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Abstract. The dynamical evolution of self-interacting scalar field has many nontrivial
behaviors, which tell us many lessons in a nonlinear dynamics. On Minkowski spacetime,
the scalar field with double well potential has localized, non-singular, time-dependent,
long-lived solutions, which are called oscillons. The lifetime of the oscillon depends on
the initial conditions. Furthermore, when the initial parameter is fine-tuned, oscillons can
be infinitely, and type I critical behavior is observed. Here, we investigate the Einstein-
scalar system with double well potential. We show that oscillons exist in this system, and
discuss the behavior when the initial parameter is fine-tuned. Our results suggests that a
new type of critical behavior appears in this theory.

1 Introduction

Nonlinear field equations often appear, and its nonlinearity plays an important role in many situations
in physics. However, our understanding of the properties of the nonlinear effects is inadequate. In
order to understand them more deeply, it is useful to focus on the universal feature of the nonlinear
equations. Nonlinear scalar field equations in some classes have solitonic solutions, and it’s formation,
time evolution and stability are also important problems.
Here, we consider an Einstein-scalar system with a double well potential of the form

V(Φ) =
λ

4
(Φ2 − σ2)2. (1)

This theory has two interesting sources of non-linearity. One is the gravitational interaction, and the
other is non-linear potential of the scalar field. When the gravity is turned off, there is localized,
longevity, nonsingular solutions, which are called "oscillons", in this theory. On flat space, the oscil-
lons have been studied by Bogolyubsky et al [1], and Copeland et al[2]. They found that the oscillons
can be formed after a bubble collapses. The typical energy of the oscillon is about 43/σ, and the
lifetime τ depends on the initial bubble radius. Typically, the lifetime is about 102 − 103(1/

√
λσ2).

However, when the initial bubble radius R0 is fine-tuned to some value R∗, the lifetime obeys the
scaling law:

τ = −γ ln |R0 − R∗| +C, (2)
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where γ and C are constants. This behavior is similar to the type I critical behavior, which is known
as universal feature of the gravitational system[3–6]. In this study, we investigate the effects of the
gravity on the oscillon in the weak gravity case.

2 Setting and numerical formulation

2.1 System

We consider the Einstein-scalar theory described by the action

S =
∫

d4x
√−g

( R
8πG

− gµνΦ,µΦ,ν − 2V(Φ)
)
, (3)

where V(Φ) is the double well potential which is given by eq.(1). This system has a typical length scale
L = 1/

√
λσ2. Gσ2 is a dimensionless parameter which characterizes the strength of the gravitational

interaction.

2.2 formulation

We solve the field equations numerically by using the generalized Baumgarte-Shapiro-Shibata-
Nakamura (G-BSSN) formulation. G-BSSN formulation is a generalization of the BSSN formulation
[7, 8] to the case of curvilinear coordinate.[9] This formulation is useful in spherically symmetric
spacetime.
G-BSSN formulation is based on the 3+1 decomposition and conformal decomposition. In the 3+1
decomposition, the line element is given by

ds2 = −α2dt2 + γi j(dxi + βidt)(dx j + β jdt), (4)

where α is a lapse function, βi is a shift vector, and γi j is a 3-metric. Extrinsic curvature Ki j ≡
( ∂
∂t −Lβ)γi j is also important quantity. In the conformal decomposition, the 3 metric and the extrinsic

curvature are decomposed to ϕ, γ̃i j,K, Ãi j, which are defined by

γi j = e4ϕγ̃i j, (5)

Ki j = e4ϕÃi j +
1
3
γi jK. (6)

The determinant of γ̃i j is given from the determinant of the reference metric γ̄i j. Furthermore, for the
numerical stability, we introduce the auxiliary field:

Λ̃k ≡ γ̃i j(Γ̃k
i j − Γ̄k

i j) = γ̃
i j∆Γ̃k

i j. (7)

