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Abstract. The largest uncertainties in the Standard Model calculation of the anomalous
magnetic moment of the muon (g−2)µ come from hadronic effects, and in a few years the
subleading hadronic light-by-light (HLbL) contribution might dominate the theory error.
We present a dispersive description of the HLbL tensor, which is based on unitarity,
analyticity, crossing symmetry, and gauge invariance. This opens up the possibility of a
data-driven determination of the HLbL contribution to (g − 2)µ with the aim of reducing
model dependence and achieving a reliable error estimate.
Our dispersive approach defines unambiguously the pion-pole and the pion-box contri-
bution to the HLbL tensor. Using Mandelstam double-spectral representation, we have
proven that the pion-box contribution coincides exactly with the one-loop scalar-QED
amplitude, multiplied by the appropriate pion vector form factors. Using dispersive fits
to high-statistics data for the pion vector form factor, we obtain aπ-box

µ = −15.9(2)×10−11.
A first model-independent calculation of effects of ππ intermediate states that go beyond
the scalar-QED pion loop is also presented. We combine our dispersive description of the
HLbL tensor with a partial-wave expansion and demonstrate that the known scalar-QED
result is recovered after partial-wave resummation. After constructing suitable input for
the γ∗γ∗ → ππ helicity partial waves based on a pion-pole left-hand cut (LHC), we find
that for the dominant charged-pion contribution this representation is consistent with the
two-loop chiral prediction and the COMPASS measurement for the pion polarizability.
This allows us to reliably estimate S -wave rescattering effects to the full pion box and
leads to aπ-box

µ + aππ,π-pole LHC
µ,J=0 = −24(1) × 10−11.

⋆e-mail: massimiliano.procura@cern.ch
⋆⋆e-mail: gilberto@itp.unibe.ch
⋆⋆⋆e-mail: mhofer@uw.edu
⋆⋆⋆⋆e-mail: stoffer@hiskp.uni-bonn.de

© The Authors, published by EDP Sciences. This is an open access article distributed under the terms of the Creative Commons 
Attribution License 4.0 (http://creativecommons.org/licenses/by/4.0/).

EPJ Web of Conferences 166, 00014 (2018)	 https://doi.org/10.1051/epjconf/201816600014
KLOE-2

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Crossref

https://core.ac.uk/display/208735285?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


1 Introduction
The anomalous magnetic moment of the muon (g − 2)µ has been measured [1] and computed to
very high precision of about 0.5 ppm (see e.g. [2]). For more than a decade, a discrepancy has
persisted between the experiment and the Standard Model prediction, now of about 3σ. Forthcoming
measurements at FNAL [3] and J-PARC [4] will update the experimental value. The aim is to increase
the precision by a factor of 4 and check for systematic errors.

The main uncertainty of the theory prediction is due to strong interaction effects. At present, the
largest error arises from hadronic vacuum polarisation, which, however, forthcoming data from e+e−
experiments [2] may help reduce. Thus in a few years, the subleading1 hadronic light-by-light contri-
bution might dominate the theory error. In present calculations of the HLbL contribution, systematic
errors are difficult, if not impossible, to quantify, due to model dependence. A new strategy is required
to provide a solid estimate of the theory uncertainties and reduce them. Lattice QCD is making re-
markable progress in this direction, and may play a leading role in this field in the near future [7–13].
In [14, 15], we have presented the first dispersive description of the HLbL tensor.2 By making use
of the fundamental principles of unitarity, analyticity, crossing symmetry, and gauge invariance, we
provide an approach that reduces model dependence and allows for a more data-driven determination
of the HLbL contribution to (g − 2)µ.

