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SUMMARY 

A probabilistic framework to perform inverse analysis of geotechnical problems is presented. The formula- 
tion allows the incorporation of existing prior information on the parameters in a consistent way. The 
method is based on the maximum likelihood approach that allows a straightforward introduction of the 
error structure of field measurements and prior information. The difficulty of ascribing definite values to the 
uncertainties associated with the various types of observations is overcome by including the corresponding 
variances in the set of parameters to be identified. The inverse analysis results in a minimization problem 
that is solved by coupling the optimization technique to the finite element method. Two examples are 
presented to illustrate the performance of the method. The first one corresponds to a synthetic case 
simulating the excavation of a tunnel. Young’s modulus, KO value and measurements variances are 
identified. The second case concerns the excavation of a large underground cavern in which again Young’s 
modulus and KO are identified. It is shown that introduction of prior information permits the estimation of 
parameters more consistent with all available informations that include not only monitored displacements 
but also results from in situ tests carried out during the site investigation stage. 

KEY WORDS: inverse analysis; parameter identification; underground excavation; optimization technique; finite 
element method 

INTRODUCTION 

In Geotechnical Engineering, inverse analysis procedures have been commonly used to determine 
soil or rock properties from field instrumentation. However, inverse analysis is usually performed 
in an ad hoc manner leading to estimated parameters the reliability of which is generally 
unknown. Nevertheless, recent developments of numerical analysis procedures coupled with 
optimization techniques have permitted the formulation of methods for performing geotechnical 
backanalysis in a more systematic manner.’-3 These methods can be considered as included in 
the general theory of inverse analysis or system ident i f i~at ion.~-~ 

These procedures are very useful when the inverse analysis solution can be employed to 
improve the geotechnical design of our problem. For instance, in underground excavations, 
information provided by measurements performed during the first stages of the construction can 
be used to update the values of the parameters of rock or soil and therefore to assist in design 
modifications. Also, in time dependent  problem^,^.^ the information available at the beginning of 
construction can be used to perform a partial inverse analysis and update the values of the 
parameters needed to make new predictions. The value of systematic inverse analysis can be 
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significantly enhanced if the information introduced in the analysis is not limited to field 
measurements performed during construction. In fact, in any project there will exist a significant 
amount of information on the parameters obtained during the site investigation stage. 
Incorporation of this 'prior' information into the inverse analysis procedure will result in a better 
parameter estimation and in a more rational use of all the data available. 

Introduction of prior information into the process of inverse analysis is more conveniently 
performed using a probabilistic framework. In fact, such a formulation carries important 
additional advantages. For instance, observation errors, reliability of the estimated parameters 
and of the previous information can be considered in a consistent way. 

(a) Least-squares method. The best parameters are those that minimize a function which depends 
on the square differences between measured and computed variables. 

(b) Maximum likelihood approach. The measurements x*  are considered random quantities and 
the probability density function of x*  given a set of parameters p is maximized." This 
procedure estimates those parameters that maximize the probability of observing the meas- 
ured data (the 'most likely' parameters). 

(c) Bayesian upproach. The parameters, p, are considered random variables and the estimation is 
performed by maximizing the probability density function of p given a set of measured values 
x*.'-l" This is also called the maximum a posteriori approach, because it estimates the 
parameters that are the most probable from the existing data. 

(d) Kalman Jilter approach. Filters are data processing schemes that separate desired signals 
from unwanted disturbances ( n o i ~ e ) . ~  A general state equation relating measurements, para- 
meters and noise (characterized in statistical terms) is adopted and an optimal estimation of 
the parameters is proposed in a recursive form. 

Although there are conceptual differences between these approaches, the final mathematical 
formulations are similar in most cases. For instance, the least-squares method can be considered 
as a particular case of the maximum likelihood approach when error measurements are assumed 
to be independent and Gaussian with the same variance, and there is no prior information on the 
parameters. Also, under some conditions, an extension of the Kalman filter method has been 
proved to be equivalent to the Bayes approach.2 Therefore, selecting between approaches (b), (c) 
or (d) is more a matter of viewpoint, as in many cases final expressions are the same. 

In this paper, a general formulation to perform geotechnical inverse analysis based on the 
maximum likelihood approach is presented. The formulation allows the introduction of the error 
structure of the observations and gives a minimum bound of the variances of the parameters 
identified. The formulation results in a minimization problem of an 'objective function', J ,  which 
can be solved by means of any suitable optimization technique. To assure a wide applicability of 
the formulation in practical geotechnical problems, the finite element method has been chosen as 
the basic procedure to perform direct analyses, and therefore it has been coupled to the 
optimization scheme. 

