIPTIC COORDINATES WITH STRETCHING IN u

Elliptic cylinder coordinates (u, v, z) are related to the cartesian coordinates (x, y, z) by the transformatian formulas

$$
\begin{equation*}
x=c \cosh u \cos v, \quad y=c \sinh u \sin v \tag{50}
\end{equation*}
$$

where $u \geq 0,0 \leq v \leq 2 \pi$ and c is a positive constant. The domain $u \leq u_{0}$ represents the interior of the elliptic cylinder

$$
\begin{equation*}
\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}} \leq 1 \tag{51}
\end{equation*}
$$

where the major and minor semi-axes a, b of the ellipse and the constants c, u_{0} are related by

$$
\begin{equation*}
a=c \cosh u_{0}, \quad b=c \sinh u_{0} \tag{52}
\end{equation*}
$$

In elliptic cylinder coordinates we have

$$
\begin{equation*}
\left(q_{1}, q_{2}, q_{3}\right)=(u, v, z) \quad\left(h_{1}, h_{2}, h_{3}\right)=(c \Delta(u, v), c \Delta(u, v), 1) \tag{53}
\end{equation*}
$$

where

$$
\begin{equation*}
\Delta(u, v)=\sqrt{\cosh ^{2} u-\cos ^{2} v} \tag{54}
\end{equation*}
$$

In the stretched coordinate system we have

$$
\begin{equation*}
\left(Q_{1}, Q_{2}, Q_{3}\right)=(U, V, Z)=(U(u), v, z) \tag{55}
\end{equation*}
$$

From equation (15) we obtain

$$
\begin{equation*}
\left(\alpha_{1}, \alpha_{2}, \alpha_{3}\right)=(\Delta(u, v) d u / \Delta(U, v) d U, \Delta(u, v) / \Delta(U, v), 1) \tag{56}
\end{equation*}
$$

Formula (22) yields

$$
\begin{equation*}
\left\{\mu_{1}, \mu_{2}, \mu_{3}\right\}=\mu_{0}\left\{d u / d U, d U / d u, \Delta^{2}(U, v) d U / \Delta^{2}(u, v) d u\right\} \tag{57}
\end{equation*}
$$

and similarly for the dielectric constants. If we take

$$
\begin{equation*}
\cosh U(u)=\cosh u-i \sigma(u) \tag{58}
\end{equation*}
$$

where

$$
\begin{cases}\sigma(u)=0 & u \leq u_{0} \tag{59}\\ \sigma(u)>0 & u>u_{0}\end{cases}
$$

with $\sigma\left(u_{0}\right)=\sigma^{\prime}\left(u_{0}\right)=0$, we obtain an elliptic cylinder PML at the interface $u=u_{0}$. Applied to the outgoing elliptic cylinder wave with radial Mathieu function [9]

$$
\begin{equation*}
R_{e m \lambda}^{(2)}(u)=\sqrt{\pi / 2} \sum_{n}^{\prime} i^{m-n} D_{n}^{m} H_{n}^{(2)}(c \lambda \cosh u) \tag{60}
\end{equation*}
$$

we obtain a stretched elliptic cylinder wave exhibiting consistent damping in the region $u>u_{0}$.

References

1. J. P. Berenger, A perfectly matched layer for the absorption of electromagnetic waves, J Comput Phys 114 (1994), 185-200.
2. W. C. Chew and W. H. Weedon, A 3-D perfectly matched medium from modified Maxwell's equations with stretched coordinates, Microwave Opt Technol Lett 7 (1994), 599-604.
3. Z. S. Sacks, D. M. Kingsland, R. Lee, and J. Lee, A perfectly matched anisotropic absorber for use as an absorbing boundary condition, IEEE Trans Antennas Propopagat 43 (1995), 1460-1463.
4. F. L. Teixeira and W. C. Chew, PML-FDTD in cylindrical and spherical grids, IEEE Microwave Guided Wave Lett 7 (1997), 285-287.
5. B. Yang and P. G. Petropoulos, Plane-wave analysis and comparison of split-field, biaxial, and uniaxial PML methods as ABCs for pseudospectral electromagnetic wave simulations in curvilinear coordinates, J Comput Phys 146 (1998), 747-774.
6. F. Collino and P. Monk, The perfectly matched layer in curvilinear coordinates, SIAM J Sci Comput 19 (1998) 2061-2090.
7. F. L. Teixeira and W. C. Chew, Analytical derivation of a conformal perfectly matched absorber for electromagnetic waves, Microwave Opt Technol Lett 17 (1998), 231-236.
8. B. Spain, Tensor calculus, Interscience, New York, 1960.
9. C. Tai, Dyadic Green functions in electromagnetic theory, IEEE Press, New York, 1994.

[^0]: ${ }^{1}$ IMEC-INTEC, St. Pietersnieuwstraat 41, B-9000 Gent, Belgium. Tel: +32 926433 53, Fax: +32 926435 93. E-mail: knokaert@intec.rug.ac.be