Here, we report on a several improvements of our dispersive framework [17–19]. We have con-
structed a generating set of Lorentz structures for the HLbL tensor that is free of kinematic singu-
larities and zeros. This simplifies significantly the calculation of the HLbL contribution to (g − 2)µ.
Within our dispersive formalism, the definitions of both the pion-pole and pion-box topologies are
unambiguous. By constructing a Mandelstam representation for the scalar functions, we prove that
the box topologies coincide with the scalar-QED (sQED) contribution multiplied by pion vector form
factors. Here we present a numerical evaluation of the pion box using a form factor fit to high-statistics
data, in turn using a dispersive representation to analytically continue the time-like data into the space-
like region required for the (g − 2)µ integral and show that this contribution can be calculated with
negligible uncertainties. We then present a first numerical evaluation of S -wave ππ-rescattering ef-
fects, which unitarize the pion-pole contribution to γ∗γ∗ → ππ. This constitutes the first step towards
a full treatment of the γ∗γ∗ → ππ partial waves [20–22]. In particular, our calculation settles the role
of the pion polarizability, which enters at next-to-leading order in the chiral expansion of the HLbL
amplitude [23–25] and has been suspected to produce sizable corrections in [24].

2 Lorentz structure of the HLbL tensor
In order to study the HLbL contribution to (g−2)µ, we need a description of the HLbL tensor, namely
the hadronic Green’s function of four light-quark electromagnetic currents, evaluated in pure QCD:

Πµνλσ(q1, q2, q3) = −i
∫

d4x d4y d4z e−i(q1 ·x+q2·y+q3·z)�0|T { jµem(x) jνem(y) jλem(z) jσem(0)}|0�. (1)

Gauge invariance requires the HLbL tensor to satisfy the Ward-Takahashi (WT) identities

{qµ1, q
ν
2, q
λ
3, q
σ
4 }Πµνλσ(q1, q2, q3) = 0, (2)

where q4 = q1 + q2 + q3. The HLbL tensor can be written a priori in terms of 138 basic Lorentz
structures built out of the metric tensor and the four-momenta [26]. Our first task is to write the

1Even higher-order hadronic contributions have been considered in [5, 6].
2A different approach, which aims at a dispersive description of the muon vertex function instead of the HLbL tensor, has

been presented in [16].
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1Even higher-order hadronic contributions have been considered in [5, 6].
2A different approach, which aims at a dispersive description of the muon vertex function instead of the HLbL tensor, has

been presented in [16].

HLbL tensor in terms of Lorentz structures that satisfy the WT identities, while at the same time the
scalar functions that multiply these structures must be free of kinematic singularities and zeros. A
recipe for the construction of these structures has been given by Bardeen, Tung [27], and Tarrach
[28] (BTT) for generic photon amplitudes. Gauge invariance imposes 95 linear relations between the
138 initial scalar functions. A generating set3 consisting of 43 elements can be constructed following
Bardeen and Tung [27]. However, as it was shown by Tarrach [28], such a set is not free of kinematic
singularities and has to be supplemented by additional structures. We find a redundant BTT generating
set of dimension 54:

Πµνλσ(q1, q2, q3) =
54
∑

i=1
T µνλσi Πi(s, t, u), (3)

with scalar functions Πi depending on the Mandelstam variables s = (q1 + q2)2, t = (q1 + q3)2,
u = (q2 + q3)2 as well as the photon virtualities q2

i , and Lorentz structures T µνλσi [17, 18, 31]. This
decomposition fulfills gauge invariance manifestly

{qµ1, q
ν
2, q
λ
3, q
σ
4 }T iµνλσ = 0, (4)

is highly crossing symmetric (with only 7 distinct structures, all remaining 47 being related to these
by crossing transformations), and ensures that the coefficient functions Πi do not contain kinematic
singularities and zeros. In addition, the BTT decomposition typically allows for a very economical
representation of HLbL amplitudes, e.g. one of the structures coincides with the amplitude for a
pseudoscalar pole, while even the sQED amplitude becomes very compact once expressed in terms of
BTT functions.