One of the drawbacks of the probabilistic approaches is that usually some of the probabilistic 
variables involved in the procedure are not easily determined. For instance, it is difficult to know 
the measurerncnts variance relative to the error associated with prior information, as they usually 
are obtained from quite different sources. For this reason, a general procedure in which variances 
are introduced as additional parameters to be identified is presented. In this way, material 
parameters and relative variances are jointly estimated in a consistent framework. 

The performance of the variance and parameter identification procedure is demonstrated using 
a synthctic example simulating a tunnel excavation. The effect of introducing 'prior information' 

A few methods available in the literature are suitable for geotechnical inverse analysis: 



ESTIMATION IN GEOTECHNICAL RACKANALYSIS 121 

in the analysis is illustrated in an application to a real case involving the staged excavation of 
a cavern in which both material parameters and relative variances between field measurements 
and prior information are identified. 

MAXIMUM LIKELIHOOD FORMULATION 

Basic lormulot ion 

I t  is assumed that a relation between state variables, x, and parameters, p, has been defined by 
means of a model, M (generally non-linear) which is considered fixed: x = M(p). The information 
available includes some measurements, that is a set of measured state variables, x*, and some 
prior information on the parameters to be estimated, p*. 

Using the maximum likelihood approach, the best estimation of the system parameters is found 
by maximizing the likelihood of an hypothesis, L. Likelihood is defined as proportional to the 
joint probability of errors in measuring state variables and in the prior information of the 
parameters: 

(1) 

where measured state variables and parameters have been considered as independent. 
In fact, we assume that the model is correct and differences between measured values, x*, and 

the values computed using the model, x, are due to the error measurement process. Also, 
differences between the prior information on the parameters, p*, and the parameters to be 
estimated, p, are due to the error in that prior information. Therefore, when equation (1) is used, 
we are maximizing the probability of reproducing the errors we have obtained in the measure- 
ment process and in the generation of prior information. 

L = kP(x, p) = kP(x)P(p) 

If probability distributions are supposed to be multivariate Gaussian, then 

I 
- X) ' (c , ) -  l(X* - x)] 

&%jqjexp[ - t(x* 
P(x) = 

where (x* - x) is the vector of differences between measured an computed values using a fixed 
model, (p* - p) is the vector of differences between prior information and parameters to be 
estimated, C, is the measurements covariance matrix, which represents the structure of the error 
measurements, C i  is the a priori parameters covariance matrix, which represents the error 
structure of the available prior information, m is the number of measurements, n is the number of 
parameters, ( )' is used to indicate a transposed matrix, and 1 1  is the determinant symbol. 

Note that in ( l ) ,  L = L( p), i.e. likelihood depends only on parameters, because the relationship 
x = M( p) is introduced in the probability density function (2a). Maximizing L is equivalent to 
minimize the function S = - 21nL(p), that is 

S(p) = (x* - x)'(C,)-'(x* - x) + (p* - p)'(c,O)-'(p* - p) 

+ lnIC,J + lnlC,OI + mln(2n) + nln(2n) - 21nk ( 3 )  

where the last three terms are constant and can be disregarded in the minimization process. 
Expression (3 )  shows that the function to be minimized (called 'objective function') depends on 

the error structure of measurements and prior information through the covariance matrices 
which are usually difficult to define. Generally, the information available will not be sufficient to 
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specify all the elements of the covariance matrices and some terms will have to be fixed. To do 
that, it is convenient to separate measurements and prior information in groups with independent 
covariance matrices. For instance, if  m measurements have been obtained from r independent 
instruments and n parameters can be divided in s groups with individual a priori covariance 
matrices, then the objective function, S, becomes 

I t  should be pointed out that when no prior information is available, only the first and third 
terms in (4) must be considered. Moreover, if measurements are independent and all of them have 
the same variance, we obtain C, = a21 where I is the identity matrix. If the value of a2 is fixed in 
the process, only the first term in equation (4) is relevant and a classical 'least-squares' criterion is 
obtained from that expression. 

Variunce estimation 

I t  is convenient to express each individual covariance matrix as 

(C,)i = a;(E,)i, (C;), = a;(E,"), ( 5 )  

where a2 plays the role of a scale factor which represents the global variance of the data, whereas 
the (Ex) and (E;) matrices represent the error structure associated with that particular type of 
data. 

