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 ABSTRACT 
 
The present study was conducted to investigate the mechanisms underlying fluid movement 
across the trophectoderm during blastocyst formation by determining whether aquaporins 
(AQPs) are expressed during early mammalian development. AQPs belong to a family of major 
intrinsic membrane proteins and function as molecular water channels that allow water to flow 
rapidly across plasma membranes in the direction of osmotic gradients. Ten different AQPs have 
been identified to date. Murine preimplantation stage embryos were flushed from the oviducts 
and uteri of  superovulated CD1 mice. Reverse-transcription-polymerase chain reaction (RT-
PCR) methods employing primer sets designed to amplify conserved sequences of AQPs (1-9) 
were applied to murine embryo cDNA samples. PCR reactions were conducted for up to 40 cycles 
consisting of denaturation of DNA hybrids at 95 oC, primer annealing at 52-60 oC and extension 
at 72 oC. PCR products were separated on 2% agarose gels and were stained with ethidium 
bromide. AQP PCR product identity was confirmed by sequence analysis. mRNAs encoding AQPs 
1, 3, 5, 6, 7, and 9 were detected in murine embryos from the one cell stage up to the blastocyst 
stage. AQP 8 mRNAs were not detected in early cleavage stages but were present in morula and 
blastocyst stage embryos. The results were confirmed in experimental replicates applied to 
separate embryo pools of each embryo stage. These results demonstrate that transcripts 
encoding seven AQP gene products are detectable during murine preimplantation development. 
These findings predict that AQPs may function as conduits for trophectoderm fluid transport 
during blastocyst formation. 



 INTRODUCTION 

The preimplantation period of mammalian development is characterized by a 

series of cell divisions leading to the formation of a blastocyst. The blastocyst is composed of the 

outer epithelial trophectoderm, a fluid-filled cavity, and a small group of cells, the inner cell mass 

(ICM) which are the progenitors of the embryo proper ( McLaren 1982; Wiley 1987; Biggers et 

al., 1988; Watson 1992). Trophectoderm differentiation begins during compaction (onset of cell 

to cell adhesion) and is completed during cavitation (blastocyst formation). These events are 

dependent upon the Ca++-mediated cell to cell adhesion provided by E-cadherin, the 

establishment of a tight junctional permeability seal and the polarized distribution of  the Na/K-

ATPase (Vestweber et al., 1987; Fleming et al., 1987; Watson et al., 1990b). 

The trophectoderm is the first ion-transporting epithelium formed during development 

and provides an important model allowing the investigation of functions and characteristics of a 

transporting epithelium in vitro. Blastocyst formation is essential for implantation and 

subsequent development. Failure to reach this developmental stage and implant is a principal 

cause of early pregnancy loss (McLaren 1982; Bolton 1992; Edwards 1997). 

Transporting epithelia are characterized by the rapid passage of water (Zeuthen 1995;  

Wintour 1997; Spring 1998; Zeidel 1998).  Water permeability is a universal property of cell 

membranes, but how this permeability is mediated at the molecular level is still poorly 

understood. Water can cross the plasma membrane by simple diffusion driven by either 

concentration gradients of ions and solutes which generate an osmotic force, or by physical 

pressure, generating a hydrostatic force (Dainty 1965; Zeuthen 1995; Spring 1998). The 

diffusional permeability (Pd) of cell membranes varies but is usually small ie < 1 m min -1 atm -1 



(Dainty 1965;  Zeuthen 1995; Spring 1998). Although this value is low, it is sufficient for most 

cell types to regulate their volumes. Water flow in some cell types such as red blood cells is, 

however, much greater than that produced by simple diffusion alone (Paganelli & Solomon 1957). 

This has resulted in the hypothesis that cell membranes possess pores that facilitate water flow 

(Zeuthen 1995; Wintour 1997;  Spring 1998; Zeidel 1998). Evidence supporting the presence of 

“water channels” has come from biophysical studies of red blood cells, kidney collecting ducts 

and toad bladder epithelial cells (Harris & Zeidal 1993;  Mulders et al., 1996; Lee et al., 1997; 

Deen & van Os 1998; Verkman, 1999). 

