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Using Multiple Searchers in Constrained-Path,
Moving-Target Search Problems

Robert F. Dell and James N. Eagle
Operations Research Department, Naval Postgraduate School, Monierey,
California 93943

Gustavo Henrigue Alves Martins and Almir Garnier Santos
Brazilian Navy, Centro de Analises de Sistemas Navais { CASNAV), Centro Postal
da Marinha, Centro Rio de Janeiro, R.J. 20091, Brazil

The search theory open literature has paid little, if any, attention to the multiple-searcher,
maoving-target search problem, We develop an optimal branch-and-bound procedure and
six heuristics for solving constrained-path problems with multiple searchers. Our optimal
procedure outperforms existing approaches when used with only a single searcher. For more
than one searcher, the time needed to guarantee an optimal solution is prohibitive. Our
heuristics represent a wide variety of approaches: One solves partial problems optimally,
two use paths based on maximizing the expected number of detections, two are genetic
algorithm implementations, and one is local search with random restarts. A heuristic based
on the expected number of detections obtains solutions within 2% of the best known for
each one-, two-, and three-searcher test problem considered. For one- and two-searcher
problems, the same heuristic’s solution time is less than that of other heuristics. For three-
searcher problems, a genetic algorithm implementation obtains the best-known solution in
as little as 20% of other heuristic solution times. @ 1996 John Wiley & Sons, Inc.

The constrained-path, moving-target search problem [6, 15, 16] has the following char-
acteristics:

® A single searcher and target move among a finite set of cells in discrete time.

The searcher and target occupy only one cell each time period.

Each time period, the searcher moves from its current cell to one of a specified

set of accessible cells.

The target moves among cells according to a specified stochastic process.

If the target occupies the searched cell, the random search formula determines

the probability of detection—otherwise the detection probability is zero.

® The target’s probability distribution is Bayesian updated for nondetection each
time period,

The objective of the search is to find a feasible search path that maximizes the probability
of detecting the target in T time periods,

The main contributions of this article center around extending the constrained-path,
moving-target search problem to consider multiple searchers explicitly. As this article dem-
onstrates, exact procedures developed to effectively solve single-searcher versions of this

Naval Research Logistics, Vol. 43, pp. 463480 (1996)
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problem can be directly extended to multiple searchers, but require excessive computation.
We develop an optimal branch-and-bound procedure and six heuristics for moving-target
constrained-path problems with multiple searchers.

The specific organization of this article is as follows. Section | introduces notation and
provides a formulation. Section 2 presents a literature survey on related problems. Section
3 details each heuristic and our optimal algorithm. Section 4 provides detailed computa-
tional comparisons of the heuristics applied to a set of test problems using one, two, and
three searchers. Finally, Section 5 presents conclusions.

1. NOTATION AND FORMULATION

Indices
i,i'k cells{eg.i=12,..., N).
J searcher,
t time step(e.g..t=1,2,..., T),
w target or search path [where «f 1) 15 the cell occupied at time 1].
Data

ay; detection rate for searcher j in cell i. If the target and searchers j and ;" are
in cell 7, the probability of detection is 1 — exp(—ay; — ),

@1 set of all feasible target paths,

', set of cells that can be reached from cell i in one time step.,

p. probability of target following path w,

sy equals 1 if searcher j starts in cell i/ and zero otherwise.

Binary Variables

X; . ;,»quals 1 if searcher j moves from cell i at time 7 — 1 to cell i at time ¢, and 0 otherwise.
Formulation

Maximize PD =(I —Eﬂp‘,em(- EI: ? )i 2 xm,.,,,,)),

llwlryec;

subject to the constraints

z -ru‘,j,l = -TJ,H v i:rj.- {1}
i'ec;
2 Xeip-1= 2 Xixin Yi,i>1,j. (2)
Fliec ke

The formulation maximizes the probability of detection ( PD) within the set of feasible
target paths ©. Constraint set ( | ) restricts each searcher’s initial search effort (¢ = 1) to be in
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a cell accessible from the starting position, Constraint set ( 2) ensures continuity of searcher
movement between time periods.

The formulation is a concave nonlinear program with network constraints. The search-
ers move througha N % T acvclic network and receive a reward at node (/. t) of p({, 1) U(i,
1}, where

e p(i,t)=(1—exp(—Z, Z;icc, @yXry)). the probability of detection if the
target is in cell {

& U(i, ) (undetected mass in cell i at time ¢) is the probability that the target is
in cell / at time ¢ and has not been detected by previous search at times 1, 2,
cangd =1,

Thus, p(i, 1) U(i, 1) is the probability of initial detection occurring at time period ¢ in cell §
and Z,, p(i, 1)U, 1) is the expected number of initial detections or PD.