Generally, the error structure is constant, that is, it depends only on the measurement instrument 
or on the procedure used to obtain the prior information on the parameters. Covariance matrices 
corresponding to a variety of geotechnical instruments have been derived elsewhere." 

The global variances a' could be determined from the standard error of the measurement 
device, but in general there are uncontrolled factors that influence that value. for instance, 
operator skill or equipment conditions. Therefore, those values are difficult to determine in 
practice, not only for the measurement covariance matrices but usually also for the prior 
information covariance matrices. Hence, it is convenient to consider those global variances as 
additional parameters to be identified. This is consistent with the maximum likelihood approach. 
I t  was initially proposed by Theill) and has been successfully used in hydrology and in 
geotechnical  problem^.'^.' Introducing expressions ( 5 )  into the objective function (4) leads to 

r 5 

S = 1 o;'(x* - x)'(E,);'(x* - X) + C ai'(p* - p)'(E:)j'(p* - p) 
i =  1 j =  I 

r S r s 

+ 1 milnu; + C njIna j  + C InI(Ex)il + C InI(EpO)jl (6 )  

where mi and itj are the dimensions of the individual covariance matrices. The last two terms are 
now constant (assuming fixed the error structure and only variable the global error a') and will 
not be taken into account in the minimization process. 

Any procedure to minimize function (6)  can be adopted.16 Note that the objective function 
depends now both on the parameters and on the variances. However, the minimization problem 

i= 1 j =  1 i =  1 j =  1 
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can be simplified uncoupling the estimation of parameters from the estimation of variances. This 
is convenient from a practical point of view, as conventional formulations are geared to the 
identification of parameters only. The minimization is then performed in an iterative two-step 
procedure: particular values of the variances are first selected and the minimization process is 
carried out to identify only parameters. Variance values are varied according to an independent 
optimization procedure until the global minimum is obtained. 

To show the validity of this approach, let us consider first a set of pi = ~ * ~ / a f  fixed, where a*' 
is any variance taken as reference. This is equivalent to performing a constrained minimization of 
(6). The extended Lagrangian of function (6) is 

pkai = 0, k = I, ... ,(r + s) (7) 0 * 2  - 

i.e. 

where l, is a Lagrange multiplier. After deriving (8) with respect to the variances, imposing the 
minimum condition and eliminating fi, from the equations, the following expressions are 
obtained: 

where 

r S 

J' = c pi(x* - x)'(E,);'(x* - X) + C pj(p* - p)'(E,O)Y'(p* - p) (10) 
i =  I j =  I 

Substituting (9) in expression (6) leads to a condition for S in the minimum: 

Note that in (11) the dependence of parameters is through J'. Moreover, as expression (11) is 
a monotonic function of J', a minimum of J' will minimize S as well. 

The general problem was defined as finding a set of parameters, p, and variances, ji, that 
minimized (6). Therefore, if ji is found using an independent algorithm, the parameters, p, that 
minimize J', will also minimize S(p,p) for those ji values. This result allows to uncouple the 
minimization procedure: i.e. by minimizing J', different sets of p for different values of p are found. 
The values (p,ji) that minimize S are obtained via a direct search algorithm. 

Parameters reliability 

The maximum likelihood formulation provides an statistical framework within which informa- 
tion on the reliability of the parameters estimated can be obtained. For instance, the covariance 
matrix of the estimated parameters (a  posteriori covariance matrix) is5 

(12) C, = [(C,O)-' + A'(C,)-'A]-' 
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where A is the sensitivity matrix (m x n): 

a x  

dP 
A = -  

Expression (12) takes into account both the prior information and the measurement error to 
estimate the final covariance of the estimated parameters. I t  should be pointed out that 
C, computed from (12) is a minimum bound of the parameters variance, due to the linearization 
of the model implicit in (13).’ 

NUMERICAL IMPLEMENTATION 

Optimization procedure 

The mathematical problem to be solved in order to perform the estimation of parameters is an 
unconstrained minimization of (6). Following the procedure described above, the simpler expres- 
sion (10) can be used instead. Using different values of variances, associated values of J’ are 
obtained by minimization of (10). The global minimum of J’ will give the parameters and 
variances finally estimated. 