Aquaporins (AQPs) belong to a family of major intrinsic membrane (MIP) proteins. AQPs 

function as molecular water channels that allow water to flow rapidly across plasma membranes 

in the direction of osmotic gradients.  To date 10 different AQPs have been identified in 

mammals, with more likely to come (Harris & Zeidal 1993; Mulders et al., 1996; Wintour 1997; 

Agre 1997;  Lee et al., 1997; Deen & van Os 1998). The expression of AQP gene products during 

the first week of mammalian development has not been fully investigated. Furthermore the 

mechanisms controlling water movement across the trophectoderm during blastocyst formation 

are unexplored. We hypothesize that AQP water channels are present in the trophectoderm cells 

of the preimplantation embryo and that they function as conduits for the trans-trophectodermal 

fluid movements associated with blastocyst formation. The purpose of this study was to 

determine the full complement of mRNAs encoding AQPs during preimplantation mouse 

embryos. We have determined that up to seven members of this gene family are present during 

the first week of mammalian development.  



 MATERIALS AND METHODS 

Superovulation and mouse embryo collection: 

 

Female CD-1 mice (Charles River, Canada), 15-18 grams, were injected with 5 IU PMSG 

(Sigma, St Louis, MO) followed by 5 IU hCG (Sigma) 48 hours later and mated with CB6F1/J males. 

Successful mating was determined the next morning (day 1) by detection of a vaginal plug. Time 

post-hCG was used to measure the developmental age of the embryos which were collected at 

18 hr; unfertilized oocytes; 48 hr, 2-cells; 60 hr, 4-cells; 65-68 hr, 8-cells; 80-85 hr, morulae and 

90 hr, blastocysts. Days 1 to 3 embryos (zygotes through 8-cell compacted) were flushed from 

the reproductive tract using flushing medium I while day 4 embryos were flushed with flushing 

medium II (Spindle, 1980). Flushing medium I consists of calcium lactate (1.71 mM), sodium 

pyruvate (0.25mM) and bovine serum albumin (3 mg/ml) added to 10X Leibovitz-modified Hank’s 

balanced salt solution (HBSS) and diluted with water to 1 X (Spindle, 1980). Flushing medium II 

consisted of CaCl2 (1.8mM), amino acids (L-arginine, L-cystine, L-histidine, L-isoleucine, L-leucine, 

L-lysine, L-methionine, L-phenylalanine, L-threonine, L-tryptophan, l-tyrosine, L-valine, and L-

glutamine at 0.1, 0.5, 1.03, 0.2, 1.0, 2.0, 0.25, 0.5, 2.0, 0.1, 0.1,1.0, and 2.0 mM respectively) and 

1 X BME vitamins to 10X Leibovitz -modified HBSS diluted with water to 1 X (Spindle, 1980).  

Embryos were washed 4-5 times in flushing medium and quick-frozen in a small amount of 

medium using liquid nitrogen, in batches of 30-50 embryos. They were stored at -70 0C until RNA 

extraction 

 

RNA extraction: 



Total embryo RNA was extracted from pools of 30-50 preimplantation stage embryos 

using phenol chloroform and ethanol precipitation as previously described (Watson et al., 1992). 

Embryos were placed into 100 µl of extraction buffer (0.2 M NaCl, 1 mM EDTA, 25 mM TRIS HCl, 

pH 7.4) with 12µg carrier E. Coli ribosomal RNA and were vortexed with equal volumes of phenol 

and chloroform:isoamyl alcohol (24:1), centrifuged, re-extracted with 100µl of 

chloroform:isoamyl alcohol, and then precipitated with 95% ethanol at - 200C overnight. The 

samples were then centrifuged, washed with 70% ethanol (-200C), re-centrifuged, and air-dried 

before being re-dissolved in 10µl sterile water. Mouse kidney, liver and lung RNA were extracted 

by the same method and were quantified via spectrophotometry. Aliquots of 1 µg tissue total 

RNA was used for reverse transcriptions. 