This problem is difficult, because p(i, ) U(i, ) is a function of the search path used to
reach cell j at time ¢. Trummel and Weisinger [21] show that the path-constrained search
problem for a stationary target is NP-complete. An example highlights the problem’s com-
plexity. A single searcher using five time steps to search a nine-cell problem, with each cell
having four cells accessible in one time step, has approximately 1,000 feasible paths to
choose from. The same problem with 10 time steps has about 10° feasible paths. This
problem with three searchers has about 10'* feasible paths. The path-constrained search
problem for a stationary target is a special case of the path-constrained search problem for
a moving target with multiple searchers. Consequently, the main thrust of this article is the
development and testing of relatively fast and robust heuristics. This article also presents
an optimal branch-and-bound procedure that outperforms other optimal procedures re-
ported in the literature for single-searcher problems.

1. BACKGROUND AND MOTIVATION

Search problems with a stationary target are well studied [17]. The case of a lone searcher
looking for a single moving target has also been widely studied and can be divided into two
major classes: two-sided search and one-sided search.

Two-sided search problems consider situations where the target is aware that a search
effort is being carried out against him and attempts to avoid detection or capture. Game
theory is the natural tool here (see [ 5, 20]). One-sided search problems assume that either
the target is not aware of the search or the target needs to accomplish its own task and it is
not willing to evade the searcher. Through this reasoning the idea of a Bayesian probability
distribution and update of the target’s position is straightforward. The one-sided search
problems can be further divided into continuous search effort or discrete search path prob-
lems. Both groups in more recent work have dealt with the target motion being modeled as
a discrete-time Markov chain.

Continuous search effort problems are generally easier to solve to optimality than are
discrete search path problems, because the integrality constrains on the search effort are
relaxed. In the continuous problem, the total search effort in cell i can be arbitrarily divided
among the cells in C;, for search in the next time period. This formulation is the limit of the
multiple-searcher problem considered here as the number of searchers becomes large while
the total search effort available in each time period is kept fixed. This formulation can be
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appropnrate to model a single searcher with sufficient speed to allow search in several ac-
cessible cells during one time period. The continuous problem provides the bound for
the branch-and-bound procedure of Eagle and Yee [6]. It is noted that Brown [2] made
important progress in solving the continuous search effort problem for a moving target by
developing an algorithm that solves a sequence of stationary target problems. Washburn
[22] gave a counterpart algorithm for the discrete search effort case. Stone [18] generalized
Brown's results. An alternative approach, not examined here, is to model the problem asa
partially observable Markov decision process. This was suggested by Smallwood and Son-
dik [14] and extended by Eagle [4] and Thomas and Eagle [19].

Another interesting model for optimal path problems is the continuous-time and -space
case, where the constraints on the searcher’s motion are given by a set of differential
equations that the searcher’s path has to obey. Ohsumi [11] is a good example of such a
model.

Benkoski, Dew, Grunert, and Kastner [1] investigate the application of genetic algo-
rithms to search problems. They solve problems of placing stationary active sonobuoys
and of determining a path for an active sonar sensor.

The 1991 survey of Weisinger, Monticino, and Benkoski lists 125 references on one-
sided search problems and 61 references on search games, but no references for multiple
searchers or team effort under the same modeling assumptions.

3. ALGORITHMS FOR MOVING-TARGET CONSTRAINED-PATH
PROBLEMS

We develop seven algorithms (six heuristics and one exact procedure) to determine a
path that maximizes the probability of detecting a randomly moving target using multiple
searchers. This section describes each algorithm using pseudocode. For simplicity, the
pseudocode is written for a single searcher. The pseudocode is also appropriate for multiple
searchers if the underlying network has an expanded state space to account for extra search-
ers. An example demonstrates the conceptual state space for multiple searchers. Suppose
two searchers are initially stationed at cell 1 and C, = {1, 2, 4 }. At the next time step (1 =
1), each searcher has a separate choice for the next move resulting in the possible combined
states of {(1, 1),(1,2),(1,4).(2,1),(2,2),(2,4),(4,1),(4,2),0r(4,4)}, where the
first { second ) entry is the location of Searcher | (Searcher 2).