There are a wide range of algorithms available to find the minimum,16 but Gauss-Newton 
method is convenient for this kind of objective functions. In case of convergence difficulties, the 
extension of that method due to Marquardt” (Levenberg - Marquardt algorithm) usually gives 
good results. As the function to minimize is in general non-linear with respect to the parameters, 
the procedure works iteratively in the parameters’ space. Hence, starting from a point in that 
space, the parameters correction is found by means of5 

(14) 

where Ap = p* - p, Ax = x*  - x and 1. is a scalar which controls the convergence process. If 
1. + 0, the Gauss--Newton method is obtained. As 1 increases, Ap tends towards the maximum 
gradient direction. Near the minimum 1 must reach 0 (or a very small value). No general rule 
exists to decide the value of 1 to be used in each iteration. Usually, if J ‘  becomes smaller in an 
iteration, 1. is decreased, reaching zero close to the minimum. However, if J ’  increases after using 
equation (14), the value of 1. is also increased in order to approach the gradient direction. In the 
examples presented in this paper, the following criteria has been used: IL = 10 as initial value, and 
A,,, = 101,, if J : +  > J b ,  otherwise I,,, = 1,/lO, where n is the iteration number. 

, 

Ap = Ap, + [A‘(C,)- A + (C,O)- + 111- A’(C,)- [AX - AApO] 

Finite element implementation 

In order to permit the analysis of realistic geotechnical problems, the maximum likelihood 
formulation has been coupled to a finite element program. In linear static problems the method 
requires to solve the classical equation 

KU = f (15) 

where K is the global stiffness matrix, u the vector of nodal displacements, and f the nodal forces 
vector. Also, 

B‘DBdR, f =  
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where R represents the domain, B is the geometry matrix relating strains and nodal displace- 
ments, D contains the constitutive law, N is the shape function matrix, and (I, for an excavation 
problem, is the vector of stresses acting on the excavation boundary, r. 

The optimization algorithm mentioned above requires the computation of the sensitivity 
matrix, A, which should be calculated using the Finite Element approximation. Note that 
measured movements, x*, do not necessarily correspond to nodal displacements, u. Moreover, 
the measured values sometimes correspond to relative displacements between two points in 
a direction which does not coincide with the global reference axes (for instance, when classic 
extensometer devices are used). Therefore, the following general relation between a particular 
value, x i ,  and the related nodal displacements may be written: 

xi  = LiTiNiui (17) 

where ui is the vector formed by the nodal displacements of the elements involved in that 
measurement, Ni is the shape function matrix for the same elements, Ti is the rotation matrix to 
transform the components of displacements in the global co-ordinate system to the measurement 
direction and Li is the matrix containing the linear combination of displacements implied by the 
type of measurement. When relative measurements are performed, L = [ l ,  - 11. 

Then, the global vector of measurements will be given as: x = LTNu = Ru, and 

If a linear elastic constitutive law is used to characterize the material, the sensitivity matrix may 
be evaluated by derivation of (1 5 )  and rearrangement: 

If the parameter involved in the inverse analysis is Young’s modulus, then 

af 
and -=0 dK 

dE 

and the derivative of D with respect to E is easily computed.” 
In excavation problems, the horizontal stress coefficient, KO, is usually a parameter of prime 

importance and of uncertain value and it is often included in the set of parameters to be estimated. 
To obtain the required sensitivity matrix, it should be noted that 

If the stresses released by the excavation are the initial ones, no, then 

However, it is quite common to have measurements corresponding to different excavation 
phases. In that case, at an intermediate stage, the stress vector would be (I = uo + Au, where Au 
represents the increment of stresses during the previous excavation phases. In this case, computa- 
tion of (21) becomes cumbersome, due to the term dAu/dK,. To avoid that, an alternative 
procedure may be used, based on the computation of the displacements of phase J,uJ as 



126 A. LEDESMA et al. 

(uJ - uJ-') ,  where uJ indicates the nodal displacements caused by all the excavation phases up to 
stage j .  Then 

and now dfJ/dKO can be evaluated exactly from (21). 
After calculation of the sensitivity matrix, computation of (14) can be performed and, as the 

minimization problem is non-linear, the optimization process should continue until convergence 
to the minimum of the objective function. 

Non-linear geotechnical constitutive laws introduce additional difficulties in the inverse analy- 
sis. In these cases, expressions similar to (19) for computing the sensitivity matrix can be derived 
only when there is a one-to-one relationship between stresses and  strain^.'^.'^ The use of 
elastoplastic models requires calculation of sensitivity matrix by means of numerical approxima- 
tions2' and it  is out of the scope of this paper. 