 

Reverse Transcription and Polymerase Chain Reaction (RT-PCR): 

Total RNA was reverse-transcribed (RT) using oligo (dT) priming and Superscripttm Rnase 

H-Reverse Transcriptase (Gibco BRL, Burlington, ON, Canada; Watson et al., 1992b, 1994; Harvey 

et al., 1995).  RNA samples were incubated with 0.5 μg of Oligo (dT)12-18 primer (Gibco BRL) for 

10 min at 70oC.  Following cooling on ice, RNA was incubated in 1st Strand Buffer (Gibco BRL; 

containing 50 mM Tris-HCl [pH 8.3], 75 mM KCl, 3 mM MgCl2, 10 mM DTT, 0.5 mM dNTPs) and 

200 units of Superscript Reverse Transcriptase (Gibco BRL) for 1.5 h at 43oC. The reaction was 

terminated by heating at 94oC for 5 min and flash cooling on ice. Polymerase chain reaction (PCR) 

was performed as previously described (Watson et al., 1992b, 1994; Betts et al., 1996).  Aliquots 

of 2 embryo equivalents were amplified with 1 unit AmpliTaq Gold (Perkin Elmer, PE Applied 

Biosystems, Mississauga, ON) in a final volume of 50 μl containing 1X PCR buffer II plus 1.5 - 2.5 



mM MgCl2, 0.2 mM of each dNTP and 1 M of each gene-specific primer. The reaction mixture 

was amplified in a DNA thermal cycler (Perkin Elmer GeneAmp PCR system 2400). The reaction 

was initiated at 950C for 10 mins, followed by 40 cycles consisting of denaturation at 950C for 1 

min, re-annealing of primers to target sequences at 52-57oC for 30 sec and primer extension at 

72oC for 1 min. The reaction was ended with a 10 min extension at 720C. PCR products were 

resolved on 2% agarose gels containing 0.5 μg/ml of ethidium bromide. PCR reactions for each 

AQP primer set were repeated on cDNA samples prepared from each embryo stage representing 

three distinct and complete developmental series.  

 

PCR Primers: 

Primer sequences for actin and AQPs 1-9 were designed from cDNA sequences retrieved 

from GENBANK and were synthesized by Gibco BRL,(see Table 1 for sequences). AQPs 3, 4, 5, 6, 

7 and 9 were designed from rat sequences and AQP 1, 2 and 8 were designed from mouse 

sequences. The primer sets were designed to recognize conserved cross species sequence 

regions. For example primer sets encoding AQPs 1,2,3,4,5, and 7, share a 100% homology to both 

rat and mouse sequences. Murine sequences for AQPs 6 and 9 are not available as yet and only 

rat sequences are known. The AQP 8 primer set was designed from mouse AQP 8 sequences. The 

specificity of each primer set for recognizing its specific sequence was determined by running 

Genbank sequence homology searches and by sequence analysis of the PCR products. In each 

case the primers sets displayed an ability to recognize and amplify only their specific AQP family 

member. cDNA samples were tested for presence of genomic DNA contamination prior to use in 

gene-specific RT-PCR reactions by utilizing a set of primers designed to bracket an intron of the 



β-actin cDNA. In the absence of genomic DNA, this primer set produces a 243 bp amplification 

product (Watson et al., 1992b, 1994; Harvey et al., 1995). All cDNA samples utilized in this study 

displayed the amplification of the appropriate sized β-actin cDNA PCR product. At no time did we 

detect the larger intron spanning product representing actin genomic DNA. 

Cloning and Sequencing of AQP RT-PCR Products: 

The murine AQP RT-PCR products were cloned into pGEM-T vector using the pGEM-T 

Vector System (Promega, Fisher Scientific, Nepean, ON; Natale et al., 2000). The ligated inserts 

were transformed into XL-1 Blue high efficiency competent cells and spread on separate LB agar 

plates containing 100 g/ml ampicillin (Sigma -Aldrich Canada, Oakville, ON, Canada), 80 g/ml 

X-gal (Gibco BRL) and 0.5 mM IPTG (Gibco BRL). Single colonies were picked and inoculated for 

overnight culture at 37 0C with shaking at 250 rpm. Plasmid DNA was purified using the QIAprep 