3 HLbL contribution to (g − 2)µ
The HLbL contribution to aµ = (g−2)µ/2 can be extracted with the help of well-known Dirac projector
techniques [32]. With our decomposition of the HLbL tensor in 54 structures, this amounts to the
calculation of the following two-loop integral:

aHLbL
µ = − e6

48mµ

∫

d4q1

(2π)4
d4q2

(2π)4
1

q2
1q

2
2(q1 + q2)2

1
(p + q1)2 − m2

µ

1
(p − q2)2 − m2

µ

× Tr
(

(/p + mµ)[γρ, γσ](/p + mµ)γµ(/p + /q1 + mµ)γλ(/p − /q2 + mµ)γν
)

×
54
∑

i=1

(

∂

∂q4ρ
T µνλσi (q1, q2, q4 − q1 − q2)

)
∣

∣

∣

∣

∣

q4=0
Πi(q1, q2,−q1 − q2). (5)

After a Wick rotation of the momenta, five of the eight loop integrals can be carried out with the
technique of Gegenbauer polynomials [33]. We have checked that this Wick rotation is justified
even in the presence of anomalous thresholds in the scalar functions Πi. In analogy to the pion-pole
contribution [34], a three-dimensional integral representation for the full HLbL contribution to (g−2)µ
can be worked out [19] :

aHLbL
µ =

α3

432π2

∫ ∞

0
dΣΣ3

∫ 1

0
dr r
√

1 − r2
∫ 2π

0
dφ

12
∑

i=1
Ti(Q1,Q2,Q3)Π̄i(Q1,Q2,Q3), (6)

3In 4 space-time dimensions, there are two additional linear relations, hence a basis consists of 41 elements [29, 30].

3

EPJ Web of Conferences 166, 00014 (2018)	 https://doi.org/10.1051/epjconf/201816600014
KLOE-2



Figure 1. Unitarity diagrams according to the Mandelstam representation. Crossed diagrams are omitted.

where the Ti are known kernel functions, the Π̄i suitable linear combinations of the BTT Πi, and the
Euclidean momenta are given by [30]

Q2
1,2 =

Σ

3

(

1 − r
2

cos φ ∓ r
2
√

3 sin φ
)

, Q2
3 =
Σ

3
(1 + r cosφ) . (7)

There are only 6 distinct functions Π̄i, the remaining ones are again related to these by crossing
symmetry. It suffices to calculate the Π̄i in the kinematic limit where q4 → 0, the transition to (g− 2)µ
then proceeds by means of Eq.(6).

4 Mandelstam representation
Although the scalar functions in the master formula Eq.(6) are needed only for the reduced kinematics
where the limit q4 → 0 is taken, we define the dispersion relation in the Mandelstam variables of
the four-point function with general kinematics and evaluate it only afterwards for the special case
q4 → 0. This procedure has the following advantage: the HLbL contribution to (g − 2)µ splits into
contributions from different topologies (shown in fig. 1), each of them linked to a specific sub-process,
which is either data input or again a dispersively reconstructed quantity. These different contributions
are discussed in the following.

Gauge invariance, encoded in the BTT decomposition, leads to Lorentz structures T µνλσi of mass
dimension 4, 6, and 8. Hence, we expect the scalar functions Πi to be rather strongly suppressed at
high energies. Thus we write down unsubtracted double-spectral (Mandelstam) representations for the
Πi [35], i.e. parameter-free dispersion relations. The input to the dispersion relation are the residues
at poles (due to single-particle intermediate states) and the discontinuities along branch cuts (due to
two-particle intermediate states). Both are defined by the unitarity relation, in which the intermediate
states are always on-shell. We neglect contributions from intermediate states consisting of more than
two particles in the primary cut. Heavier intermediate states are expected to be suppressed by higher
thresholds and smaller phase space, in agreement with the outcome of model calculations.

The first topology in fig. 1 consists of the pion pole, i.e. the terms arising from a single pion
intermediate state. This contribution is well-known [34] and given by

Π̄
π0-pole
1 = −

Fπ0γ∗γ∗
(−Q2

1,−Q2
2
)Fπ0γ∗γ∗

(−Q2
3, 0
)

Q2
3 + M2

π

,

Π̄
π0-pole
2 = −

Fπ0γ∗γ∗
(−Q2

1,−Q2
3
)Fπ0γ∗γ∗

(−Q2
2, 0
)

Q2
2 + M2

π

, (8)

where Fπ0γ∗γ∗ denotes the pion transition form factor (for off-shell photons but an on-shell pion).
The other topologies in fig. 1 are obtained by selecting two-pion intermediate states in the primary

cut. The sub-process γ∗γ∗ → ππ is again cut in the crossed channel. If we single out the pion-
pole contribution in both of the sub-processes, we obtain the box topologies for HLbL. For higher
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cut. The sub-process γ∗γ∗ → ππ is again cut in the crossed channel. If we single out the pion-
pole contribution in both of the sub-processes, we obtain the box topologies for HLbL. For higher

intermediate states in the crossed channel of γ∗γ∗ → ππ, we obtain boxes with multi-particle cuts
instead of poles in the sub-processes.

