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Abstract

sources of bacterial isolation were clustered.

Background: Francisella tularensis, the causative agent of tularemia, is a zoonotic agent that remains across much of
the northern hemisphere, where it exists in enzootic cycles. In Ukraine, tularemia has a long history that suggests a
need for sustained surveillance in natural foci. To better characterize the host-vector diversity and spatial distribution of
tularemia, we analyzed historical data from field collections carried out from 1941 to 2008.

Findings: We analyzed the spatial-temporal distribution of bacterial isolates collected from field samples. Isolates were
characterized by source and dominant land cover type. To identify environmental persistence and spatial variation in
the source of isolation, we used the space-time permutation and multinomial models in SaTScan. A total of 3,086
positive isolates were taken from 1,084 geographic locations. Isolation of F. tularensis was more frequent among
arthropods [n = 2,045 (66.3%)] followed by mammals [n =619 (20.1%)], water [n =393 (12.7%)], and farm produce

[n =29 (0.94%)], respectively. Four areas of persistent bacterial isolation were identified. Water and farm produce as

Conclusions: Our findings confirm the presence of long-standing natural foci of F. tularensis in Ukraine. Given the history
of tularemia as well as its environmental persistence there exists a possibility of (re)emergence in human populations.
Heterogeneity in the distribution of tularemia isolate recovery related to land cover type supports the theory of natural
nidality and clusters identify areas to target potential sources of the pathogen and improve surveillance.

Keywords: Tularemia, SaTScan, Spatial clusters, Ukraine, Land cover, Francisella tularensis

Findings

Francisella tularensis, the causative agent of tularemia, is
a zoonotic, gram-negative bacterium that is broadly
distributed across the Northern Hemisphere, with most
human cases caused by either F. tularensis tularensis or F.
t. holarctica, with cases from the latter less severe [1].
Generally, F.t. holarctica is most common across Europe,
though F.t. tularensis has been recovered in central
Europe [2]. Human exposure may occur through various
pathways including arthropod bites, ingesting contami-
nated food products or liquids, inhaling aerosolized bac-
teria, or handling infected animals [1].
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Despite a global decline in reported human cases [3],
tularemia has recently (re)emerged in several countries
including Sweden, Kosovo, China, Bulgaria [4] and parts
of the former Soviet Union (FSU) [5]. Historically, out-
breaks in the FSU were linked to small mammals and ar-
thropods (ticks), possibly related to increases in host or
vector population abundance [6,7]. More recent water-
borne outbreaks of tularemia in Bulgaria [8] and Georgia
[9], have reinforced the need for continued surveillance
and preventative measures in endemic areas. In Ukraine,
the first confirmed cases of tularemia were documented
in the 1940's [4,10]. Those cases were associated with
occupational exposure in furriers, whereas subsequent
outbreaks were linked to rodent populations attracted to
sugar factory production [4,10]. Tularemia foci were pre-
viously described in the 1960's across a limited geog-
raphy in the south of Ukraine where several arthropods
and small mammals were recognized as competent
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vectors and hosts [4,11]. However, contemporary charac-
terizations of the spatial distribution and composition of
vectors and hosts are incomplete and should be further
analyzed.

Active disease surveillance is expensive and labor inten-
sive. The use of historical data can direct such efforts for
more efficient allocation of resources. Recent studies have
shown that incorporating historical data and spatial
analysis can improve vector-borne and zoonotic disease
surveillance [12-15]. This study describes the spatial-
temporal characteristics of tularemia across Ukraine, as
well variation in its hosts and vectors to better understand
its distribution, epidemiology, and improve surveillance.

From 1941 to 2008, the Central Sanitary Epidemiological
Station (CSES) in Ukraine collected field samples nationally
to test for F. tularensis. Confirmation of F. tularensis was
performed via traditional bacterial culturing techniques
[16]. This isolate collection included positive cultures from
mammals, arthropods, and environmental sources, as well
as ancillary information on the date and location of sample
collections. We mapped F. tularensis positive isolates by
year and by source of bacterial recovery. For this study, the
historical database did not differentiate subspecies so we
refer broadly to isolates as F. tularensis. Land cover (LC)
characteristics were derived from the contemporary Glob-
cover LC dataset [17] and assigned to each isolate. Glob-
Cover data were reclassified into five broad categories: rain
fed croplands, mosaic croplands, broadleaved forest, grass
and shrub lands, and other (water, bare areas, and urban)
(Additional file 1: Figure S1). Mapping was performed using
ArcGIS v10.1 (ESRI, Redlands, CA).