Mini prep kit (QIAGEB Inc., Mississauga, On, Canada; Natale et al., 2000). Plasmid DNA was 

amplified by PCR using a reaction mix containing 1.25 U of Taq DNA Polymerase (Gibco BRL) 

containing 1X Taq reaction buffer (20 mM Tris-HCl, pH 8.4 and 50 mM KCl), plus 2.5 mM MgCl2, 

0.15 mM dNTPs and 0.16 μM of each sequence-specific primer (bracketing the plasmid insertion 

site) in a final 20 μl volume. The mixture was overlaid with mineral oil and then amplified by PCR 

for 45 cycles in a DNA thermal cycler (GeneAMP 2400, Perkin Elmer) with each cycle consisting 

of denaturation at 94oC for 30 sec, re-annealing of primers to target sequences at 50oC for 30 

sec, and primer extension at 72oC for 30 sec concluded with a final extension at 72oC for 5 min 

(Natale et al., 2000). PCR products were run on 2% agarose gels containing 0.5 μg/ml of ethidium 

bromide. The presence of a single expected size AQP amplicon verified that the expected product 

was cloned (Natale et al., 2000). Identity of products from each PCR reaction was verified by 



sequencing conducted at the Robarts Research Institute, University of Western Ontario, ON, 

Canada. 

 



 RESULTS 

 

AQP Transcripts during Murine Preimplantation Development 

 

Figure 1 displays the typical pattern of expression observed for AQP mRNAs in samples 

derived from positive control tissue samples and  pooled murine 1-cell embryos, 2-cell 

embryos, 4-cell embryos, 8-cell embryos, morulae, blastocysts and negative controls (-cDNA).  

The assays were repeated a minimum of three times with pools of embryos collected from 

replicate cultures. Each reverse-transcribed embryo cDNA sample was first tested with β-actin 

primers to ensure the absence of contaminating genomic DNA.   

Transcripts encoding AQPs 1,3,5,6, 7, and 9 (indicated by amplicons having the predicted 

sizes of 462 bp, 398 bp, 260 bp, 304 bp, 269 bp and 278 bp respectively) were detected in 1-cell 

murine zygotes to blastocyst stages (Figure 1).  In each case, the distribution of these transcripts 

throughout pre-attachment development is suggestive of these gene products being of both 

maternal (oogenetic) and embryonic origin. Transcripts encoding AQP 8 were undetectable in 

early cleavage stage embryos (1 cell to 8 cell stage) but were consistently detected in morula and 

blastocyst stages (Figure 1; 497 bp product). This pattern of expression is indicative of 

transcription from the embryonic genome. Although our assay was not a quantitative one the 

amplicon signals were consistently more intense for AQPs 3, 7 and 8 in morula and blastocyst 

stages (Figure 1) which is suggestive of a possible increase in mRNA accumulation for these AQPs 

just prior to blastocyst formation. We were unable to detect any transcripts encoding AQPs 2 and 

4 in any preimplantation embryo stage (Figure 1). The expected size products for each AQP were 



detected in control murine tissues representing kidney for AQPs 1,2,3,4, and 6, liver for AQPs 7, 

8, and 9 and lung for AQP 5 (Figure 1).  

 

Verification of AQP Amplicon Identity by Sequence Analysis 

To confirm the identity of AQP 1,3,5, 6,7, 8 and 9 embryonic amplicons and to contrast 

the  nucleotide sequence identity of AQP 6, and 9 mouse and rat sequences each murine 

embryonic AQP RT-PCR product was cloned and sequenced. The nucleotide sequences are 

displayed in Figure 2. Each sequence was directly compared to the corresponding published 

murine or rat   cDNA sequence (rat sequences were used in cases where murine sequence 

were previously uncharacterized ie AQPs 6 and 9) by conducting an alignment analysis using the 

BCM search launcher (http://kiwi:bcm.tmc.edu.8088/search-launcher/launcher.htmI). Non-

conserved nucleotides are highlighted for each amplicon (Figure 2). 