By explicitly constructing the Mandelstam representation, we have shown that the box topologies
in the sense of unitarity have the same analytic structure as the one-loop sQED contribution, multi-
plied with pion electromagnetic form factors FVπ (q2

i ) for each of the off-shell photons (FsQED). The
dispersion relation defines unambiguously this particular q2

i dependence. With the construction of
the Mandelstam representation, we prove that FsQED and box topologies are the same. Note that
the sQED loop contribution in terms of Feynman diagrams consists of boxes, triangles, and bulbs,
but that the corresponding unitarity diagrams are just box topologies. This can be understood as fol-
lows: in sQED, the appearance of triangle and bulb diagrams is due to the seagull vertex, needed to
ensure gauge invariance. In our formalism, gauge invariance is already encoded in the BTT tensor
decomposition Eq.(3). Due to the high degree of crossing symmetry, the pion-box contribution can be
expressed in terms of either fixed-s, -t, or -u dispersion relations, or in a symmetrized form

Ππ-box
i (s, t, u) =

1
3

[

1
π

∫ ∞

4M2
π

dt′
ImΠπ-box

i (s, t′, u′)
t′ − t +

1
π

∫ ∞

4M2
π

du′
ImΠπ-box

i (s, t′, u′)
u′ − u + fixed-t + fixed-u

]

.

In this case the representation is exact.
Once heavier intermediate states are considered, see Fig. 1, a more detailed investigation of the

double spectral functions is required. In practice, such contributions can be included using a partial-
wave expansion, in which case the sub-process becomes a polynomial in the crossed variable and
the crossed-channel cuts are neglected. Writing down all crossed versions of the unitarity diagrams
in Fig. 1 with a two-particle primary cut, one sees that each double spectral region appears exactly
twice in a symmetrized form as in (9), so that the prefactor changes according to 1/3 → 1/2 [31],
with corrections suppressed by the mass scale of the neglected LHC. In particular, this representa-
tion becomes exact for ππ-rescattering effects, which, by definition, are polynomial in the crossed
Mandelstam variable.

For a numerical evaluation of the pion box contribution, the only input needed is the pion vector
form factor in the space-like region. By fitting a dispersive representation which accounts for the
prominent singularities in the low-energy region as suggested in [36, 37] to both space-like [38] and
time-like form factor data [39–44], we obtain

aπbox
µ = −15.9(2) × 10−11 (9)

where the uncertainty is determined from the differences between the time-like data sets as well as the
details of the fit representation. We stress that previous evaluations of a “pion loop” [45, 46] had large
model-dependent uncertainties, whereas our evaluation of an unambiguously-defined pion box has a
negligible one.

5 Partial-wave expansion
Constraints from unitarity are most conveniently formulated in a partial-wave expansion for HLbL
helicity amplitudes hJ

λ1λ2,λ3λ4
with angular momentum J and helicity labels λi. In this case the unitarity

relation becomes diagonal

Im hJλ1λ2,λ3λ4
(s) =

σπ(s)
16πS

hJ,λ1λ2 (s)h∗J,λ3λ4
(s), (10)

where σπ(s) =
√

1 − 4M2
π/s, S = 2 for indistinguishable particles, and hJ,λ1λ2 the helicity partial

waves for γ∗γ∗ → ππ, and once formulated in isospin basis, Watson’s theorem guarantees that the
phases on the right-hand side cancel to produce a well-defined imaginary part.
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Table 1. Saturation of aπ-box
µ for maximal angular momentum Jmax.