SYNTHETIC EXAMPLE 

Variance estimation 

A synthetic example simulating the excavation of a tunnel has been used to illustrate the 
capabilities of the methodology developed. The material is considered to be linear elastic, 
homogeneous and isotropic. The parameters to be identified in the problem are Young's modulus 
and the K O  coefficient. Poisson's ratio is assumed to be 0.49, simulating undrained conditions, 
and specific weight is 20 KN/m3. 

Figure 1 shows the finite element mesh corresponding to this case, considering only half of the 
geometry due to symmetry. Nodes numbered 1-24 represent the measurement points to be used 
as input data: horizontal displacements in points 1 .- 15 correspond to measurement values 
provided by an inclinometer and vertical displacements in points 16-24 are assumed to be 
obtained from an extensometer. No prior information has been considered in this example. 

A basic analysis has been carried out simulating the excavation in one step and using the 
parameters E = 10 MPa and K O  = 1. The values of the displacements at points 1-24 are 
presented in Table I. In order to check the procedure described to estimate variances, an 
statistical perturbation is added to the displacements computed in the direct analysis. 

As there are two different instruments involved in the measurement process, two variances 
must be considered: a: is the variance corresponding to the horizontal movements, from an 
inclinometer, and a$ is the one corresponding to vertical displacements, from an extensometer. 
For simplicity, it is assumed that the covariance matrices are diagonal, that is 

(C,), = a:1, (CJE = aEI (24) 

and therefore all the measurements are considered independent. The purpose of this example is to 
show the capability of the procedure for estimating the ratio p = a:/& as well as the parameters 
used: E = 10 MPa and K O  = 1. To do that, three cases have been studied, adding a perturbation 
of zero mean and different standard deviations to the displacements presented in Table I: 

(1) Perturbation with aI = 006  m, uE = 0-015 m, p = 16. 
(2) Perturbation with al = 0.03 m, uE = 0.03 m, p = 1. 
(3) Perturbation with aI = 0015 m, bE = 0.06 m, p = i$. 
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Fig. 1. Finite element mesh and location of the measurement points in the synthetic example 

It should be pointed out that the standard deviations used for the perturbation noises are quite 
important if compared with the displacements indicated in Table I, where the maximum value is 
about 0.07 m. 

The objective function to be minimized is obtained from expression (11). In this case this 
expression becomes 

S = 24 + lSln(&) + 91n($) 

because m, = 15, m2 = 9, n = 0, r = 2, s = 0, p1 = 1, p2 = p = a:/cr$ as a: has been taken as 
reference variance (a*'). Note that in (25), J' = JI + pJE, where JI = (x* - x)',(E,)i'(x* - x)[ 
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Table I. Measurements used in the synthetic example 

Point Displacement (cm) 

Horizontal movements 
1 @316 
2 0.300 
3 0.356 
4 0.556 
5 0.882 
6 1.339 
7 2.038 
8 2.126 
9 3.550 

10 4.104 
1 1  4.549 
12 4.360 
13 3.920 
14 3.101 
15 2427 

Vertical mowments 
16 - 3.598 
17 - 3.739 
18 - 3.905 
19 - 4 1  19 
20 - 4492 
21 - 5.105 
22 - 6.328 
23 - 6.666 
24 - 7.048 

using only horizontal displacements, and .IF. = (x* - x)L(Er)E ‘(x* - x ) ~  using vertical displace- 
ments only. 

For each perturbation case, minimum values of S were determined for a set of different values 
of p. Inspection of the results allowed the determination of the global minimum of S. 
Figure 2 shows that in every case this global minimum of S corresponds to the value of p of the 
perturbation applied to the correct measurements. Therefore, the identification procedure has 
correctly estimated the variance ratio of the data. 

The values of the parameters estimated in all analyses are presented in Figure 3. It can be seen 
that those values are close to the correct ones (E = 10 MPa, K O  = 1) and also they are quite 
similar for any value of p close to the perturbations applied. Nevertheless, it is interesting to check 
how good the parameters identified are, using the fact that the real values are known. This can be 
achieved representing a value of the error e = [(E - E*)’ + ( K O  - K g ) 2 ] ” 2  as a function of 
p (Figure 4), where E* and K,* are the actual parameters. In Figure 4, 10 MPa has been taken as 
unit for Young’s modulus so that each parameter has the same weight in calculating e. As Figure 
4 shows, the minimum error in the parameters estimated (indicated by a full arrow) is obtained at 
a value of p close to the maximum likelihood point (denoted by a dashed arrow). In fact, for case 
1, p = 16, the minimum error parameter point and the global maximum likelihood point 
coincide. Good estimations for the variance ratio of the measurements and for the parameters 
involved in the model have been obtained for the joint maximum likelihood identification of 
parameters and error structure. 
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Fig. 2. Variation of objective function value, S, with variance ratio, p. Arrows indicate the maximum likelihood points 
which coincide with the minimum of S 

