
Soroush Rafiee Rad Equivocation Axiom on
First Order Languages

Abstract. In this paper we investigate some mathematical consequences of the Equivo-

cation Principle, and the Maximum Entropy models arising from that, for first order lan-

guages. We study the existence of Maximum Entropy models for these theories in terms of

the quantifier complexity of the theory and will investigate some invariance and structural

properties of such models.
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1. Introduction

In this paper we study the most “uninformative” model for a probabilistic
theory K over a first order language L. By a probabilistic theory we mean a
set of assertions regarding the probabilities of some sentences in the language
L. The theory K for our purpose is identified with a satisfiable set of linear
constraints on these probabilities, of the form

n∑

j=1

aijw(θj) = bi, i = 1, 2, ...,m, aij , bj ∈ R,

where θ′
js are sentences from the language L. A categorical (non-probabi-

listic) theory K = {θ1, . . . , θn} will be a special case by setting K =
{w(θ1) = 1, . . . , w(θn) = 1}. A model for such a theory will then be a
probability function over the sentences of L, which will be defined shortly,
that satisfies the constraints given in K. The problem we are interested in
is to investigate the most non-committal model of K. That is to investi-
gate the probability function, amongst all that satisfy K, that admits the
Equivocation Principle:

Equivocation Principle: The assignment of probabilities should otherwise
[beyond what is enforced by the constraints] be as equivocal as possible.

Such a probability function can be regarded as the most representative model
of K, in the sense of best approximating a model that characterises K. In
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other words, the Equivocation Principle ensures that the model satisfies K
and remains as free as possible beyond that, in a sense analogous to that
of free algebraic structures (free vector spaces, groups, etc) that are defined
by a set of equations. With this intuition, the most representative model of
K will be identified with its most uninformative model, i.e., the probability
function that remains maximally uninformative beyond what is given in K.

This problem has attracted a lot of attention from different areas and
the literature investigating it is extensive and spreads across several disci-
plines; from statistics [8,9] and physics [11,12], to computer science, pattern
recognition [4], image processing [6], computational linguistics [3] as well as
economics and finance [10,25]. It also plays a central role in Formal Epis-
temology and in particular the Objective Bayesian account [1,15,20,22,23].
This literature almost exclusively promotes some formalisation of the Equiv-
ocation Principle and the notion of un-informativeness that involves Shan-
non entropy. The major part of this literature, however, is concerned with
propositional languages which have been extensively studied. Although the
case of first order languages has been addressed, for example by Paris [15],
Paris and Rafiee Rad [18] and Williamson [24], there are still gaps in the
literature regarding a detailed analysis of the Equivocation Principle for
first order languages. It is to this aspect of the literature that we hope to
contribute in this paper.

In particular, we will not be concerned with the justification and defence
of Maximum Entropy, as there is already a large literature addressing this
issue from different perspectives, for example in the works of Paris and
Vencovská, [16,17], where they argue on behalf of the Maximum Entropy
from an axiomatic point of view and by adhering to a set of rationality
principles (see also [15]) or in the recent works by Landes and Williamson [13,
14] where they argue for it from a decision theoretic perspective. What we
will be concerned with here, is to investigate the extent to which Maximum
Entropy models, however well justified, are well defined for constraints given
on a first order language.

We will focus on Williamson’s formalisation of the Equivocation Prin-
ciple and investigate the most equivocal models in terms of the quantifier
complexity of the theory under consideration. In this sense our work here is
more in line with [18].

1.1. Preliminaries and Notation

Throughout this paper, we work with a first order language L with finitely
many relation symbols, countably many constant symbols a1, a2, a3, ... and
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no function symbols. We also assume that these individuals exhaust the
universe. Let RL, FL and SL denote the sets of relation symbols, formulae
and sentences for L respectively.

Definition 1. w : SL → [0 , 1] is a probability function if for θ, φ,∃xψ(x) ∈
SL,
P1. If |= θ then w(θ) = 1.
P2. w(θ ∨ φ) = w(θ) + w(φ) − w(θ ∧ φ).
P3. w(∃xψ(x)) = limn→∞ w(

∨n
i=1 ψ(ai)).

Definition 2. A probabilistic theory K is defined to be a satisfiable set
of linear constraints of the form

∑n
j=1 aijw(θj) = bi, i = 1, 2, ...,m, where

θj ∈ SL, aij , bj ∈ R and w is a probability function.

Definition 3. Let L be a finite propositional language with propositional
variables p1, ..., pn. By atoms of L we mean the set of sentences { αi | i =
1, ...J}, of the form

n∧

i=1

pεi
i

where εi ∈ {0, 1}, p1 = p and p0 = ¬p.

For every φ ∈ SL we can find a unique set of atoms Γφ ⊆ { αi| i = 1, ..., J }
with |= φ ↔ ∨

αi∈Γφ
αi. It is easy to check that Γφ = { αj |αj � φ }. Since

the αi’s are mutually inconsistent, for every probability function w, w(φ) =
w(

∨
αi�φ αi) =

∑
αi�φ w(αi) and since |= ∨J

i=1 αi we have
∑J

i=1 w(αi) = 1.
So the probability function w will be determined uniquely by its values
on the atoms, that is, by the vector < w(α1), ..., w(αJ) > in D

L = { �x ∈
R

J | �x ≥ 0,
∑J

i=1 xi = 1}. On the other hand if �a ∈ D
L we can define

a probability function w : SL → [0 , 1] by w(φ) =
∑

αi�φ ai so that <

w(α1), ..., w(αJ) >= �a.
This gives a one to one correspondence between the probability func-

tions on SL and the points in D
L. Given K = {∑n

j=1 aijw(θj) = bi, | i =
1, 2, ...,m}, replacing each w(θj) with

∑
αi�θj

w(αi) and adding the equation
∑J

i=1 w(αi)=1 we will get a system of linear equations < w(α1), ..., w(αJ) >

AK = �bK . Thus if the probability function w is a model for K (i.e. w satis-
fies constraints in K) the vector < w(α1), ..., w(αJ) > will be a solution for
the equation �xAK = �bK . We will denote the set of non-negative solutions
to this equation by V L(K) = { �x ∈ R

J |�x ≥ 0, �xAK = �bK } ⊆ D
L. In this

setting, the question of choosing a probability function satisfying K will be
equivalent to the question of choosing a point in V L(K).
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For a first order language, however, the atoms are not expressible as sen-
tences since they will involve infinite conjunctions. Instead, in the first order
case one works with the set of state descriptions for finite sub-languages that
can play a similar role.

Definition 4. Let L be a first order language and let Lk be a sub-language
of L with only constant symbols a1, ..., ak. The state descriptions of Lk are
defined as the sentences Θ(k)

1 , ...,Θ(k)
Jk

of the form
∧

i1,...,ij≤k

Ri j−ary
Ri∈RL

Ri(ai1 , ..., aij
)εi1,...,ij

where εi1,...,ij
∈ {0, 1} and R0

i = ¬Ri and R1
i = Ri.

The set of state descriptions of Lk is the set of term models of L with
domain {a1, . . . , ak}.