Jmax fixed-s fixed-t fixed-u average
0 0.0% 106.2% 106.2% 70.8%
2 73.9% 102.3% 92.7% 89.6%
4 89.2% 101.5% 96.4% 95.7%
6 94.3% 100.7% 97.9% 97.6%
8 96.5% 100.4% 98.7% 98.5%

There are 41 independent helicity amplitudes for the full HLbL tensor, which reduce to 27 if one
photon is taken on-shell. By overcoming several technical and conceptual challenges [19, 31], we
were able to construct a set of 27 amplitudes Π̌i related to the 27 singly-on-shell helicity amplitudes
by a basis change that we have derived in explicit analytic form. In the limit q4 → 0 a subset of the
Π̌i includes all the scalar functions needed as input in (6) [31]. Moreover, this set of 27 amplitudes is
manifestly free of Tarrach [28] or d = 4 ambiguities [30]. For singly-on-shell kinematics, there still
exist 15 sum rules among the 27 helicity amplitudes, which we have exploited to optimize to a certain
degree the representation with respect to the convergence of the partial-wave expansion.

The pion box provides an ideal test case for our partial-wave framework since the full result is
known and explicit expressions for all BTT scalar functions are available. Our results, for simplic-
ity obtained by using a vector-meson-dominance pion form factor FVπ (q2) = M2

ρ/(M2
ρ − q2), with

aπ-box, VMD
µ = −16.4 × 10−11, are shown in Table 1, demonstrating that each fixed-s, -t, -u representa-

tion approaches the full result (going up to Jmax = 20, we checked that also the remaining differences
disappear after partial-wave resummation). The vanishing S -wave contribution for fixed-s is well
understood and partly a matter of convention [19]. The convergence pattern looks very reasonable.

6 ππ rescattering effects

The partial-wave decomposition of the pion box demonstrates that the traditional sQED pion loop can
be understood as the result of resumming the Born-term contributions to the γ∗γ∗ → ππ partial waves
hJ,λ1λ2 (s) introduced in the context of the unitarity relation (10). However, unitarity for the sub-process
itself implies

Im hIJ,λ1λ2
(s) = sin δIJ(s)e

−iδIJ(s)hIJ,λ1λ2
(s), (11)

with isospin labels I and ππ phase shifts δIJ . This relation is clearly violated for the (real) Born terms
alone. With a partial-wave framework at our disposal, we are thus in the position to evaluate the
corresponding unitarity corrections, more conventionally referred to as ππ-rescattering effects, as a
first important step to account for contributions beyond the pion box.

In contrast to the on-shell and singly-virtual case [20–22], the calculation of the γ∗γ∗ → ππ partial
waves for two off-shell photons is complicated by the fact that even for S -waves two different helic-
ity partial waves, h0,++ and h0,00, become coupled, including off-diagonal kernel functions required
to eliminate kinematic singularities [6, 18]. We applied this framework to construct the γ∗γ∗ → ππ
amplitudes that correspond to the rescattering corrections to the Born terms, whose solution can still
be derived based on Muskhelishvili–Omnès methods [47, 48]. We used ππ phase shifts based on the
modified inverse-amplitude method [49], for the main reason that it has a simple analytic expression,
while at the same time it reproduces accurately the low-energy properties of the phase shifts as well as
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exist 15 sum rules among the 27 helicity amplitudes, which we have exploited to optimize to a certain
degree the representation with respect to the convergence of the partial-wave expansion.

The pion box provides an ideal test case for our partial-wave framework since the full result is
known and explicit expressions for all BTT scalar functions are available. Our results, for simplic-
ity obtained by using a vector-meson-dominance pion form factor FVπ (q2) = M2

ρ/(M2
ρ − q2), with

aπ-box, VMD
µ = −16.4 × 10−11, are shown in Table 1, demonstrating that each fixed-s, -t, -u representa-

tion approaches the full result (going up to Jmax = 20, we checked that also the remaining differences
disappear after partial-wave resummation). The vanishing S -wave contribution for fixed-s is well
understood and partly a matter of convention [19]. The convergence pattern looks very reasonable.