Effect of using an incorrect constitutive model 

The good performance of the procedure just described may fail if the incorrect constitutive 
model is selected to represent the mechanic behaviour of soil or rock. To demonstrate this, the 
same synthetic example has been used. Now the real behaviour of the soil is represented by an 
anisotropic linear elastic model, but a isotropic law is assumed during the inverse analysis. 
Undrained conditions, as in the previous example, have been considered. 

The anisotropic elastic parameters are: 

(a) Horizontal Young modulus, Eh = 10 MPa. 
(b) Vertical Young modulus, Ev = 5 MPa. 
(c) Shear modulus (vertical to horizontal) G, = 20 MPa. 
(d) Poisson’s ratio (vertical to horizontal) Vvh = 049. 

The rest of the parameters can be obtained assuming undrained conditions. The KO parameter 
was fixed to 1. Using these parameters, a new set of 24 measurements were obtained through the 
direct excavation problem. Now the inverse analysis was performed assuming that the material 
was isotropic but using those displacements computed in anisotropic conditions. Also, all 
measurements were perturbed with a noise of zero mean and a standard deviation of 003 m 
(P = 1). 
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Fig. 3. Parameters estimated for each variance ratio, p 

The identification procedure tried to estimate parameters and variances following the process 
outlined above. Figure 5 shows the minimum of S obtained for each analysis with fixed p. I t  can 
be observed that the global minimum of S (indicated by a full arrow) is different from the real one 
( p  = 1). Therefore, the error structure has not been correctly estimated. 

The parameters obtained in the inverse analysis (E and K O )  have been depicted with respect to 
p in Figure 6. It  is not possible to relate the value of the isotropic Young’s modulus with the 
anisotropic moduli. But if the parameter K O  is considered, neither the maximum likelihood 
estimate (full arrow), nor the value corresponding to p = 1 (dashed arrow) are close to the actual 
value adopted K O  = 1. 

This example shows the importance of considering a constitutive model as close to real 
behaviour as possible, otherwise estimation of variances and parameters may be quite incorrect. 

APPLICATION TO A CAVERN EXCAVATION 

Description of the problem 

As an example of application of the methodology described to a real case, the analysis of the 
excavation of an underground cavern is presented. The problem involves the construction of the 
powerhouse cavern of Estanygento-Sallente in the Spanish Pyrennes.2’*22 The data available 
form field instrumentation and in situ tests have been used to perform inverse analysis in the way 
described in this paper. The analysis was performed after construction was completed. 
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t I I I I 

16 4 1 0.25 0.0625 0.01 
p = u*2 /u; 

Fig. 4. Estimated parameter error vs. variance ratio p. Full arrows indicate the maximum likelihood points. Dashed 
arrows correspond to the minimum parameter error points 

The dimensions of the cavern are 375m high, 20m wide and 89m long. Plane strain 
conditions can be assumed if a central section is analysed. Figure 7 shows that section including 
the location of the measurement points used in this analysis. Some of them (I,J,K,L) are 
convergence measurements, whereas the rest are displacements obtained from bar extensometers. 
Therefore, all the measurements available are relative displacements between two points. 

The excavation was carried out in several stages, but for the sake of simplicity three phases 
have been considered in the analysis. Some measurements will be only available for some of the 
phases. For instance, convergence measuring points K and L (Figure 7) are installed in phase I1 
and therefore measurements are only carried out during excavation of phase 111. In contrast, 
extensometers H - E and M - N provide measurements in all the excavation phases as they were 
installed from the exploratory tunnel before the excavation of the cavern. Thirty-six measure- 
ments have been considered in this analysis: 8 from the first phase, 7 from the second and 21 
corresponding to the third phase. Maximum value of a measured relative displacement was 
44.9 mm, and the average measurement was 7.7 mm. 