Given a quantifier free sentence θ if k is the maximum such that ak

appears in θ, then θ can be regarded as a sentence of the propositional
language L(k) with propositional variables Ri(ai1 , ..., aij

), i1, ..., ij ≤ k, Ri ∈
RL. Notice that the state descriptions Θ(k)

i are the atoms of L(K) and so
� θ ↔ ∨

Θ
(k)
i �θ

Θ(k)
i . Thus for every probability function w,

w(θ) = w

⎛

⎜⎝
∨

Θ
(k)
i �θ

Θ(k)
i

⎞

⎟⎠ =
∑

Θ
(k)
i �θ

w
(
Θ(k)

i

)
,

and to determine w(θ) one needs to determine the values w(Θ(k)
i ) in such a

way that

w
(
Θ(k)

i

)
≥ 0 and

nk∑

i=1

w
(
Θ(k)

i

)
= 1 (I)

w
(
Θ(k)

i

)
=

∑

Θ
(k+1)
j �Θ

(k)
i

w
(
Θ(k+1)

j

)
(II)

to guarantee that w satisfies P1 and P2. By the following theorem of Gaifman
[5], this will be enough to determine w on all SL.

Theorem 1. Let QFSL be the set of quantifier free sentences of L and
let v : QFSL → [0 , 1] satisfy P1 and P2 for θ, φ ∈ QFSL. Then v has a
unique extension w : SL → [0 , 1] that satisfies P1, P2 and P3. In particular
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if w : SL → [0 , 1] satisfies P1, P2 and P3 then w is uniquely determined by
its restriction to QFSL.

Definition 5. By state descriptions of L on {b1, . . . , br} we mean sentences
Ψ(b1, . . . , br) of the form

∧

ai1
,...,aij

⊂{b1,...,br}
Ri∈RL, Ri j−ary

Ri(ai1 , ..., aij
)εi1,...,ij

where εi1,...,ij
∈ {0, 1}, R1

i = Ri, R0
i = ¬Ri and {b1, . . . , br} ⊂ {a1, a2, . . .}.

If Θ(m) is a state description of Lm with m > r such that {b1, . . . , br} ⊂
{a1, . . . , am}, we say Ψ(b1, . . . , br) is determined by Θ(m) if and only if for
all R ∈ RL and all t1, . . . , tj ∈ {b1, . . . , br}

Ψ(b1, . . . , br) � R(t1, . . . , tj) ⇐⇒ Θ(m) � R(t1, . . . , tj).

Notice that a state description of L, Ψ(b1, . . . , br), is a term models for
L with domain {b1, . . . , br}.

Definition 6. Define the equivocator, P=, as the probability function that
for each k, assigns equal probabilities to the Θ(k)

i ’s (the state descriptions
of Lk). Notice that this determines P= on all quantifier free sentences, and
by Theorem 1, on all SL.

1.2. Maximum Entropy

Shannon Entropy is a widely accepted measure for the information of a
probability function [21]. For a probability function W defined on a set
A = {a1, . . . , an} i.e., 0 ≤ W (ai) ≤ 1 and

∑
i W (ai) = 1, the Shannon

entropy of W is defined as

E(W ) = −
n∑

i=1

W (ai) log(W (ai)).

Definition 7. An inference process, N , on L is a function that on each
set of linear constraints K, returns a probability function on SL, say N(K),
that satisfies K.

We shall denote the inference process that on each set of constraints K,
returns the Maximum Entropy solution of K by ME, that is, ME(K) is the
probability function satisfying K with maximum Shannon entropy. There
are two approaches for defining ME on a set of constraints.
First consider a set of linear constraints K from a propositional language
L with atoms α1, . . . , αJ . The first approach for defining the Maximum
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Entropy solution for K is to take the unique probability function w, that
satisfies K, or equivalently the unique point �w ∈ V L(K), with maximum
Shannon Entropy

−
J∑

i=1

w(αi) log(w(αi)).

We notice that, when K involves only linear constraints, the set V L(K) is
convex and so is the function f(x) = −∑J

i=1 xi log(xi) and these guarantee
the uniqueness.
The second approach for defining Maximum Entropy models followed for
example by Williamson, [23], which we shall write as MEW , uses relative
Shannon Entropy. In this approach equivocation is achieved by minimising
the information theoretic divergence from the probability function P= (defi
6). The idea here is that P= is the most uninformative probability function
over SL. In this sense, P= is taken as a point of reference and the information
theoretic divergence of a probability function W from P= is taken as a
measure for its informativeness. The information theoretic divergence of a
probability function W from the probability function V is defined by:

RE(W,V ) =
J∑

i=1

W (αi) log
(

W (αi)
V (αi)

)
.

Williamson defines the Maximum Entropy solution for a set of constraints
K, MEW (K), as the unique probability function w, that minimises the
relative entropy

J∑

i=1

w(αi) log
(

w(αi)
P=(αi)

)

or equivalently the unique point �w ∈ V L(K) with minimum
∑J

i=1 wi

log( wi

1/J ).

Proposition 1. Let L be a propositional language, K a set of linear con-
straints and ψ ∈ SL. Then

ME(K)(ψ) = MEW (K)(ψ)

There have been proposals in the literature to generalise both definitions
to first order languages. The obvious problem is that for first order lan-
guages one cannot express the Shannon Entropy or the relative Entropy
using atomic sentences since in the first order case only the atoms of finite
sub-languages are expressible in the language.
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In [2], Barnett and Paris propose to define the Maximum Entropy solu-
tions for a set of linear constraints, K, from a first order language L, as the
limit of the Maximum Entropy solutions of K on finite sub-languages, Lk, as
k increases. These finite sub-languages can be regarded as propositional lan-
guages for which the Maximum Entropy solutions are defined uniquely. More
precisely, take a first order language L with relation symbols R1, . . . , Rt,
domain a1, a2, . . ., and a set of linear constraints K. Let L(r) be the propo-
sitional language with Rj(ai1 , . . . , ain

), 1 ≤ j ≤ t, 1 ≤ i1, . . . , in ≤ r as its
propositional variables. Let k be the maximum such that ak appears in K
and define (−)(r) : SLk → SL(r) for r > k by

(Rj(ai1 , . . . , ain
))(r) = Rj(ai1 , . . . , ain

)

(¬φ)(r) = ¬(φ)(r)

(φ ∨ ψ)(r) = (φ)(r) ∨ (ψ)(r)

(∃xφ(x))(r) =
r∨

i=1

(φ(ai))(r).

Let K(r) be the result of replacing every θ appearing in K by θ(r), then K(r)

is a set of constraints over the propositional language L(r).

Definition 8. (ME) Let L be a first order language and K as above. For
a state description Θ(k)

i of Lk,

ME(K)(Θ(k)
i ) = lim

r→∞ ME(K(r))(Θ(k)
i ).

This defines ME on the state descriptions and thus the quantifier free sen-
tences which is uniquely extended to all SL by Theorem 1.

To extend MEW to first order languages, Williamson defines the r-
divergence of a probability function W from a probability function V as

dr(W,V ) =
Jr∑

i=1

W (Θ(r)
i ) log

(
W (Θ(r)

i )

V (Θ(r)
i )

)

where Θ(r)
i ’s are the state descriptions of Lr. Then for probability functions

W,V and U defined on SL, W is closer to U than V if dr(W,U) < dr(V,U)
for all r eventually. Williamson defines the Maximum Entropy solutions for
K, MEW (K) as follows:

Definition 9. (MEW ) Let K be a set of linear constraints. A Maximum
Entropy solution for K, is a probability function, w satisfying K such that
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there is no other probability function v that satisfies K and no N such that
for all r > N , dr(v, P=) < dr(w,P=).