3.1. Optimal Branch-and-Bound Procedure (BB )

Two optimal branch-and-bound procedures exist in the literature for single-searcher
moving-target constrained-path problems. Stewart [ 13, 16] relaxes the searcher’s path con-
straints to obtain bounds. Eagle and Yee [6] maintain the path constraints, but relax the
binary condition of the searcher’s position. Our approach bounds PD above by calculating
the expected number of detections ( ED), and thus maintains both the searchers’ paths and
the binary constraints. That is, we replace the objective function PD with

ma.ximi:e ED = Z F«(E Z [T Z .x;ru:”_‘”] .

w1 r Tl PEC

This objective function is linear in the decision variables, so maximizing ED is equivalent
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to finding the longest path through an acyclic network. The maximum ED provides an
upper bound for the maximum PD, because for search path w,

max PD{w) = PD(w*) = ED(w*) = max ED{w).

Our implementation for finding the longest path is adapted from the directed acyclic graph
longest path algorithm of Cormen, Leiserson, and Rivest [3], which is O(V + E), where V'
is the number of vertices and E is the number of edges.

The pseudocode below uses the notation PDP( 1) for the PD up to time ¢ and UB for the
upper bound associated with the path maximizing ED.

Initialize Wy, and PDy. using a heuristic
Find path w,., maximizing ED using a longest-path algorithm
If UBpew > PDpent
{0
For each cell i € C; where j = waeu (1)
Woewlf + 1) =—1
BRANCH(w .1+ 1)
Return wyy and PDy,

- - R S

Procedure BRANCH( woew £)
Ifi<T
Update probability mass of target up to time [ assuming wpey
PDP(1) = probability of detection up to time { using wpew
Find wyp, where wep(t') =— wpenli’)fori' =tandfore<¢'= T,
weplt') is the path starting at node wpe, (1) that maximizes ED
UBpew == PDP(1) + EDonpath wgpfromi+ 110 T
IfUBew = PDyeq
For each i € C; where j = waea(1)
Wrewl I+ 1) =1
BRANCH(@pew.I + 1)

e L b e

WO 00 =) On LA

10 Else

11 PDP(1) « probability of detection up 10 time  assUMINg wyew
12 If PDP(1) > PD..,

13 PDh,.i—PDP{fjswhcn"-wnuw

Using Step 5 of the main algorithm and recursive calls to Step 7 of the BRANCH proce-
dure, the pseudocode investigates all cells at each time step where the bound ( Step 3 of the
main algorithm and Step 6 of BRANCH) indicates the potential to be on the path with
maximum PD. Martins [ 10] coniains further details.

3.2. Local Search (LS)

This article includes local search (see [12]) as a benchmark of how a simple heuristic

performs on our test problems. The pseudocode below explains our implementation of
local search with random restarts.
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Repeal
Randomly create a feasible searcher path. wu.
Compute PD, of @y
PDyy o PD oy, e < @oig
Fori=1to(T-2)Do
Wi = W)y
For each cell i € C;where j = w,.. (1)
Wl I+ 1) =1
Foreacheell '€ C;
10 Woew(f+2) =
11 If wpew feasible compute PD,,
12 If PD. = PD
13 PDyq < PD, ., wyg + @oew
14 next [
15 next i
16 If PDyy = PDy o goto step 4
17 Until exceed number of restarts or time limit
18 Return path that yielded the highest PD

=1 - - - LT S P TS

3.3. Expected Detection Heuristic 1 (H1)

This heuristic obtains its motivation from the relative ease of calculating the path maxi-
mizing ED. It myopically picks a path one move at a time. The first move is set as the first
move on the path with maximum ED. Conditioning on nondetection for the first move
(any subsequent path must use this first move), the probability mass of the target is Bayes-
ian updated. The second move is the second move on the path with maximum ED for the
updated probability mass. This process repeats for all subsequent moves.

The pseudocode below employs the shorthand Path(r) to store the cells occupied by the
searcher at time f on the path chosen by the heuristic:

| Path{0) = initial cell of searcher

2 Fort=11wT Do

3 Let Path(z — 1) be the searcher’s cell

4 Find path w maximizing ED for¢,.... T

5 Path(t) = w(t)

(] Bayesian update the probability mass of the target
up to time { assuming nondetection

Compute PD when searcher follows Path

Return Path and PD.