 DISCUSSION 

In this study, we report the presence of transcripts encoding AQPs 1,3,5,6,7,8 and 9 during 

the first week of mammalian development. The oligodeoxynucleotide primers were designed 

through use of mouse and rat cDNA sequences obtained from searching GenBank. Their ability 

to amplify specific murine embryonic cDNAs was verified in all cases by observing the expected 

size of the amplified DNA fragment in several replicates of murine early developmental embryo 

stages. In addition each murine embryonic amplicon was sequenced for verification of identity. 

Simple transporting epithelia arise from the differentiation of non-polar cells into 

polarized cells by the expression of gene families involved in cell adhesion, cell junctions and ion 

transport.  These epithelia perform the function of transporting ions, solutes, and fluids in a 

directional manner (Simmons 1992; Wilson 1997; Davies & Garrod 1997; Murer & Biber 1998). 

The trophectoderm forms the outer layer of the blastocyst, the fluid-filled structure the 

embryo assumes just prior to implantation into the uterine wall (Biggers et al., 1988; Wiley et al., 

1990; Watson, 1992). Blastocyst formation is essential for implantation and subsequent 

development (McLaren, 1982; Wiley et al., 1990; Bolton, 1992; Edwards 1997). The 

trophectoderm is the first ion transporting epithelium formed during development and provides 

an important model allowing the investigation of cell polarity during development (Wiley et al., 

1990; Watson, 1992). Our studies have investigated cell adhesion molecules, tight-junction 

associated polypeptides (Watson et al., 1990b; Barcroft et al., 1998), Na/K-ATPase isoforms 

(Watson and Kidder, 1988; Watson et al., 1990a; Betts et al., 1997; 1998), and growth factors 

(Watson et al., 1992; Watson et al., 1994; Winger et al., 1997) during trophectoderm 

differentiation. The principal hypothesis we are testing predicts that blastocyst formation is 



mediated by a trans-trophectoderm ion gradient(s) established, in part, by Na/K-ATPase, which 

drives the movement of water through aquaporins (AQPs) across the epithelium into the 

extracellular space of the blastocyst cavity.  

Blastocyst expansion is restricted by ouabain (potent inhibitor of Na/K-ATPase (Dizio and 

Tasca 1977; Horisberger, 1995; Baltz et al., 1997) and blastocyst re-expansion following 

cytochalasin-induced collapse is completely blocked by ouabain (Dizio and Tasca, 1977; Baltz et 

al., 1997; Betts et al., 1997). Our studies determined that transcripts encoding the alpha 1 

isoform accumulate from the murine 2-cell to early blastocyst stage (Watson et al., 1990a). alpha 

1-subunit transcripts in this species are present in 2-, 4-, and 8-cell embryos but increase greatly 

in abundance by the morula and blastocyst stages (Watson et al., 1990a). By applying RT-PCR 

methods we have observed that mRNAs encoding the alpha 3, alpha 2, alpha 3 isoforms are also 

expressed throughout murine preimplantation development (MacPhee et al., 2000). Thus at least 

four Na/K-ATPase isoform genes are expressed in the murine blastocyst (MacPhee et al., 2000). 

Blastocyst formation is accompanied by an increase in the level of ß1-subunit mRNA (Watson et 

al., 1990a), ß1- subunit protein (Gardiner et al., 1990), and enzyme activity (Vorbrodt et al., 1977; 

Betts et al., 1998). Polypeptides encoding the alpha 1 isoform maintain a polarized distribution 

confined to the basolateral membrane domains of the murine trophectoderm (Watson et al., 

1988; Betts et al., 1997).  The Na/K-ATPase gene family is an important facilitator of blastocyst 

formation, however, the precise contribution of each isoform of the Na/K-ATPase plays in 

establishing a trans-trophectoderm ionic gradient is unknown but is under investigation.  

The mechanisms that facilitate the movement of water across the trophectoderm down 



the trans-trophectoderm ionic gradient are unexplored. The processes that regulate the uptake 

and release of water by living cells are fundamental to cell viability. Water can diffuse through 

lipid bilayers, so all cell membranes display some level of permeability to water (for review see 

Zeuthen, 1995; Wintour, 1997; Verkman 1999, Borgnia et al., 1999). It has been thought that 

simple diffusion was the primary if not exclusive mechanism for mediating water movement 

through biological membranes and that water channels were not necessary (Borgnia et al., 1999). 