In this paper we will focus on Williamson’s formulation of the Maximum
Entropy models. Notice that defining maximum entropy models as the limit
of such models for finite sub-languages suffers from the finite model problem,
that is, it will fail when dealing with a constraint set K with no finite models.
This is so because for such a set of constraints, K, the corresponding K(r)

is not satisfiable. Williamson’s definition, however, does not suffer from this
problem as one does not need to consider probability functions defined on
any finite sub-language.

2. The MEW On First Order Languages

2.1. The MEW On Unary Languages

We will start our investigation from first order languages with only unary
predicates. Our goal in this section is to show that the MEW model is unique
for first order theories coming from a unary language. Let L be the first order
language with only unary predicates P1, . . . , Pn and domain {a1, a2, . . .}, in
[2], Barnett and Paris showed the following result.

Proposition 2. For a set of satisfiable linear constraint K on a unary first
order language L,

ME(K)(ψ) = lim
r→∞ ME(K(r))(ψ(r))

is well defined for all ψ ∈ SL and ME(K) defined in this way is a probability
function on SL that satisfies K.

To show that MEW is unique we will show that the probability func-
tion defined by this limit, ME(K), which is well defined and satisfies K
by Proposition 2, is closer to P= than any other probability function that
satisfies K. Hence MEW (K) will be uniquely defined on SL and in this
sense our result in this section extends Proposition 1 to unary first order
languages.

For a unary first order language L with predicate symbols P1, . . . , Pn, let
Qi, i = 1, . . . , J enumerate all the formulae of the form

∧n
j=1 P εi

i (x) where
εj ∈ {0, 1} and P 0

i = ¬Pi and P 1
i = Pi and let αi for i = 1, ..., Jk enumerate

the exhaustive and exclusive set of sentences of the form
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k∧

j=1

Qmj
(aj).

Lemma 1. (Barnett & Paris) Any sentence θ(a1, . . . , ak) ∈ SL is equivalent
to a disjunction of the consistent sentences φi,�ε of the form

αi ∧
J∧

j=1

(∃xQj(x))εj

where �ε = (ε1, ..., εJ) is a sequence of 0s and 1s and |= ¬(φi,�ε ∧ φj,�δ) when

(i,�ε) �= (j, �δ).

Notice that since φi,�ε’s are mutually inconsistent and exhaustive, each
state description of Lk satisfies exactly one of these sentences and so these
φi,�ε’s give a partition of the state descriptions of Lk. The same is true for
every Lr with r > k: Since φi,�ε’s are also sentences of Lr, every state de-
scription of Lr also satisfies exactly one of these φi,�ε’s.

Let w be a probability function on SL and wk its restriction to SLk.
As pointed out above, the probability function wk on SLk can be identified
with the vector �wk = (w(ζ1), . . . , w(ζJk)) ∈ D

(r) where the ζj are the state
descriptions of Lk. This is so, because any sentence of Lk can be written
as a disjunction of a subset of these mutually inconsistent sentences. By
Lemma 1 and the discussion above, the same holds for the sentences φi,�ε

and the same argument allows us to identify the probability function wk on
SLk by its value on φi,�ε’s or equivalently by the vector �wk = (w(φi,�ε))i,�ε. Take

φi,�ε = αi ∧
J∧

j=1

(∃xQj(x))εj

with αi =
∧k

j=1 Qmj
(aj), and let Ai = { mj | j = 1, ..., k }, P�ε = { j | εj = 1 }

and Pi,�ε = { j | j ∈ P�ε and j /∈ Ai }. So

φ
(r)
i,�ε = αi ∧

J∧

j=1

(
r∨

i=1

Qj(ai)

)εj

≡
∨

mj∈P�εforj=k+1,...,r

Pi,�ε⊆{ mj | k+1≤j≤r}

⎛

⎝αi ∧
r∧

j=k+1

Qmj
(aj)

⎞

⎠

(III)
Setting p�ε = |P�ε|, and pi,�ε = |Pi,�ε| the number of disjuncts in (III) will be
equal to

pi,�ε∑

j=0

(−1)j

(
pi,�ε

j

)
(p�ε − j)r−k.
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The disjunction in (III), is the disjunction of those state descriptions of Lr

that logically imply φ
(r)
i,�ε . Notice that each state description of Lr implies

precisely one of the sentences φ
(r)
i,�ε (since every two of them are mutually

inconsistent) and for each φ
(r)
i,�ε there are precisely

∑pi,�ε

j=0(−1)j
(
pi,�ε

j

)
(p�ε−j)r−k

many state description implying it (the number of disjuncts in (III)). Next,
consider a set of constraints K and let k be the maximum such that ak

appears in K, then each sentence θ appearing in K is by Lemma 1 logically
equivalent to a disjunction of sentences φi,�ε. Thus each θ(r) appearing in K(r)

is similarly equivalent to the corresponding disjunction of sentences φ
(r)
i,�ε .

Proposition 3. If W = ME(K) = limr→∞ ME(K(r)), for every state
description Θ(r)

j of Lr if Θ(r)
j � φ

(r)
i,�ε , then

W (Θ(r)
j ) =

W (φ(r)
i,�ε )

∑pi,�ε

j=0(−1)j
(
pi,�ε

j

)
(p�ε − j)r−k

. (IV)

Proof. Remember that any sentence in K (resp. K(r)) is equivalent to a
disjunction of sentences φi,�ε (resp. φ

(r)
i,�ε ) and that φ

(r)
i,�ε ’s partition the state

descriptions of Lr. What (IV) asserts is that all state descriptions in a
partition cell (all those satisfying the same φ

(r)
i,�ε ) receive equal probability by

W . To see this notice that if Θ(k)
i and Θ(k)

j are state descriptions that satisfy

φ
(r)
i,�ε then ME(K(r))(Θ(k)

i ) = ME(K(r))(Θ(k)
j ) otherwise take probability

function v on SLr with

v(Θ(k)
l ) = ME(K(r))(Θ(k)

l ) l �= i, j

v(Θ(k)
i ) = v(Θ(k)

j ) =
ME(K(r))(Θ(k)

j ) + ME(K(r))(Θ(k)
j )

2

then v satisfies K(r) because it assigns the same probabilities to φ
(r)
i,�ε ’s

as ME(K(r)) while E(ME(K(r))) < E(v) which is a contradiction with
ME(K(r)) being the maximum entropy solution to K(r). Thus for every r,
ME(K(r))(Θ(k)

i ) = ME(K(r))(Θ(k)
j ) and since W = limr→∞ ME(K(r)) we

have W (Θ(k)
i ) = W (Θ(k)

j ).