In the case of the spherically symmetric spacetime, the nontrivial components of the γ̃i j, Ãi j, β
i, Λ̃ are

as follows:
γ̃i j = diag(a, br2, br2 sin2 θ) (8)

Ãi j = diag(A, Br2, Br2 sin2 θ), (9)

βi = (β, 0, 0), (10)

Λ̃i = (Λ̃, 0, 0). (11)

We can get the time evolution equations for a, b, ϕ, A, B,K, Λ̃,Φ and Π which is a momentum conju-
gate of the scalar field (see [11]).
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2.3 gauge condition

We use the harmonic gauge condition:

∂tα = Lβα − Kα2, (12)

and β = 0.

2.4 numerics

We use the iterative Crank-Nicolson scheme [12] for the integration in time, and a 2nd order finite
difference method for spatial derivative. In order that the solutions remain smooth, we add the Kreiss-
Oliger dissipation.

2.5 boundary condition

For numerical simulation, it is necessary to impose the boundary conditions. For the regularity at the
origin, we must impose the Neumann boundary conditions,

α′|t=0 = ϕ′|r=0 = K′|r=0 = Λ̃|r=0
= Φ′|r=0 = Π′|r=0 = 0,

a′|r=0 = b′|r=0 = A′|r=0 = B′|r=0 = 0.

For the local flatness at the origin, we must impose the Dirichlet boundary condition for a, b, A, B:

a|r=0 − 1 = b|r=0 − 1 = A|r=0 = B|r=0 = 0. (13)

If this Dirichlet boundary condition is satisfied on the initial data, the evolution equations guarantee
this boundary condition at any time. However, for the numerical simulation, this condition can be
violated, and the violations is the origin of the numerical instability. In this study, we explicitly
impose the Neumann boundary condition for α, ϕ,K, Λ̃,Φ,Π and the Dirichlet boundary condition for
a, b, A, B. The outer boundary condition is the asymptotically Minkowski spacetime.

2.6 definition of the lifetime

We define the lifetime τ of the oscillon as follows:

M(τ; r0)
M(0; r0)

= ϵ ≪ 1, (14)

where M()τ; r0 is a Kodama mass inside a sphere of the radius r0[13, 14].

2.7 Initial data

In this study, we use momentary static Gaussian bubble and a spatially conformally flat initial data:

Φ(t = 0, r) = −σ + 2σe−r2/R2
0 ,

a(t = 0, r) = b(t = 0, r) = 1,
(15)

where R0 is a radius of the bubble.
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Figure 1. Left panel shows envelope of the time evolution of Φ(t, r = 0) for σ2G = 1.0× 10−3. Right panel show
the time evolution of the Kodama mass.

3 Results

This system has one model parameter σ2G which characterize the strength of the coupling between
the scalar field and gravity. In this study, we study the oscillon’s formation and it’s property for
σ2G = 1.0 × 10−4, 5.0 × 10−4, 1.0 × 10−3 and 2.0 × 10−3.

We find that the self-gravitating oscillon appears after the bubble collapses, and its typical behavior
is similar to the case of flat background(see Fig.1) Oscillon’s typical energy depends on σ2G (see
Table.1). Furthermore, when the bubble radius is fine-tuned, the type I critical behavior appears for

Table 1. The dependence of MOscillon on σ2G.

σ2G MOscillon/L
1.0 × 10−4 43
5.0 × 10−4 41
1.0 × 10−3 40
2.0 × 10−3 38

σ2G = 1.0 × 10−4, 5.0 × 10−4, 1.0 × 10−3, that is τ obeys the scaling low:

τ

L
= −γ ln |R0 − R∗

L
| +C. (16)

For σ2G = 2.0 × 10−3, τ shows periodic modulations around the scaling (see Fig.2):

A cos(− log |R0 − R∗
L
| + φ) ≡ τ

L
− (−γ log |R0 − R∗

L
|) − δ. (17)

This behavior may be new type of the critical behavior.
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