6 ππ rescattering effects

The partial-wave decomposition of the pion box demonstrates that the traditional sQED pion loop can
be understood as the result of resumming the Born-term contributions to the γ∗γ∗ → ππ partial waves
hJ,λ1λ2 (s) introduced in the context of the unitarity relation (10). However, unitarity for the sub-process
itself implies

Im hIJ,λ1λ2
(s) = sin δIJ(s)e

−iδIJ(s)hIJ,λ1λ2
(s), (11)

with isospin labels I and ππ phase shifts δIJ . This relation is clearly violated for the (real) Born terms
alone. With a partial-wave framework at our disposal, we are thus in the position to evaluate the
corresponding unitarity corrections, more conventionally referred to as ππ-rescattering effects, as a
first important step to account for contributions beyond the pion box.

In contrast to the on-shell and singly-virtual case [20–22], the calculation of the γ∗γ∗ → ππ partial
waves for two off-shell photons is complicated by the fact that even for S -waves two different helic-
ity partial waves, h0,++ and h0,00, become coupled, including off-diagonal kernel functions required
to eliminate kinematic singularities [6, 18]. We applied this framework to construct the γ∗γ∗ → ππ
amplitudes that correspond to the rescattering corrections to the Born terms, whose solution can still
be derived based on Muskhelishvili–Omnès methods [47, 48]. We used ππ phase shifts based on the
modified inverse-amplitude method [49], for the main reason that it has a simple analytic expression,
while at the same time it reproduces accurately the low-energy properties of the phase shifts as well as

Table 2. S -wave rescattering corrections to aπ-box
µ , in units of 10−11, for both isospin components and in total.

cutoff 1 GeV 1.5 GeV 2 GeV ∞
I = 0 −9.2 −9.5 −9.3 −8.8
I = 2 2.0 1.3 1.1 0.9
sum −7.3 −8.3 −8.3 −7.9

pole position and couplings of the f0(500) resonance [19]. We also tested the sensitivity to the asymp-
totic part of the dispersive integrals by studying solutions with different cutoff valuesΛ = [1 GeV,∞),
constructed with finite-matching-point techniques [21, 50–53]. Our results for the rescattering contri-
bution, summarized in Table 2, turn out to be stable over a wide range of cutoffs, indicating that our
input for the γ∗γ∗ → ππ partial waves reliably unitarizes the Born-term LHC, which should indeed
dominate at low energies. The isospin-0 part of the result can be interpreted as a model-independent
implementation of the contribution from the f0(500) of about −9×10−11 to HLbL scattering in (g−2)µ.
In total, we obtain for the ππ-rescattering effects related to the pion-pole LHC

aππ,π-pole LHC
µ,J=0 = −8(1) × 10−11, (12)

where the error is dominated by the uncertainties related to the asymptotic parts of the integral.
Finally, it is instructive to consider the separate contributions not in the isospin, but in the charge

basis. Our numerical analysis [19] shows that the rescattering effects in (12) are, as expected, dom-
inated by the charged pion, with input for the γ∗γ∗ → ππ partial waves fully consistent both with
the recent COMPASS measurement [54] of its dipole polarizability and the corresponding two-loop
chiral prediction [55]. For this reason (12) can be considered a model-independent implementation
of effects related to the low-energy constants L9 and L10 in Chiral Perturbation Theory, which were
suspected to produce large effects in [24]. Our calculation proves that this is not the case, and that the
related rescattering corrections are indeed of much more reasonable size (a similar conclusion was
reached within a model approach in [25]).

To summarize, we have shown that our framework allows us to estimate very accurately the com-
bined effect of two-pion intermediate states generated by a pion-pole LHC and its S -wave unitariza-
tion

aπ-box
µ + aππ,π-pole LHC

µ,J=0 = −24(1) × 10−11, (13)

which is considered to be among the most important contributions after the dominant pseudoscalar
poles, but was so far affected by significant uncertainties. This first numerical result based on our
dispersive approach lays the foundation for extensions towards higher partial waves, an improved LHC
in the γ∗γ∗ → ππ subamplitudes as well as higher-mass intermediate states, all important prerequisites
for a model-independent data-driven evaluation of the complete HLbL contribution to (g − 2)µ.
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