For a given K, let k be the upper bound on i such that ai appears in
K as before and let φi,�ε be as defined in Lemma 1. Then by Lemma 1 and
Proposition 3 the probability function ME(Kr) is identified with its values
on φ

(r)
i,�ε . What is important to notice here, and is also the main reason for

working with these sentences φ
(r)
i,�ε is that the number of these sentences is
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independent of r. Notice that as we move from Lr to Lr+1 the number of
state descriptions that satisfy each φ

(r)
i,�ε changes but not the number of these

sentences. This means we can represent the ME solution for K(r) and K(r+1)

(on languages Lr and Lr+1) with vectors of the same length.
Next, for W = limr→∞ ME(K(r)), let W r, be the restriction of W to

SLr and let α1, . . . , αJr be the state descriptions of Lr, then

E(W r) = −
Jr∑

i=1

W r(αi) log(wr(αi))

= −
∑

i,�ε

W r(φ(r)
i,�ε ) log

(
W r(φ(r)

i,�ε )
∑pi,�ε

j=0(−1)j
(
pi,�ε

j

)
(p�ε − j)r−k

)

= −
∑

i,�ε

W r(φi,�ε) log(W r(φi,�ε)) + (r − k)
∑

i,�ε

W r(φi,�ε) log(p�ε)

+
∑

i,�ε

W r(φi,�ε) log

⎛

⎝
pi,�ε∑

j=0

(−1)j

(
pi,�ε

j

)(
1 − j

p�ε

)r−k
⎞

⎠ .

Let δ(W, r) =
∑

i,�ε W r(φi,�ε) log
(∑pi,�ε

j=0(−1)j
(
pi,�ε

j

)
(1 − j

p�ε
)r−k

)
. So

E(W r) = −
∑

i,�ε

W r(φi,�ε) log(W r(φi,�ε))+(r−k)
∑

i,�ε

W r(φi,�ε) log(p�ε)+δ(W, r)

(V)

The summation is over a finite number of terms and as r → ∞,
(
1 − j

p�ε

)r−k

→ 0 and consequently, as r → ∞, δ(W, r) → 0. Also notice that in the same
way we can represent E(Ur) as (V) for any probability function U that
satisfies (IV). We are now in the position to state the main result of this
section.

Theorem 3. Let L be a language with only finitely many unary predicates
and constant symbols a1, a2, .... Let K be a finite set of linear constraints as
before. Then MEW (K) is unique and agrees with ME(K).

Proof. We will show that for W = limn→∞ ME(K(n))

(∀w ∈ V L(K) ((w �= W ) ⇒ ∃N∀n ≥ N dn(W,P=) ≤ dn(w, P=))

where V L(K) is the set of probability functions that satisfy K. Notice that
this proves something stronger than what is required by Definition 9. Defi-
nition 9 requires that no probability function is closer to P= than W on Ln

for all n eventually. We shall prove that the W given here is closer than any
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probability function to P= on Ln for all n eventually thus establishing both
the existence and the uniqueness of the Maximum Entropy solution for K.
Suppose not and let w �= W be a probability function satisfying K such that
for infinitely many n,

dn(w,P=) < dn(W,P=). (VI)

Notice that

dn(w,P=) < dn(W,P=) ⇐⇒ E(Wn) < E(wn). (VII)

where Wn and wn are restrictions of W and w to Ln. We will make use of
the following claim:

Claim 1.

w(φi,�ε) = lim
n→∞ w(φ(n)

i,�ε ) (VIII)

W (φi,�ε) = lim
n→∞ W (φ(n)

i,�ε ) (IX)

By Lemma 1, each sentence in K is logically equivalent to a disjunction of
sentences φi,�ε similarly each θ(n) in K(n) is equivalent to the corresponding
disjunction of sentences φ

(n)
i,�ε . If we fix an order for these φi,�ε’s, and let �x =<

w(φi,�ε) >i,�ε, then, as before, the knowledge base K(n) will be equivalent to a
system of linear equations �xAK = �b. As explained above the number of the
sentences φi,�ε does not depend on n, and so the matrix AK will not depend
on n. Let

X =

⎧
⎨

⎩�x | �xAK = �b} Y = {�x ∈ X |
∑

i,�ε

xi,�ε log p�ε is maximal.

⎫
⎬

⎭

It can be easily checked that X and Y are convex. Let �v ∈ Y be the point for
which − ∑

i,�ε v(φi,�ε) log(v(φi,�ε)) is maximal. This �v is unique by convexity
of Y and let Wn = ME(K(n)) so Wn ∈ X and E(Wn) is maximal, so in
particular, E(�v) ≤ E(Wn) and thus by (V)

−
∑

i,�ε

vi,�ε log(vi,�ε) + (n − k)
∑

i,�ε

vi,�ε log(p�ε) + δ(v, n)

≤ −
∑

i,�ε

Wn(φ(n)
i,�ε )) log(Wn(φi,�ε)(n)))

+(n − k)
∑

i,�ε

Wn(φ(n)
i,�ε )) log(p�ε) + δ(Wn, n)
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hence
∑

i,�ε

vi,�ε log(p�ε) −
∑

i,�ε

Wn(φ(n)
i,�ε )) log(p�ε)

≤ −∑
i,�ε Wn(φ(n)

i,�ε )) log(Wn(φ(n)
i,�ε )))+

∑
i,�ε vi,�ε log(vi,�ε)+δ(Wn, n)−δ(�v, n)

n − k
(X)

and by the choice of �v ∈ X

0 ≤
∑

i,�ε

vi,�ε log(p�ε) −
∑

i,�ε

Wn(φ(n)
i,�ε )) log(p�ε). (XI)

Since as n → ∞ the right hand side of (X) approaches 0, we have, as
n → ∞ ∑

i,�ε

W (φi,�ε) log p�ε →
∑

i,�ε

vi,�ε log p�ε (XII)

since W = limn→∞ Wn. By the choice of �v we should have
∑

i,�ε W (φi,�ε) log p�ε

is maximal.
Assuming Claim 1, let Θ(n)

1 , . . . ,Θ(n)
Jn range over the state descriptions of

Ln and take n large and satisfying (VI) and we have
Jn∑

i=1

w(Θ(n)
i ) log w(Θ(n)

i ) <
Jn∑

i=1

W (Θ(n)
i ) log W (Θ(n)

i ).

Hence
∑

i,�ε

∑

Θ(n)�φ
(n)
i,�ε

w(Θ(n)) log w(Θ(n)) <
∑

i,�ε

∑

Θ(n)�φ
(n)
i,�ε

W (Θ(n)) log W (Θ(n)).

(XIII)
In this inequality the left hand side is, by convexity, at least

∑

i,�ε

w(φ(n)
i,�ε ) log

(
w(φ(n)

i,�ε )

pn−k
�ε

∑pi�ε

j=0(−1)j
(
pi�ε

j

)
(1 − j

p�ε
)n−k

)
.