Extensive research conducted largely over the past ten years has indicated that plasma 

membranes display a varied permeability to water movement and that in cases of rapid and large 

volume water movement that specific water transport molecules must exist (for review see 

Zeuthen, 1995; Wintour, 1997, Verkman, 1999, Borgnia et al., 1999). These types of studies have 

resulted in the characterization of 10 molecular water channels or Aquaporins. AQP 0/MIP28 was 

isolated from lens epithelium. Absence of normal AQP 0 protein is linked to cataract formation 

in mutant mice (Shiels & Griffin 1993). AQP 1/channel forming integral membrane protein (CHIP)-

28 is the most ubiquitous of the AQP family and is expressed in a number of organs and tissues 

(Echvarria et al., 1994; Yang & Verkman 1997; Heymann et al., 1998; Yang et al., 1999). AQP 1 is 

the major water channel in red blood cells and in the brain it is only found in the choroid plexus 

(Echvarria et al., 1994; Yang & Verkman 1997; Heymann et al., 1998; Yang et al., 1999). AQP 2 is 

the vasopressin responsive water channel found in kidney collecting ducts (Fushimi et al., 1993; 

Katsura et al., 1996; Sasaki et al., 1998). This water channel is stored in cytoplasmic vesicles that 

fuse with the apical membrane following exposure to vasopressin (Katsura et al., 1996). Loss of 

function mutations in this gene result in nephrogenic diabetes insipidus (van Lieburg et al., 1994). 

AQP 3 permits the passage of water, glycerol and urea and is generally located to the basolateral 



membrane of epithelial cells (Ishibashi et al., 1994; Sasaki et al., 1998). AQP 4 is a mercury 

insensitive water channel also generally localized to the basolateral membranes of a variety of 

cells (Jung et al., 1994; Hasegawa et al., 1994; Terris et al., 1995). AQP 5 plays a role in the 

secretion of saliva, tears and pulmonary fluid (Raina et al., 1995; Ma et al., 1999) and is localized 

in apical membranes. Null murine mutants for AQP 5 display a marked reduction in saliva 

production (Ma et al., 1999). AQP 6 may be exclusively expressed in kidney and displays a low 

water conducting ability (Yasui et al., 1999). AQP 7 permits the passage of both water and glycerol 

and is expressed in a transient fashion in late spermatids and maturing sperm and weakly in 

kidney and heart (Ishibashi et al., 1997). AQP 8 is also localized in the testes as well as placenta, 

colon, liver, and heart (Ma et al., 1997). AQP 9 is the most recently cloned water channel and is 

most similar to AQP 3 and 7 in that it also permits glycerol transport. It is expressed in leukocytes 

and liver and weakly expressed in the heart, kidney and small intestine (Koyama et al., 1997; 

Ishabishi et al., 1998). 

We have hypothesized that AQPs are likely to be involved in mediating the trans-epithelial 

water movements that occur in conjunction with blastocyst formation. As an important first step 

in testing this hypothesis we have examined the presence of AQP mRNAs during murine 

preimplantation development and discovered that mRNAs encoding seven different AQP family 

members are present during preimplantation development. Three of these AQPs (AQP 3, 7 and 

8) displayed an obvious increase in signal at the morula and blastocyst stage. Future experiments 

will investigate the functional roles of these AQPs to blastocyst formation and will attempt to 

localize the distribution of each expressed AQP during early development as effective antisera 

for each AQP become available.  The pursuit of functional data is hampered by the absence of 



specific AQP inhibitors. The existence of AQP null mutant murine lines and the application of 

antisense oligodeoxynucleotide approaches will enable us to explore the individual and collective 

roles that AQPs play during early development. This study therefore reports the presence of a 

new gene family during the first week of development and highlights the utility of the 

trophectoderm as an important cell model for the investigation of cell polarity, ion transport and 

now water transport during epithelial cell morphogenesis during development. 
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Table 1 AQP Primer Sequences 
 

 
PCR Product 

 
primer sequences 

 
size (bp) 