In this area the rock is an schist without a definite oriented estratification, due to the high 
degree of late metamorphism to which it had been subjected. Therefore, the material has been 
considered homogeneous and isotropic in the analysis, and a linear elastic constitutive law was 
considered appropriate for the simulation. Hence, the cavern excavation performance depends 
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Fig. 5. Variation of S relative to variance ratio p. Example using an inadequate model. Full arrow indicates the maximum 
likelihood point, whereas the dashed arrow corresponds to the variance ratio of the real perturbation applied 

mainly on Young’s modulus of the rock, E,  and on the K O  coefficient. They have been selected as 
parameters to be identified. 

During the site investigation phase, information on E and KO was collected that will be 
included as prior information in the inverse analysis. In situ tests such as flat jack tests and 
dilatometer tests gave an average Young’s modulus of E = 1.5 x lo4 MPa. Those tests confirmed 
the assumption of isotropy for the rock, but presented some scattering in the value of E. 
Laboratory tests gave a consistent value of 0.28 for the Poisson’s ratio, which is assumed constant 
and known in the inverse analysis. 

In situ stresses were measured in different locations using triaxial inclusion cells and flat jack 
tests. The results of the tests were consistent with principal stress directions being aligned with the 
main axis of the cavern. Vertical initial stresses were found to be approximately equal to 
overburden pressure. However, the values of measured horizontal stresses showed a large scatter 
and were very dependent on the type of test They became one of the major 
uncertainties of the project. The value of K O  obtained ranged from 1 to 3. 

Estimation of parameters with no prior information 

An analysis for estimating parameters without considering prior information was first 
performed. As measurements were obtained from bar extensometers, they can be assumed 
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Fig. 6. Parameters estimated for each variance ratio, p. Exampie using an inadequate model 
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Fig. 8. Finite element mesh used in the analysis of the cavern excavation 

independent and therefore, their covariance matrix will be C, = a:I, where af is the measurement 
variance. With this assumption the objective function to be minimized is J = (x* - x)'(x* - x) 
which corresponds to the least-squares criterion. The finite element mesh used is presented in 
Figure 8. I t  was checked that changes in dimensions of the mesh produced marginal effects on the 
relative displacemets used as measurements. 

The procedure outlined gave the following parameters as estimation from the 36 measurements 
available: E = 3900 MPa, KO = 1.24. The value of the objective function at the minimum was 
J = 2.89 x mz which allows the computation of the estimated standard deviation by means 
ofz3 

ax = J( A) = 2.9 mm 
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Figure 9 shows contour levels of the objective function corresponding to this case. Note that the 
minimum is located in a valley and there are in fact many combinations of E and K O  that give 
similar result for J .  This can be more clearly seen in Figure 10 where a cross-section ofJ along line 
A-A' has been depicted. A comparison between measured displacements and computed values 
using the parameters identified is presented in Figure 11. The comparison seems reasonable 
although from Figures 9 and 10 it is clear that other combinations of E and K O  would also give 
a comparable agreement. 

The identification procedure provides also information on the reliability of the parameters 
estimated by means of the a posteriori parameters covariance matrix. It can be computed from 
(12), where the term (C:) is not included in this case: 

Using (26), expression (27) gives the values: nE = 1750 MPa and bK0 = 0.49, that are consistent 
with Figure 9. In fact, the shape of the valley near the minimum in Figure 9 is related to the 
standard deviations obtained,' although expression (27) is strictly valid only in a local sense, at 
the minimum, due to the linearization performed in (12) and (13). 

Estimation of parameters considering prior information 

The parameters estimated in the previous inverse analysis, however, do not appear to be 
compatible with the prior information obtained from in situ tests. In particular, the measured 

E 
l o 4  

1.7 - 
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Fig. 9. Objective function contours. Analysis with no prior information 
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Fig. 10. Section of the objective function along line A - A’ 

valuc of E was much greater than the identified one. Therefore, the information provided from 
those tests should be considered in the inverse analysis as well as measurements, as both are 
independent estimations of the parameters involved. 

When prior information is introduced in the analysis, equation (4) must be used. Prior 
information on the parameters is defined by means of an average value and a standard deviation 
of each parameter. The in situ tests that were carried out to obtain E and K O  provided mean 
values for these parameters: E = 1.5 x lo4 MPa and K O  = 2. However, standard deviations were 
difficult to define. This is in general the case, when different procedures in the laboratory or in the 
field are used to estimate the same parameter. Therefore, in accordance with the methodology 
described in this paper, variances associated with prior information could also be included in the 
inverse analysis in the same way as variances associated with measurements have been included 
in the synthetic cxamples. As the minimization problem depends in fact on the ratio of variances, 
the parameters to be identified will be 

and the objectivc function will be similar to expression (6) with Ex = I and E, = I, since it is 
reasonable to assume that all the quantities involved are independent. 