= e |

34. Expected Detection Heuristic 2 (H2)

This heuristic expands on H1 by basing the next node added to the searcher’s path on
more than the path with the maximum ED. Specifically, H2 generates a path for every
possible single next move, extends the path to T by maximizing ED, and picks the path
with the largest PD. The pseudocode below fully explains H2 using FD{ w; ) for the proba-
bility of detection associated with path w,:
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Path(0) = initial cell of searcher
Forr=11w0 T Do
Let Path(¢ — 1) be the searcher’s cell
Fll}]'ﬂ.“ Etl.ls fIE CMH'—” Dﬂ
Find path w, maximizing EDfor¢+ 1...., T.wherew; (1) =i
Compute PD{w;)
Path(1) = k such that PD{w) = max;, PD{w;)
Bayesian update the probability mass of the target
up to time ¢ assuming nondetection on w,(¢)
9  Compute PD when searcher follows Path
10 Return Path and PD,

08 =) LA fa b b =

3.5. Genetic Algorithm (GA)

Genetic algorithms (see [ 7] and [8]) are self-improving algorithms that work by means
analogous to natural selection, or survival of the fittest. A crude implementation of a ge-
netic algorithm to our problem provides an introduction to basic operators and character-
istics of such algorithms. Each step of this crude implementation is then refined into the
form used for the computational work reported in this article. For a complete description
of the GA implementation see Santos [13].

1 Randomly create a population of feasible paths ( 24)
2 Q=3

3 Forgeneration | to maximum number of generations
4 While insufficient number of paths in ;..

5 Select two paths (w,, w2 from 0,

[ Apply Cross-Over on w, and ws to form new path
7 Apply Mutation operator on the new path

8 Calculate PD for the new path and add to Q.

9 Dotd *=— Dnews Lnew = & U { 3 best paths from 2,4 |
10 Return path that yvielded the highest PD

A characteristic of genetic algorithms is the need to set run-time parameters, such as the
population size, the probability of crossover, the probability of mutation. and the number
of generations. We automate this process in our genetic algorithm implementation to pro-
vide values that are empirically robust across a variety of problems. This, of course, may
limit the efficiency of the algorithm for particular cases but allows the algorithm’s results to
be more easily generalized to new problem instances.

We allow the population size to vary between generations by increasing (decreasing)
the number of paths when the population tends toward poor {good ) paths. We impose a
maximum of 200, 400, and 600 paths for the one-, two-, and three-searcher problems,
respectively. The size of the initial population is calculated as a function of the number of
searchers, size of the network, and number of time steps available to search.

Careful creation of the initial population ensures that every path in that population is
distinct. As a general rule, the more diversity that exists within a population, the greater
the ability of genetic algorithms to evolve in improving directions. To improve the best
path in the initial population, the LS heuristic ( Steps 5 to 15 only) is used on the path.

Step 5 of the GA pseudocode selects paths from the old generation to create the new
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generation. We randomly pick individuals with probability equal to the square root of the
path’s PD divided by the sum of the square roots of each path’s PD in its population. The
square-root function allows enhanced discrimination between very good and very bad
paths but reduces discrimination between paths with high PD. Within any new generation
the three best paths from the previous generation are left unchanged guaranteeing the best
path encountered so far survives. The genetic algorithm literature (see Koza [9]) refers to
this process as elitism.

The crossover operation ( step 6 ) probabilistically creates a random mix of the two parent
paths ( perhaps leaving a parent intact). It is a random mix, because the time where the
crossing takes place is uniform and randomly chosen between times that produce a feasible
child. Specifically, given a feasible crossing time (' and two parents «, and «,, the child is
w, where

ay (1), fort=1',
wli) =
wy (1), fort >t

As in life. every newborn child has the opportunity to evolve by acquiring characteristics
that are not inherited from his or her parents. The mutation operator ( Step 7) serves this
role by probabilistically changing path cells. We randomly pick a cell from the path { each
cell is equally likely) and then randomly pick a change to the chosen cell from all feasible
alternatives ( each feasible alternative is equally likely).

As generations progress, decreasing the probability of a crossover operation and increas-
ing the probability of a mutation operation empirically improves our genetic algorithm’s
performance. An initial high crossover probability provides for a diverse population. In-
creasing the probability of mutation helps avoid the tendency of the best individual con-
verging to a local optimal, The initial probability of crossover (mutation) is 0.5 (0.2).
The probabilities are adjusted each generation by a continuous change, a change based on
convergence, and a change based on the potential of the previous population ( based on
an approximation of the skewness coefficient). The upper and lower limits of crossover
{mutation ) are 0.8 (0.8)and 0.4 (0.1), respectively.