 
GenBank Accession 
Number 

 
AQP 1 

 
5'-primer: 
GGCTATGTGCAGTGTCATGTC 
3'-primer: 
CTGTGATATGCCAGTGGTCAG 

 
462 

 
L02914.1 

 
AQP 2 

 
5'-primer: 
TGGATTCATGGAGCAGCCGGT 
3'-primer: 
TCCTTCCTTCGAGCTGCCTTC 

 
312 

 
AF020519.1 

 
AQP 3 

 
5'-primer: 
CCTCTGGACACTTGGATATGG 
3'-primer: 
CAGCTTCACATTCTCTGCCTC 

 
398 

 
D17695 

 
AQP 4 

 
5'-primer: 
AGCATCGCCAAGTCTGTCTTC 
3'-primer: 
TCCTCCACCTCCATGTAGCTC 

 
515 

 
U14007.1 

 
AQP 5 

 
5'-primer: 
ATCTACTTCACCGGCTGTTCC 
3'-primer: 
GTCAGCTCGATGGTCTTCTTC 

 
260 

 
U16245.1 

 
AQP 6 

 
5'-primer: 
AGTCAACGTGGTCCACAACAG 
3'-primer: 
GTTGTAGATCAGCGAAGCCAG 

 
304 

 
AF083879.1 

 
AQP 7 

 
5'-primer: 
AACTGTGCACTAGGCCGAATG 
3'-primer: 
GTGATGGCGAAGATACACAGC 

 
269 

 
AB000507.1 

 
AQP 8 

 
5'-primer: 
GAACATCAGCGGTGGACACTT 
3'-primer: 
CGATGAGGAGCCTAATGAGCA 

 
497 

 
AF018952.1 

 
AQP 9 

 
5'-primer: 

 
278 

 
AB013112.1 



AGCCTGTTGTCATTAGCCTCC 
3'-primer: 
GTTCTCAGATGGCTCTGCCTT 

 
 
Figure 1. Detection of AQP mRNA transcripts during murine preimplantation development. Each 
lane represents the specific AQP RT-PCR products derived from total RNA representing the 
equivalent of 2 embryos. Transcripts encoding AQPs 1,2,3,4,5,6,7,8, and 9 were investigated with 
expected amplicon sizes of 462, bp, 312 bp, 398 bp, 515 bp, 260 bp, 304 bp, 269 bp, 497 bp and 
278 bp respectively. The lanes are 100 bp DNA ladder; + positive tissue control (murine kidney 
for AQPs 1,2,3,4,and 6; murine lung for AQP 5; and murine liver for AQPs 7,8,and 9); oo, matured 
oocytes; 2, 2-cell stage embryos; 4, 4-cell stage embryos; 8, 8-cell stage embryos; M, morula stage 
embryos; Bl, blastocyst stage embryos. Transcripts encoding AQPs 1,3,5,6,7,and 9 were detected 
from the oocyte to blastocyst stage. Transcripts encoding AQPs 2 and 4 were not detected in 
preimplantation embryos stages while AQP 8 transcripts were only detected in morula and 
blastocyst stages. All RT-PCR experiments were repeated for each AQP primer set on RNA 
samples isolated from a minimum of three separate embryos series.  



Figure 2: Sequence identity of Murine embryo AQP RT-PCR products: Nucleotide sequences of 
AQP 1,3,5,6,7,8,and 9 RT-PCR products were compared to the corresponding murine and rat 
sequences in Genbank. Areas of non-conserved bases are highlighted. 