Remember that if Θ(n)
j , Θ(n)

k are state descriptions of Ln that logically imply

the same φ
(n)
i,�ε then W (Θ(n)

j ) = W (Θ(n)
k ). So the right hand side of (XIII) is

actually equal to

∑

i,�ε

W (φ(n)
i,�ε ) log

(
W (φ(n)

i,�ε )

pn−k
�ε

∑pi�ε

j=0(−1)j
(
pi�ε

j

)
(1 − j

p�ε
)n−k

)
.
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Simplifying this gives
∑

i,�ε

w(φ(n)
i,�ε ) log

(
w(φ(n)

i�ε )
)

− (n − k)
∑

i,�ε

w(φ(n)
i,�ε ) log p�ε + δ(w, n)

<
∑

i,�ε

W (φ(n)
i,�ε ) log

(
W (φ(n)

i,�ε )
)

− (n − k)
∑

i,�ε

W (φ(n)
i,�ε ) log p�ε + δ(W,n)

(XIV)

where δ(W,n), δ(w, n) → 0 as n → ∞. Hence, using (VIII), (IX), we must
have ∑

i,�ε

W (φi,�ε) log p�ε ≤
∑

i,�ε

w(φi,�ε) log p�ε. (XV)

By (XII) and the explanation immediately after that,
∑

i,�ε W (φi,�ε) log p�ε is
maximal so from (XV) we should have

∑
i,�ε W (φi,�ε) log p�ε =

∑
i,�ε w(φi,�ε)

log p�ε. Using (VIII), (IX) and (XIV) it must be the case that
∑

i,�ε

w(φi,�ε) log (w(φi,�ε)) ≤
∑

i,�ε

W (φi,�ε) log (W (φi,�ε)) (XVI)

Next notice that �Wn =< Wn(φi,�ε) >i,�ε is a bounded sequence and so has a
convergent subsequence. The limit of this subsequence will also be in Y by
(XII). However, by (XI) and (XII) we should have

−
∑

i,�ε

vi,�ε log(vi,�ε) − δ(Wn, n) + δ(�v, n) ≤ −
∑

i,�ε

Wn(φi,�ε) log(Wn(φi,�ε))

So if �t is the limit of any convergent subsequence of �Wn then �t ∈ Y and

−
∑

i,�ε

vi,�ε log(vi,�ε) ≤ −
∑

i,�ε

ti,�ε log(ti,�ε).

But by the choice of �v ∈ Y we should have �t = �v and thus W = limn→∞
ME(K(n)) = limn→∞Wn = v. From v = W and by the choice of v ∈ Y
that maximises both

∑
i,�ε vi,�ε log p�ε (in X) and

∑
i,�ε vi,�ε log(v�ε) (in Y ), for

every, �U ∈ X we should have E(�U) ≤ E(W ) and moreover, by uniqueness
of W ∈ Y if �U ∈ Y and U �= W then E(�U) < E(W ). In particular for w in
(VI), we have E(w) ≤ E(W )

∑

i,�ε

W (φi�ε) log W (φi�ε) − (n − k)
∑

i,�ε

W (φi�ε) log p�ε + δ(W,n)

≤
∑

i,�ε

w(φi�ε) log w(φi�ε) − (n − k)
∑

i,�ε

w(φi�ε) log p�ε + δ(w, n). (XVII)
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with δ(W,n), δ(w, n) → 0 as n → ∞. In consequence, for large n, we have∑
i,�ε W (φi�ε) log W (φi�ε) − (n − k)

∑
i,�ε W (φi�ε) log p�ε

≤
∑

i,�ε

w(φi�ε) log w(φi�ε) − (n − k)
∑

i,�ε

w(φi�ε) log p�ε. (XVIII)

But from (XVIII) and
∑

i,�ε W (φi,�ε) log p�ε =
∑

i,�ε w(φi,�ε) log p�ε and we
have

∑

i,�ε

W (φi�ε) log W (φi�ε) ≤
∑

i,�ε

w(φi�ε) log w(φi�ε)

and because
∑

i,�ε w(φi,�ε) log p�ε is maximal, w ∈ Y and since w �= W from
uniqueness of W we should have the strict inequality

∑

i,�ε

W (φi�ε) log W (φi�ε) <
∑

i,�ε

w(φi�ε) log w(φi�ε)

and these give a contradiction with (XV). To complete the proof, it remains
to prove Claim 1.

Proof of Claim. 1. For a probability function v and distinct Qi, Qj

v(∃xQi(x)) = lim
n→∞ v

(
n∨

k=1

Qi(ak)

)
= lim

n→∞ v
(∨

Γ(n)
Qi

)
,

where Γ(n)
Qi

are those state descriptions of Ln containing as a conjunct Qi(aj)
for some 1 ≤ j ≤ n. Similarly (see Chapter 11 in [15])

v(∃xQi(x) ∧ ∃xQj(x)) = v(∃x, yQi(x) ∧ Qj(y)) = lim
n→∞ v

(∨
Γ(n)

Qi,Qj

)
.

(XIX)

v(∃xQi(x) ∧ ¬∃xQj(x)) = v(∃xQi(x)) − v(∃xQi(x) ∧ ∃xQj(x)) (XX)

= lim
n→∞ v

(∨
Γ(n)

Qi

)
− lim

n→∞ v
(∨

Γ(n)
Qi,Qj

)
(XXI)

= lim
n→∞ v

(∨ (
Γ(n)

Qi
− Γ(n)

Qi,Qj

))
(XXII)

= lim
n→∞ v

(
Γ(n)

Qi,¬Qj

)
(XXIII)

where Γ(n)
Qi,¬Qj

are those state descriptions of Ln which contain Qi(ak) as a
conjunct for some 1 ≤ k ≤ n but do not contain as a conjunct Qj(ak) for
any k. We will now show that
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v

(
m∧

k=1

∃xQk(x) ∧
J∧

l=m+1

¬∃xQl(x)

)
= lim

n→∞ v
(∨

Γ(n)
Q1,...,Qm,¬Qm+1,...,¬QJ

)

(XXIV)
by induction on J − m. The result for J − m = 0 is given by the following
theorem proved in [15].

Proposition 4. For v : SL → [0 , 1] satisfying (P1-3) introduced in the 1.1
and ψ(x) ∈ FL,

v(∃xψ(x)) = suprv

(
r∨

i=1

ψ(ai)

)
.

So we will have

v

(
m∧

k=1

∃xQk(x)

)
= lim

n→∞ v

(
m∧

k=1

n∨

i=1

Qk(ai)

)
= lim

n→∞ v
(∨

Γ(n)
Q1,...,Qm

)
.

Assume that (XXIV) is true for J − m. Then

v

(
m∧

k=1

∃xQk(x)∧
J+1∧

k=m+1

¬∃xQk(x)

)
=v

(
m∧

k=1

∃xQk(x)∧
J∧

k=m+1

¬∃xQk(x)

)

−v

(
m∧

k=1

∃xQk(x) ∧
J∧

k=m+1

¬∃xQk(x) ∧ ∃xQJ+1(x)

)

= lim
n→∞ v

(∨
Γ(n)

Q1,...,Qm,¬Qm+1,...,¬QJ

)

− lim
n→∞ v

(∨
Γ(n)

Q1,...,Qm,QJ+1,¬Qm+1,...,¬QJ

)

= lim
n→∞ v

(∨
Γ(n)

Q1,...,Qm,¬Qm+1,...,¬QJ ,¬QJ+1

)

as required. Now we have

w(φi,�ε) = w

⎛

⎝αi ∧
J∧

j=1

(∃xQj(x))εj

⎞

⎠

= lim
n→∞ w

(∨
Γ(n)

αi,Qj1 ,...,Qjm ,¬Qjm+1 ,...,¬QjJ

)

= lim
n→∞ w

⎛

⎝αi ∧
J∧

j=1

(
n∨

l=1

Qj(al)

)εj
⎞

⎠ = lim
n→∞ w(φ(n)

i,�ε )

where εj1 , ..., εjm
= 1 and εjm+1 , ..., εjJ

= 0 and similarly for W .
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So the Maximum Entropy model for a set of constraints K as charac-
terised by MEW , is unique for unary languages. We will now move to general
polyadic languages.