Every three generations, a further attempt to diversify and improve the population of
paths is made by applying the LS heuristic to one of the four best paths in the population.
Additionally, when the top 10% of the paths are not distinct they are replaced probabilis-
tically (according to a diversity parameter ) with a new random path. The diversity param-
eter in this implementation has an initial value of 0.5 and an upper (lower) bound of 0.7
{0.2). Its value is adjusted based on approximations of the skewness coefficient.

Another step taken to diversifv the population, aimed at the poorest group of paths, is to
randomly generate a new path to replace any path that shows PD less than 20% of the best
path. The 20% value is adjusted based on an approximations of the skewness coefficient
within 10% and 30% between generations.

When the best solution has not changed for 11 generations, the first one-third of the
population is decimated and replaced by random paths. Decimation takes place only once
in our implementation. A number of stopping conditions terminate the GA heuristic when
exceeded: maximum number of generations ( 100 times the number of searchers); maxi-
mum run time based on the number of searchers, number of cells in the network, and time
available 1o search; and when the best solution has not changed for 20 generations.
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3.6. Hybrid Genetic Algorithm (HGA)

The HGA algorithm is the GA that includes in the starting population the three heuristic
solutions produced by H1, H2, and the path that maximizes ED.

3.7. Moving Horizon (MH)

The MH heuristic solves a T-time-period problem by optimally solving (using BB) a
series of H-time-period subproblems where H (the horizon length) is less than T, After
picking a H that allows the subproblems to optimally solve using a reasonable amount
of computer time. the heuristic is straightforward, as shown in the pseudocode. In our
implementation. /i never exceeds 11 for the single-searcher and 6 for the two-searcher test
problems.

The MH pseudocode uses Pathyg( 1) and Pathg( ) for cells contained on the path of the
initial solution and partial optimal solution, respectively:

Compute horizon length ( /)
Compute initial solution (1S) using H1
Fork=1toT-H
Solve the subproblem for ¢ = kto k + H optimally
If PD = 0 then
Path( k) = Path (k)
else
Path( k) = Patha(k)
Update the Probability mass for the target
Compute PD when searchers follow Path
Return Path and PD.

e = I B B = L VU R Y (N

-0

4. COMPUTATIONAL EXPERIENCE

We implement our algorithms using Pascal. Comparisons between the algorithm of Ea-
gle and Yee [6] coded in FORTRAN and our optimal procedure are obtained using an
AMDAHL 5990-700A mainframe. We use an IBM-compatible 486 /33 personal com-
puter for all other testing.

The test problems investigated in this article are the same 9, 25, and 49 cell problems
presented in Eagle and Yee [6]. The initial positions for target and searcher(s) and the
searcher(s) probability of detection are also as in Eagle and Yee [6]. When multiple
searchers are present, their initial position is the same.

Table 1 provides a computational comparison of total enumeration, the branch-and-
bound algorithm of Eagle and Yee, and our BB algorithm where the initial heuristic solu-
tion is taken as the best provided by H1 or H2. For these problems, 10 time steps are
available to search, as in the original computational work of Eagle and Yee. As shown in
Table 1, our BB procedure requires less computation time. The increased number of node
evaluations required for the 9-cell problems is apparently caused by the BB's bound not
being as tight as that found in the Eagle-Yee procedure. As the probability of detection
increases, the expected number of detections becomes a less efficient bound. This is en-
countered, for example, when the target probability mass is spread over most of the cells or
the initial distance between searcher and target is small. This explains why the new proce-
dure branches more in the 9-cell problem than in the 49-cell problem. This also affects the
efficiency of the Eagle-Yee procedure.
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Table 1. The CPU seconds required to solve the test problems reported by Eagle and Yee [6] using
iotal enumeration, the procedure of [6], and our optimal BB approach. BB requires less time to solve
these test problems.

Total Enumeration Eagle and Yee BB
No. of No. of MNo. of
node CPU time node CPU time node CPU time
Cells evaluations (seconds) evaluations (seconds) evaluations (seconds)
9 667,030 44 6,208 18 9,660 4
25 1,582,194 304 3,686 3 3,198 4
49 1,708,266 666 1,945 8 2,083 3

Table 2. Test problem variations.