Particularizing ( 1  1) to this case: 

S = 3 6 + 2 + 3 6 1 n  - +In  - 
(i8) ( 3 k )  + In(&) 

as 2 parameters and 36 measurements are involved in this example. 
Figure 12 shows the contours of function (29) near the minimum. It can be seen clearly that the 

minimum corresponds to pE = 5 x 10-5(mZ/108 MPa’) and p K o  = lo-’ mz. The parameters 
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Fig. 1 1. Comparison between measured and computed displacements. Parameters estimated with no prior information 
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corresponding to these values are E = 8200 MPa and K O  = 2.53, which are much more consis- 
tent with the information available. Using expression (26) an estimation of the measurements 
standard deviation can be obtained: ex = 3.1 mm. The a posteriori parameters covariance matrix 
computed from (12) gives a minimum bound of the reliability of the parameters identified: 

which results in the values cE = 395 MPa and cKo = 0.11. 
Note that the standard deviations obtained in this case are smaller than the previous case, with 

no prior information. In fact, expression (30) gives always smaller values of C, when C: is 
considered, reflecting the reduction of uncertainty brought about by the incorporation of the 
information given by the site investigation measurements. 

Figure 13 presents the comparison between measured and computed displacements using this 
new set of parameters. The agreement is similar to that obtained in the previous case with no 
prior information, as the estimated value of o , ~  is almost the same. Table I1 summarizes results 
obtained for both cases: analyses with and without prior information. Although the error is quite 
similar, the parameters identified are quite different in each case. The conceptual difference 
between both solutions is that the latter one incorporates the existing prior information on the 
parameters with a reliability level which is determined by maximizing the likelihood of the whole 
system. Therefore, the solution is consistent in a global sense with all the sources of information 
available: field measurements and prior information from field tests. 

5x 1 0-6 1 o-' 5x 1 o - ~  

Fig. 12. Contours of objective function defined in terms of variance ratios of E and KO. 
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Fig. 13. Comparison between measured and computed displacemcnts. Parameters estimated with prior information 
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Table 11 Results obtained in the analysis of a cavern excavation 

E QE K O  OK" OX 

(MPa) (MPa) (mm) 

No prior 3900 1750 1.24 0.49 2.9 
information 
analysis 
Prior 8200 395 2.53 0.1 1 3.1 
information 
analysis 

CONCLUDING REMARKS 

A general formulation to perform geotechnical inverse analysis from field measurements and 
existing prior information has been presented. The approach is defined using a probabilistic 
framework and it has the important advantage of allowing the incorporation of different sources 
of information (field measurements, field and laboratory tests, etc.) in a consistent way. 

When this probabilistic framework is used, two main difficulties arise: the relative reliability 
definition of thc contribution of each source to the final estimation and the error structure 
associated with the input data. To overcome that, the relative weight of measurements and prior 
information in the final estimation has been considered as an additional parameter to be 
estimated. Also, the error associated with measurements and to prior information has been 
included as additional parameters. In this way, the problem is solved considering in a consistent 
manner all sources of information and their associated errors. 

The inverse analysis problem results in a minimization of an objective function which has been 
performed by means of the Gauss-Newton and Levenberg-Marquardt algorithms. A formula- 
tion to use those algorithms together with the Finite Element Method in excavation problems is 
presented. In order to demonstrate the capabilities of the procedure, a synthetic example relative 
to the excavation of a tunnel has been presented. The parameters E and K O  as well as the variance 
ratio between horizontal and vertical measurements have been identified. The importance of the 
correct choice of the constitutive model is also highlighted. 

Finally, an application to a real problem, involving the excavation of a cavern in rock has been 
presented. Without prior information the procedure gave parameters from measured displace- 
ments that were not consistent with estimations obtained from in situ tests. A new identification 
procedure including prior information has allowed the estimation of E and K O  for the rock, as 
well as the relative weight of the prior information with respect to the field measurements. Hence, 
a new set of parameters has been identified in such a way that all sources of information available 
(measurements and in situ tests) have been considered in the process. Their relative contribution 
to the final estimation has been determined by the procedure itself in a consistent manner, 
maximizing the likelihood of the whole system. 
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