We tested for space-time clustering of F. tularensis iso-
lates using the retrospective space-time scan statistic in
SaTScan™ v9.0 [18] with the space-time permutation
model. Significant clusters represented geographic tular-
emia foci (defined as persistent bacterial isolation over
periods >1 year). The space-time permutation model was
most appropriate as the isolate database only recorded
isolates and not the total field collection effort per isolate.
The space-time permutation is described in detail else-
where [19]. Briefly, the test creates multiple varying sized
‘cylinders” around each case, where the circular base repre-
sents space and the cylinder height represents time. To
determine if presence-only data are clustered in space and
time, the number of cases in a cylinder is compared to
case expectations outside of the cylinder. The model was
run using year of isolation with the maximum spatial and
temporal windows set to 50% of the population and 50%
of the study period. Statistical significance of clusters was
evaluated through Monte Carlo simulations, generating
999 random permutations to obtain p-values and selecting
clusters with p-values <0.05, which were overlain with
historical foci documented in Pollitzer [20]. A second cat-
egorical multinomial model was run in SaTScan, using the
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aforementioned parameter settings, to test for the pres-
ence of space-time clustering among isolate sources
grouped as: mammals, arthropods, farm produce, and
water. This test identifies geographic areas (here isolate lo-
cations) with an increased occurrence of a particular iso-
late source. To test for differences in LC characteristics,
we calculated the proportion of isolates identified as
space-time clusters (within foci) and non-clusters within
each of the five Globcover-defined LC classes were com-
pared using a chi-square analysis.

From 1941-2008, 3,086 positive isolates of F. tularensis
were recovered from samples collected at 1,084 locations.
Figure 1 illustrates the spatial distribution of isolates by
decade and source of isolation. The fewest number of iso-
lates were obtained during the 1940's (n = 18). The great-
est number were recorded during the 1970's (n = 840).
Arthropods were the most common source [n=2,045
(66.3%)] followed by mammals [n=619 (20.1%)], water
[n=393 (12.7%)], and farm produce [n=29 (0.94%),]
(Additional file 1: Figure S1). The number of isolates per
taxa are shown in Figure 2. F. tularensis was most fre-
quently isolated from Dermacentor spp. ticks (29.7%) and
Microtus spp. rodents (4.8%), respectively. LC characteris-
tics of the isolates showed a large number were collected
within rain-fed croplands [n =542 (49.1%)], with category
‘other' comprising the highest percentage in relation to
total available LC (Additional file 2: Figure S2).

Four tularemia foci (areas of persistent bacterial isolation)
were identified by the space-time statistic (Table 1). Foci
ranged in duration two years to fourteen years (Figure 3A).
The proportion of isolates within the SaTScan defined foci
across five LC classes was significantly different from the
proportion of isolates within non-foci (x* = 48.72, DF = 4,
p<0.001). The Multinomial SatScan model showed that
during the period 1971-2000, there was greater occurrence
of isolation among the water and farm produce categories,
displayed in yellow, whereas during the earlier period 1962-
1977 an isolation among arthropods was higher, displayed
in light blue (Figure 3B).

Our findings support evidence of long-standing natural
foci of F. tularensis in Ukraine. Heterogeneity in the recov-
ery of bacterial isolates by geographic location support the
theory of natural nidality [21]. Our findings confirmed ob-
servations from the 1960's that documented foci in western
Ukraine [20]. We also identified foci in the southeast of the
country and elucidated areas of bacterial isolation that per-
sisted through last decade (2000's). The distribution of foci,
vectors, hosts, and infectious agents are known to be influ-
enced by ecological characteristics [22]; consistent with this
association, our analysis indicated differences in LC among
areas identified as foci and non-foci.

Foci in the FSU were historically classified by ecotypes/
LC (steppe, forest, foothills) with the most ubiquitous type
consisting of flood/marshlands [20,23], associated with
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Figure 1 Map inset A shows the distribution of Francisella tularensis isolates collected by decade. Map inset B shows the distribution of

areas of sugar beet production and mixed agriculture use
[5]. In keeping with previous research we noted that the
recovery of F. tularensis in Ukraine occurred primarily in
croplands followed by forests, shrub/grasslands (steppe),
and water. Interestingly, we found variation in the space-
time distribution of the sources of bacterial recovery indicat-
ing a greater than expected number of isolates in mammals,
water, and farm produce during 1971-2000 (Figure 3B).
Farm produce and water can become contaminated by in-
fected mammals, particularly semi-aquatic rodents (Arvicola