Searchers Cells Time steps Detection probability
1 9 4 0.33212
2 25 12 0.63212
3 49 20 0.93212

1 2 3 4 5§ 6 7T 8 @ 90 1 1213 ¥4 15 16 17 @ 19 0 21 22 23 M4 25 28 I7
Progiem Numier

Legend
-l - - - HZ - MH - GA
— i HGA - LS —- g8
Figure 1. The probability of detection determined by each algorithm on the 27 test problems using
a single searcher. With the exception of LS, all heuristics obtain solutions close to the highest proba-

bility of detection. Table 3 shows the percentage away from the best known solution obtained by each
heuristic,
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For all subsequent testing, four basic characteristics ( number of searchers, number of
cells, number of time steps, and each searcher’s probability of detection) are varied 1o
values shown in Table 2. Possible permutations of the number of cells, time steps, and
probability of detection produces 27 test problems for each algorithm to solve with each
number of searchers. We refer to the test problems using numbers 1-27. Problems 1-9
correspond to 9 cells, 10-18 to 25 cells, and 19-27 to 49 cells. Within the same number of
cells, the first three problems ordered in increasing detection probability have T = 4, the
second three have T = 12, and the last three have T = 20. For example, problem 1 has 9
cells, T = 4, and detection probability of 0.33212; problem 4 has 9 cells, 7" = 12, and
detection probability of 0.33212; and problem 27 has 49 cells, T = 20, and detection prob-
ability of 0.93212.

4.1. One-Searcher Results

Figure 1 shows the probability of detection achieved by the six heuristics and the optimal
branch-and-bound procedure for each test problem using a single searcher. This figure
highlights the superior performance of all the heuristics when time is not considered. The
only exception is, LS, which is included as an indication of how well a simple heuristic

Table 3. Percentages away from the best known solution obtained
by each heuristic for the single-searcher problems. The asterisks indi-
cate an optimal solution obtained by BB.

Problem HI H2 MH
I.‘
o
3*
4*
5-
ﬁ*
=
i3
9
10*
11*
12*
13*
14*
15*
16
17

o
-

HGA

”

-1 T - =l - I- T ER AR R R TR

19*
20+
1*
2
23*
24*
25
26
27

== 00000 ~==00000 RN =—-00==000
W= ROQO O WuW= ElLw—00 = ——=lk=000 0
So=000000000000D0000DOo000DO0

bd e Qb= QOO = memO =000 = -mem=0000
=m0 00—, =000 Qo0 ——=000 000
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performs. Table 3 shows the percentage away from the best known solution achieved by
each heuristic.

Run times differ significantly, as shown in Figure 2, where BB has a limit of 60 minutes.
LS run times are limited to 15 minutes or until the number of restarts exceeds the popula-
tion size of GA,

Figure 3 presents run times from 0 to 10 minutes to better illustrate the differences
among the various heuristics.

From Figure 3 and Table 2 it is clear that H1 outperforms the other heuristics in run
time and always obtains a solution within 2% of the best known. The MH heuristic uses a
maximum of 11 time steps for the horizon, which provides superior performance, as indi-
cated in Table 2, but with increased run time, as indicated in Figure 3.

Not shown are the paths each algorithm provides, because they show no discernible
pattern for the test problems considered. For some problems, the paths recommended by
each algorithm are similar and for others they vary greatly. All test problems appear to have
many solutions close to the optimal; A partial enumeration of paths for a nine-cell 12-time-
step problem found over 1,000 different paths within 5% of optimal.

4.2. Two-Searcher Results

The same set of 27 problems is solved for the two-searcher case. The complexity of this
instance grows exponentially with the number of searchers. However, it gives more insight

o £ -yl
1 2 3 4 5 & 7 & 8 10 1 12 13 44 15 16 17 8 19 20 21 22 23 24 25 28 IT
Probiem Number
T |

Legend

—l- = H2 - MH g GA
I Hg.i, o L5 —@ - BB

Figure 2. Run time for single-searcher problems. HI, H2, MH, GA, and HGA require less than 10
minutes for each test problem. The BB has a limit of 60 minutes. LS has a limit of 15 minutes.
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Figure 3. Single-searcher run times from 0 to 10 minutes. Both H1 and H2 require less than 1 min
for each test problem.
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Figure 4. The probability of detection determined by each heuristic on the 27 test problems using
two searchers. All heuristics with the exception of LS obtain solutions close to the highest probability
of detection. Table 4 shows the percentage away from the best known solution obtained by each
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on the capability of each of the algorithms to deal with real-world problems. Figure 4 shows
results achieved by each individual heuristic. Optimal solutions are not obtained. due to
excessive computational requirements. The nine-cell problem with eight time steps and
two searchers had to run for almost five days before obtaining the optimal solution.