2.2. MEW and the General Polyadic Case

In this section we investigate the existence of Maximum Entropy solutions
for sets of constraints from a general polyadic language. We will show by an
example that there exists a set of constraints K with quantifier complexity
of Σ2, such that the closest solution of K to P=, in the sense of Definition
9, does not exist uniquely. In particular, we will show that for any proba-
bility function w satisfying K one can find a probability function W closer
to P= than w that also satisfies K. Williamson anticipates cases where the
closest probability function to P= does not exist and addresses this by con-
sidering “sufficient closeness” to P= where the sufficiency is assumed to be
determined on contextual and pragmatic grounds. Nevertheless, our exam-
ple below not only establishes a case like that, but also makes the underlying
reasons precise.

Example Let L be a first order language with only a binary relation sym-
bol R and K = { w(∃x∀y R(x, y)) = 1 }. Suppose MEW (K) is uniquely
defined and let w = MEW (K). So w is a probability function on SL
and w(∃x∀y R(x, y)) = 1. We will show that there is some probability
function W on SL, also satisfying K, such that for each N there will be
some r > N with dr(W,P=) < dr(w,P=). This will give a contradiction to
w = MEW (K). To see this let ei = w(∀y R(ai, y)), pick k such that ek > 0
and let r be large so in particular ek > 2−r.

Claim 2. Let w be defined on SL and define W r on the state description
Θ�ε =

∧r
i,j=1 Rεij (ai, aj) of Lr as

W r(Θ�ε) = 2−rw

⎛

⎜⎝
∧

1≤i,j≤r
i�=k

Rεij (ai, aj)

⎞

⎟⎠ ,

then dr(W,P=) < dr(w,P=).

We will now proceed to define the required probability function W on
SL. We consider two cases:
Case 1 There are arbitrarily large k such that ek > 0.

In this case pick an infinite sequence k0 < k1 < k2 < . . . of such k and define
W on Lrs where, ks−1 ≤ rs ≤ ks − 1, s ≥ 2
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W

⎛

⎝
rs∧

i,j=1

Rεij (ai, aj)

⎞

⎠

= 2−rsw

⎛

⎜⎝
rs∧

i,j=1
i�=km,0≤m<s

Rεij (ai, aj) ∧
s−1∧

m=1

rs∧

j=1

Rεkm−1j (akm
, aj)

⎞

⎟⎠ .

An explanation here is that in forming W we use w but replace ak0 by a
‘random element’, replace ak1 by ak0 , ak2 by ak1 and so on. The net effect
of these constructions is that for W

W

(
rs∨

i=1

∀y R(ai, y)

)
≥ w

(
rs−1∨

i=1

∀y R(ai, y)

)
.

To see this notice that

W

⎛

⎝
rs∨

i=1

n∧

j=1

R(ai, aj)

⎞

⎠

≥ W

⎛

⎜⎝
rs−1∨

i=1
i �=k0,...,ks−2

n∧

j=1

R(ai, aj) ∨
s−1∨

m=1

n∧

j=1

R(akm
, aj)

⎞

⎟⎠

= w

⎛

⎝
rs−1∨

i=1

n∧

j=1

R(ai, aj)

⎞

⎠

Taking the limit as n → ∞ here gives

W (
rs∨

i=1

∀yR(ai, y)) ≥ w(
rs−1∨

i=1

∀yR(ai, y))

and hence by taking the limit as s → ∞,

W (∃x∀yR(x, y)) ≥ w(∃x∀yR(x, y)).

Hence we have W (∃x∀yR(x, y)) = 1. This establishes that W also satis-
fies K.
Let, ks−1 ≤ r ≤ ks − 1 and define w′ on SLr as follows:

w′

⎛

⎝
r∧

i,j=1

Rεij (ai, aj)

⎞

⎠ = 2−rw

⎛

⎜⎝
r∧

i,j=1
i�=ks−1

Rεij (ai, aj)

⎞

⎟⎠ .
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So

∑

�ε

W

⎛

⎝
r∧

i,j=1

Rεij (ai, aj)

⎞

⎠ log W

⎛

⎝
r∧

i,j=1

Rεij (ai, aj)

⎞

⎠

=
∑

�ε

w′

⎛

⎝
r∧

i,j=1

Rεij (ai, aj)

⎞

⎠ log w′

⎛

⎝
r∧

i,j=1

Rεij (ai, aj)

⎞

⎠

and so dr(W,P=) = dr(w′, P=).
Using Claim 2, with r sufficiently large, dr(w′, P=) < dr(w, P=) and so

dr(W,P=) < dr(w,P=).

as required.

Case 2 There is some g such that ek = 0 for k ≥ g. In this case pick a 0 < j
such that ej > 0 and the permutation σ of N+ such that for i �= j, g + 1,
σ(i) = i and σ(j) = g + 1 and σ(g + 1) = j. For r ∈ N

+ let

W

⎛

⎝
r∧

i,j=1

Rεij (ai, aj)

⎞

⎠

= 2−1

⎛

⎝w

⎛

⎝
r∧

i,j=1

Rεij (ai, aj)

⎞

⎠ + w

⎛

⎝
r∧

i,j=1

Rεij (aσ(i), aσ(j))

⎞

⎠

⎞

⎠ .

Then for n > g,

W

(
g+1∨

i=1

n∧

k=1

R(ai, ak)

)

= 2−1

(
w(

g+1∨

i=1

n∧

k=1

R(ai, ak)) + w(
g+1∨

i=1

n∧

k=1

R(aσ(i), aσ(k)))

)

Since {1, 2, ..., g + 1} = {σ(1), σ(2), ..., σ(g + 1)} we will have

W

(
g+1∨

i=1

n∧

k=1

R(ai, ak)

)
= w

(
g+1∨

i=1

n∧

k=1

R(ai, ak)

)
.

Taking the limit as n → ∞ and noticing that w(∀yR(ai, y)) = 0 for i > g+1,

W

(
g+1∨

i=1

∀yR(ai, y)

)
= w

(
g+1∨

i=1

∀yR(ai, y)

)
= w(∃x∀yR(x, y)) = 1.
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We show that for large r, dr(W,P=) < dr(w, P=). To show this it is enough
to show that

−
∑

�ε

W (Θ�ε) log W (Θ�ε) > −
∑

�ε

w(Θ�ε) log w(Θ�ε). (XXV)

Notice that the permutation σ can be also considered as a permutation of
state descriptions and let σ(Θ�ε) have the obvious meaning. If σ(Θ�ε1) = Θ�ε2

then σ(Θ�ε2) = Θ�ε1 . So to show (XXV) it is enough to show that for each �ε,

W (Θ�ε) log W (Θ�ε) + W (Θ�ε′) log W (Θ�ε′)

≤ w(Θ�ε) log w(Θ�ε) + w(Θ�ε′) log w(Θ�ε′) (XXVI)

where Θ�ε′ = σ(Θ�ε) and that this inequality is strict for some Θ�ε eventually.
But (XXVI) is by definition of W :

w(Θ�ε) + w(Θ�ε′)
2

log
(

w(Θ�ε) + w(Θ�ε′)
2

)

+
w(Θ�ε′) + w(Θ�ε)

2
log

(
w(Θ�ε′) + w(Θ�ε)

2

)

≤ w(Θ�ε) log w(Θ�ε) + w(Θ�ε′) log w(Θ�ε′)

that is
(
w(Θ�ε) + w(Θ�ε′)

)
log(

w(Θ�ε) + w(Θ�ε′)
2

)

≤ w(Θ�ε) log w(Θ�ε) + w(Θ�ε′) log w(Θ�ε′) (XXVII)

which holds by the convexity of the function x log x. Furthermore this in-
equality will eventually (for large r) be strict for some Θ�ε because otherwise
we will have W �Lr= w �Lr but

W (∀yR(ag+1, y)) = 2−1w(∀yR(aj , y)) = 2−1ej > 0

while by the choice of g, w(∀yR(ag+1, y)) = 0 so W �= w and thus there
exists some M such that for r > M , W �Lr �= w �Lr .