terrestris), which have been linked to human outbreaks from
agriculture and sugar factories [5,20]. This cluster may have
indicated an increased abundance in rodents or a more con-
certed sampling effort brought on by concern over water-
borne outbreaks in humans, often the source of epidemics
[7-9,24]. Additionally, a cluster of arthropod isolates during
1962-1977 was identified in the southeast where, in some
areas, the vector D. marginatus was historically shown to
have bacterial recovery rates of 2.5% and played an import-
ant role in human transmission and maintaining the
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Figure 2 Source of Francisella tularensis isolation by genus and species.
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enzootic cycle of the pathogen [25]. This cluster is in con-
trast to the ecotype in western Ukraine, historically classified
as steppe [5,20,23] and supports the hypotheses of geo-
graphic variation in the epidemiology of human tular-
emia [5,20,25,26].

Differences in the sampling efforts conducted year to
year may partly account for the patterns identified here.
Although recovery rates were not available for our data,
we incorporated the SaT'Scan methodology to successfully
identify foci and persistence of bacterial isolation due its

Table 1 Results of the SaTScan space-time permutation
analyses identifying foci of Francisella tularensis that
persisted > 1 year

Cluster (Foci) Isolates Expected Test Statistic p-Value
1 217 32.69 23212 0.001
2 105 8.32 171.09 0.001
3 999 5719 168.66 0.001
4 26 045 79.82 0.001

flexibility in dealing with missing data. Despite the lack of
historical human case data, sampling efforts may have
been driven by human outbreaks, as were previously doc-
umented across Ukraine [25]. High resolution human
disease data from the FSU are extremely difficult to ob-
tain. This fact coupled with mass vaccination campaigns
and the presence of the less virulent F. tularensis holar-
citica likely contributed to an underestimation in
reporting [5,27]. While bacterial recovery rates were not
available for the entire data set, limited field collections
from the 1950's and 60's showed recovery of F. tularen-
sis was 0.2% (265/199,343) from the ticks collected [25].
The contemporary GlobCover database may have mis-
classified LC characteristics of historical isolates. As a
first effort, we calculated the percent change in cropland
by decade from 1940 — 2000 using HYDE [28] (Additional
file 3; Additional file 4: Figure S3). Overall, there was a
slight increase in cropland across the decades.

Disease surveillance is costly and time consuming es-
pecially when monitoring is conducted with limited
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Figure 3 Spatial clusters of Francisella tularensis isolates in Ukraine. Map inset A displays the results of the SaTScan space-time analysis of all
Francisella tularensis isolates identifying foci of isolation. Results are overlain with Historical foci documented in Pollitzer 1967 [18]. Circles represent the
spatial extent of a given cluster in kilometers (km). Time periods indicate the duration of the cluster in years. Map inset B displays the results of the
multinomial cluster model. Categories in brackets refer to the source of isolation: 1 = mammials, 2 = arthropods, 3 = water, and 4 = farm produce.
Relative risk (RR) estimates below the brackets indicate whether or not greater than expected number of isolations occurred in a given category. RR >1
represent a greater than expected number of isolations.

empirical or historical data to identify priority areas. Ukraine gives rise to the possibility of (re)emergence in

Given the challenges faced by newly independent FSU
states, limited public health resources make such moni-
toring infeasible. This study showed that archived, histor-
ical records provide important clues to identify important
vectors, hosts, environmental sources, and geographic foci
for F. tularensis. The persistence of environmental foci in

human populations. Our findings can be used to inform
more efficient targeted surveillance strategies and monitor-
ing of tularemia foci. The recurrent isolation of F. tularensis
from several sources (wild rodents, croplands and water)
points to the need for continued surveillance. The LC ana-
lysis suggests that areas of mixed agriculture (croplands)
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should be prioritized as areas for future surveillance, with an
emphasis on rodent and tick species defined here.

Additional files

Additional file 1: Figure S1. Land cover categories in Ukraine based
on the GlobCover dataset and reclassified into five categories: rain-fed
croplands, mosaic croplands, broadleaved forests, grass/shrub lands, and
other.

Additional file 2: Figure S2. The top panel shows the proportion of
the Francisella tularensis isolates that fell within each of the five Land
cover classes. The bottom panel shows the percentage of the LC in
Ukraine by category.

Additional file 3: Supplemental information.

Additional file 4: Figure S3. Graph illustrates the total area of cropland
Land cover (LC) type in Ukraine by decade based on the HYDE historical
database. Percent values above bars represent the change in cropland LC
for each decade using 2000 as the reference.
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systems; FSU: Former soviet union; LC: Land cover.
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