FIGURE 2: AQP PCR product sequences 
 
 
Mouse AQP 1 PCR product.  99% identical to the mouse AQP1 GenBank sequence 
 
ggctatgtgcagtgtcatgtctgaggagagaagcagctagctatgcaacagaccctggacagatgcccatgctgggcacacaagggttt
ggatgcccttagttcatcatgagcaaggaggtcactctggccctggcttgtgagctcctggctggatgagtgtgaccggagcctggacaat
ctgcagaggctcactctgtgcctccaggcacagtcttctctctgcattggcccaatgctacagcttgtgttgcagcccaaggacagctcag
agtgcagtcagctcaggggttgcatttagctctaggtcattccattggatcccatcaatccagagtggctctaccactgtgcccttaaccac
attgtgaaccgagagccacattcttcaggtgcttagaagcagcagaagagtcagaaggccactgaccactggcatatcacag  

 
Mouse AQP 3 PCR product.  98% identical to the mouse AQP 3 Genbank sequence  
cctctggacacttggatatggtcaatggcttctttgatcagttcataggcacagccgcccttattgtgtgtgtactggccatcgttgaccctt
ataacaaccctgtgccccgtggcctggaggctttcactgtgggcctggtggtcctggtcattggaacctccatgggcttcaattctggctat
gccgtcaaccctgcccgtgactttggacctcgcctcttcaccgccctggctggctggggctcagaagtcttcacgactggccggcactggt
ggtgggtacccattgtctccccactcctgggttccatcgttggtgtcttcgtgtaccagctcatgattggttgccacctggagcagcccccac
cctccaccgaggcagagaatgtgaagctg  
 
Mouse AQP 5 PCR product.  100% identical to the mouse AQP 5 GenBank sequence 
atctacttcaccggctgttccatgaacccagcccgatctttcggccctgcggtggtcatgaatcggttcagcccctctcactgggtcttctgg
gtaggaccgatcgtgggggccgtcctggctgcaatcctctacttctacttgcttttcccctcctcgctgagcctccacgaccgtgtggctgtg
gtcaaaggcacatatgagccagaggaggactgggaagatcatagagaggagcggaagaagaccatcgagctgac  
 
Mouse AQP 6 PCR product.  95 % identical to the rat AQP 6 GenBank sequence 
agtcaacgtggtccacaacagcacatcaactggccaggcggtggccgtggagctggttctgacgctgcagctggtgctctgtgtctttgct
tccatggatggccggcagaccttggcgtccccagctgccatgattggaacctctgtggcactgggccacctcattgggatctacttcactg
gctgttccatgaacccagcccgctccttcggccctgccgtcattgttgggaagttcgcagtccattggatcttctgggtaggaccgctcaca
ggggctgtcctggcttcgctgatctacaac 
 
Mouse AQP 7 PCR product.  99% identical to the mouse AQP 7 GenBank sequence 
tgtgcactaggccgaatgacctggaagaagttccctgtatatgtgctgggtcagttcctgggctccttctcagctgcagctaccacctactt
aattttctatggtgccattaaccactttgcaggcggagacctgttggtgacaggttccaaggccgctgcaaacatttttgccacctatcttcc
tgaatacatgacactgtggcggggcttcctggatgaggcattcgtgactgggatgctgcagctgtgtatcttcgccatcac  
 
Mouse AQP 8 PCR product.  100% identical to the mouse AQP 8 GenBank sequence  
gaacatcagcggtggacacttcaaccctgctgtgtcgctggcagtcacagtgatcggaggcctcaagaccatgctgctaattccctattgg
atctcccagctatttggagggctgattggggctgccttggctaaagtggtgagtccagaggaaagattctggaatgcatctggggcagcc
tttgccatcgtccaggagcaggagcaggtggcagaagccctggggatagagatcattctgacaatgctgttggtattggctgtgtgtatgg
gtgctgtcaatgagaagacaatgggccctttagccccattctccattggcttctctgtcattgtggacatcctggcaggtggtagcatctctg
gagcctgcatgaaccctgctcgtgcctttggacctgctgtgatggctggctactgggacttccattggatctactggctgggccccctcctg
gctggcctctttgtaggactgctcattaggctcctcatcg  
 
Mouse AQP 9 PCR product.  92% identical to the rat AQP 9 GenBank sequence 
gggtcggggttcgagtgatgcatttggataaaaagaacatagatgagacctcccaggacagctccaatcatagggcccacgacaggtat



ccaccagaagttatttccaaatgtgaagacctnaaatccccatcctgccagagcagtgaanagcctggggctgaggtctcgagcagggt
tcatggcacaaccagagttgagtccgagagaacaggaaatgacaatgattaggaggctaatgacaacaggct 
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