So with any probability function w satisfying this K, one can always
use w to construct a probability function W , also satisfying K, that is
closer to the P= on Ln for all n eventually and thus increase the entropy
in the sense of MEW . Hence the closest solution of K to P= does not exist
and MEW fails to provide a generalisation of the Maximum Entropy so-
lution applicable in general. To complete this example we will now prove
Claim 2.
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Proof of Claim. 2. By (VII) it is enough to show that

−
∑

�ε

W (Θ�ε) log W (Θ�ε) > −
∑

�ε

w(Θ�ε) log w(Θ�ε). (XXVIII)

Let δ and τ respectively range over the maps from

{ 〈i, j〉 | 1 ≤ i, j ≤ r, i �= k } → {0, 1} and { 〈k, j〉 | 1 ≤ j ≤ r, } → {0, 1}
Then (XXVIII) will be

−
∑

�δ∪�τ

W (Θ�δ∪�τ ) log W (Θ�δ∪�τ ) > −
∑

�δ∪�τ

w(Θ�δ∪�τ ) log w(Θ�δ∪�τ ).

To show this we will show that for each �δ,

−
∑

�τ

W (Θ�δ∪�τ ) log W (Θ�δ∪�τ ) ≥ −
∑

�τ

w(Θ�δ∪�τ ) log w(Θ�δ∪�τ ) (XXIX)

and that the inequality should be strict for some �δ. For two state descrip-
tions Θ�δ∪ �τ1

and Θ�δ∪ �τ2
we have, by definition, W (Θ�δ∪ �τ1

) = W (Θ�δ∪ �τ2
) =

2−rw(
∨

�τ Θ�δ∪�τ ) and notice that the number of possible �τ is 2r. Using this
(XXIX) will be

− w(
∨

�τ

Θ�δ∪�τ ) log(2−rw(
∨

�τ

Θ�δ∪�τ )) ≥ −
∑

�τ

w(Θ�δ∪�τ ) log w(Θ�δ∪�τ ). (XXX)

The state descriptions are pairwise disjoint and so (XXX) will be

−
∑

�τ

w(Θ�δ∪�τ ) log(2−r
∑

�τ

w(Θ�δ∪�τ )) ≥ −
∑

�τ

w(Θ�δ∪�τ ) log w(Θ�δ∪�τ ).

(XXXI)

But x log x is a convex function and the number of possible �τ ’s in (XXXI)
is 2r. Hence by convexity we should have

(
∑

�τ

2−rw(Θ�δ∪�τ )

)(
log(

∑

�τ

2−rw(Θ�δ∪�τ ))

)

≤ 2−r

(
∑

�τ

w(Θ�δ∪�τ ) log w(Θ�δ∪�τ )

)

that is (XXXI). Furthermore the inequality in (XXVIII) is strict because if
we had equality for all such �δ then we would have W �Lr= w �Lr . To see
that this leads to a contradiction, let ν be the map from { 〈k, j〉 | 1 ≤ j ≤
r, } → {0, 1} taking everything to 1. Then we will have
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W (
r∧

j=1

R(ak, aj)) = W (
∨

�δ

Θ�δ∪�ν) =
∑

�δ

W (Θ�δ∪�ν)

= 2−r
∑

�δ

w(
∨

�τ

Θ�δ∪�τ ) = 2−r
∑

�δ

∑

�τ

w(Θ�δ∪�τ )

= 2−r
∑

�ε

w(Θ�ε) = 2−r

If W r = W �Lr= w �Lr= wr then ek = w(∀xR(ak, x)) ≤ wr(
∧r

j=1 R(ak, aj))
= W r(

∧r
j=1 R(ak, aj)) = 2−r, and this is a contradiction as r has been

chosen large, so 2−r < ek, This finishes the proof of Claim 2.

The quantifier complexity of K above is Σ2. Thus our result here shows
that for sentences with quantifier complexity of Σ2 or above and the con-
straint sets induced by them, the Maximum Entropy models are not always
uniquely defined. In the next section we will consider Σ1 sentences and the
constraints sets induced by them.

2.3. Constraints from Σ1 Sentences

Let K = {w(∃�xθ(�x)) = 1} be the constraint induced by a Σ1 sentence from a
first order language L. In this section we will show that MEW (K) is unique.
To show this we will show that there exists a probability function w defined
on SL that satisfies K and is closer than any other probability function
that satisfies K to P=, on Ln for all n eventually. Notice again that this
is stronger than what is required by Definition 9 as it establishes both the
existence of a Maximum Entropy solution as well as its uniqueness. To this
end, we will show that P= itself satisfies K and will thus be the MEW (K).

Theorem 4. Let K = {w(∃�xθ(�x)) = 1} where ∃�xθ(�x) is a consistent Σ1

sentence. Then P= is the Maximum Entropy solution for K, i.e., MEW (K)
= P=.

Proof. Let φ ∈ SL be of the form ∃x1, ..., xtψ(�x) where ψ is quantifier
free. We will show that if φ is satisfiable then P=(φ) = 1. Equivalently we
will show that for a universal sentence φ′ of the form ∀x1, ..., xtψ

′(�x) that
is not a tautology we have P=(φ′) = 0. Let Qi(x1, ..., xt), i ∈ I enumerate
formulae of the form

∧

i1,...,ij≤t

Rij−ary

Ri∈RL

R
εxi1

,...,xij

i (xi1 , ..., xij
).
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where, as before, εxi1 ,...,xij
∈ {0, 1}, R1

i = Ri and R0
i = ¬Ri. Since ∀x1, ...,

xtψ
′(�x) is not a tautology then there is some proper subset J of I such that

� ψ′(�x) ↔
∨

j∈J

Qj(�x).

For i1 < i2 < ... < it < q the number of extensions of Qi(ai1 , ..., ait
) is

the same for each i so P=(Qi(ai1 , ..., ait
)) = 1

|I| and for disjoint �a1, ...,�ar,
P=(Qn1(�a

1) ∧ ... ∧ Qnr
(�ar)) = 1

|I|r . So

P=(∀x1, ..., xtψ
′(�x)) ≤ P=(ψ′(�a1) ∧ ... ∧ ψ′(�ar))

=
∑

n1,...,nr∈J

P=(Qn1(�a
1) ∧ ... ∧ Qnr

(�ar)) =
( |J |

|I|
)r

→ 0 as r → ∞.

So for every non tautology universal sentence φ′, P=(φ′) = 0 and so every
satisfiable existential sentence will get value 1. This completes the proof.