Table 4 provides detailed information on heuristic performance and clearly shows MH
provides superior solutions. However, Figure 3 illustrates that the run time necessary to
obtain these results i1s significant.

The solution times for problems 19-27 are distorted due to a limitation of the Borland
Pascal 7.0 compiler, which does not allow single data structures to exceed 64K, A number
of programming changes are conducted to overcome this limitation, which results in slower
execution.

Once again the lower end of the time scale is expanded to better illustrate the running
times of the fastest algorithms. From Figure 6 it is transparent that only H1 and GA keep a
reasonable run time for two searchers, It is seen that H1 performs exceptionally well for its
limited investment of time.

4.3. Three-Searcher Results
Only HI and GA exhibit reasonable run times and quality solutions for one and two

searchers; they are therefore the only heunistics employed to solve three-searcher problems.

Table 4. Percentages away from the besi known solu-
tion obtained by each heuristic for the two-searcher

prohlems.

Problem Hi H2 MH GA LS
1 0 0 4] 1 0

2 L] 0 L] 0 0
3 0 0 0 0 0
4 0 2 0 2 6
5 1 2 [} | 3
[ 1 3 0 | 3
7 0 2 0 1 4
8 1 2 0 | 2
9 I 1 o l 1
1 ] 0 {0 0 0
11 1] 0 ] 0 0
12 1] 0 ] ] ]
13 0 1 ] 4 21
14 i K 0 4 18
15 2 3 ] 3 20
16 | 4 0 | 20
17 2 5 0 2 16
18 2 6 0 | 15
19 0 0 0 0 0
20 0 0 0 Q 0
21 0 Q 0 ] 0
22 | L] 0 iz 65
23 0 7 0 13 70
24 0 6 ] 20 69
25 0 2 1] 2 42
26 {0 7 0 i 40
27 0 7 0 2 34
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Figure 5. Computational effort to solve the 27 test problems with two searchers. H1 requires less

time than all other heuristics. GA maintains reasonable run times for problems 25, 26, and 27. LS
has a run-time limit of 30 minutes,
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Figure 6. Two searcher run times from 0 to 25 minutes highlights H1's comparatively low compu-
tational requirement,
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The 9- and 25-cell problems ( problem numbers 1-18 ) are used in testing. Due to memory
limitations associated with the Pascal compiler used, the 49-cell problems could not be
solved without extensive reprogramming. Figure 7 presents the objective function values
that GA (H1) obtains for problems 1-18( 1-15). For all practical purposes both heuristics
obtain the same results.

Figure 8 presents the run time for both heuristics. It is clear that only GA maintains a
reasonable rate of growth in its run time with the addition of searchers.

5. CONCLUSIONS

This article develops and tests effective heuristics to solve constrained-path, moving-
target search problems using multiple searchers. For more than one searcher, the time
needed to guarantee an optimal solution for the problems considered is prohibitive. Heu-
ristic H1 obtains solutions within 2% of the best known solution for each one-, two-, and
three-searcher test problem considered. For one- and two-searcher problems H1's solution
time is less than that of other heuristics considered.

The GA heuristic performs acceptably for one- and two-searcher problems and
effectively solves three-searcher problems, obtaining solutions equivalent to H|1 using less
than 20% of H1's run time.

QOur empirical work suggests heuristics can solve the path-constrained multiple-searcher
problem both effectively and efficiently. Given the myriad of estimated parameters needed

1

T

1 2 3 4 5 B T ] g 10 11 12 12 14 15 16 17T 18
Problem Number

I i ]
- -k Ga

Figure 7. Both H1 and GA obtain almost the same probability of detection on test problems 1-15

using three searchers. H1 could not solve test problems 16=18 with three searchers in reasonable
time.
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Figure 8. Run ume for three-searcher problems and highlights of GA's lower computational re-
quirement. Problems 16-18 are not solved by HI.

to model this problem, obtaining an optimal solution with respect to these estimates does
not guarantee better true performance. Hence, a heuristic solution is recommended for

many practical applications.
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