Thus, although the MEW fails to provide a unique extension to first
order languages it is uniquely defined on such languages for constraint sets
involving sentences of quantifier complexity Σ1.

3. The MEW , Permutation of Constants and Cloned State
Descriptions

We will now turn to the investigation of some structural properties of the
Maximum Entropy models. In particular we show first that these models
are invariant under permutation of those constants that do not appear in
the set of constraints and second that Maximum Entropy models will in the
limit put all probability on those structures (state descriptions) that admit
as many mutually distinguishable constants as possible.

Let σ be the permutation of a1, a2, ... that transposes ai and aj , that is,
σ(ai) = aj , σ(aj) = ai and σ(ak) = ak for k �= i, j.

Theorem 5. Let K = {∑n
j=1 ajiv(φj) = bi | i = 1, ...,m} be a set of linear

constraints such that the constants ai and aj do not appear in K and let
w = MEW (K). Then w(σ(ψ)) = w(ψ) for ψ ∈ SL where σ(ψ) is the result
of transposing ai and aj throughout ψ.

Proof. Assume w(σ(ψ)) �= w(ψ) for some ψ and define the probability
function W as follows,

Wn(Θ(n)) = 2−1(wn(Θ(n)) + wn(σ(Θ(n))))
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First notice that for all φi appearing in K, σ(φi) = φi and so W (φi) = w(φi).
Hence W satisfies K as w was a solution for K.

Claim 3. dn(W,P=) < dn(w,P=) for large n eventually.

Claim 3 gives the required contradiction as we assumed w to be the
closest probability function to P= that satisfies K. Thus we should have
w(ψ) = w(σ(ψ)) and MEW (K) remains invariant under the permutations
that permute those individuals not appearing explicitly in K. To prove Claim
3 it is enough to show that for large n

∑

Θ
(n)
i

Wn(Θ(n)
i ) log(Wn(Θ(n)

i )) <
∑

Θ
(n)
i

wn(Θ(n)
i ) log(wn(Θ(n)

i )). (XXXII)

By definition,
∑

Θ
(n)
i

Wn(Θ(n)
i ) log(Wn(Θ(n)

i ))

=
∑

Θ
(n)
i

2−1
(
wn(Θ(n)

i ) + wn(σ(Θ(n)
i ))

)
log(2−1(wn(Θ(n)

i )

+wn(σ(Θ(n)
i ))))

and for each Θ(n)
i there is exactly one Θ(n)

j such that Θ(n)
j = σ(Θ(n)

i ) and

Θ(n)
i = σ(Θ(n)

j ). Notice that x log(x) is convex so

2

(
wn(Θ(n)

i ) + wn(Θ(n)
j )

2
log

(
wn(Θ(n)

i ) + wn(Θ(n)
j )

2

))

≤ wn(Θ(n)
i ) log(wn(Θ(n)

i ))

+wn(Θ(n)
j ) log(wn(Θ(n)

j ))

and thus
∑

Θ
(n)
i

Wn(Θ(n)
i ) log(Wn(Θ(n)

i )) ≤
∑

Θ
(n)
i

wn(Θ(n)
i ) log(wn(Θ(n)

i )).

This inequality should be strict eventually otherwise W = w which is a con-
tradiction as w(ψ) �= w(σ(ψ)) while W (ψ) = W (σ(ψ)) and this completes
the proof of Claim 3.

3.1. MEW and the Cloned State Descriptions

The state description Φ(n) is a clone of Ψ(m) with n > m if the behaviour
of each constants in Φ(n) is the same as the behaviour of some constant in
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Ψ(m). For a permutation σ of the constants that permutes ai and aj and
keeps other constants fixed, and a state description Ψ(m), let σ(Ψ(m)) be
the result of swapping ai and aj in Ψ(m). We say that constants ai and
aj are indistinguishable for Ψ(m), ai ∼Ψ(m) aj , if σ(Ψ(m)) = Ψ(m). Notice
that each state description Ψ(m) gives a partition of the {a1, . . . , am} into
equivalence classes of the indistinguishability relation ∼Ψ(m) . If Φ(n) is a
clone of Ψ(m), then ∼Φ(n) has the same set of equivalence classes and each
constant am+1, . . . , an is added to one of these existing equivalence classes
and will thus have the same behaviour as some constant {a1, . . . , am} in
Ψ(m). We will show that the Maximum Entropy models do not favour the
cloned state descriptions. Indeed we will show that in the limit, maximum
entropy models will assign all the probability to those state descriptions
that are not a clone of some other state description on a smaller number of
constants. In this way, the maximum entropy models will favour those state
descriptions that admit as many distinguishable constants as possible.

Definition 10. For m ≤ p, we say that the state description Φ(a1, ..., ap)
is a clone of the state description Ψ(a1, ..., am) if there is a function τ from
p to m such that

Φ(aτ(1), ..., aτ(p)) ≡ Ψ(a1, ..., am).

Theorem 5. When it is consistent with K, MEW (K) will, in the limit, put
all the probability on the structures in which there are as many explicitly
distinct individuals as possible. In other words, if there is a state description
on a1, a2, ..., am+1 that is consistent with K which is not the clone of any
state description on a1, ..., am then if

∨
βp is the disjunction of those state

descriptions Θ(p)(a1, ..., ap) which are clones of some state description on
a1, ..., am,

lim
p→∞ MEW (K)(

∨
βp) = 0.

In other words, if it is consistent with K to have m + 1 distinguishable
constants, then MEW (K) will, for large enough r, assign zero probability to
those state descriptions on a1, . . . , ar which have at most m distinguishable
constants.

Proof. Suppose not. Set w = MEW (K) and let a > 0 be the largest such
that w(

∨
βp) ≥ a, for all p eventually. We shall show that for n > m any

state description Δ(n)(a1, ..., an) that is consistent with K must be a clone
of some state description on a1, ..., am. This will give a contradiction with
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the assumption that there is an state description on a1, a2, ..., am+1 that is
consistent with K and is not the clone of any state description on a1, ..., am.
Suppose on the contrary that a state description Δ(n)(a1, ..., an) (where
n > m) did exist and was consistent with K but was not a clone of any
state description on a1, ..., am. We may assume that a1, .., an are all distin-
guishable in Δ(n), in other words replacing any ai in Δ(n)(a1, ..., an) by aj ,
1 ≤ j ≤ n, i �= j gives a contradiction. Define for the state description Φ(p)

with p ≥ m,

wc(Φ(a1, ..., ap)) = lim
r→∞ w

(∨
βr

)

where
∨

βr is the disjunction of those state descriptions on {a1, . . . , ar}
which extend Φ(p) and are clones of some state description on a1, ..., am.
Notice that this limit exists and for p > m,

∑
βp

wc(βp) = a > 0.
We define the probability function W as follows. For a state description

Λ(r) where r ≥ n:

W (Λ(r))

:=

⎧
⎨

⎩

w(Λ(r)) + Q−1
r a If Λ(r) extends Δ(n) and is a clone of Δ(n)

w(Λ(r)) − wc(Λ(r)) If Λ(r) is a clone of some Ψ(m)(a1, ..., am)
w(Λ(r)) Otherwise

where Qr is the number of clones of Δ(n)(a1, ..., an) on a1, ..., ar.

Claim 4. W extends to a probability function on SL and is closer to P=

than w, that is dn(W,P=) < dn(w,P=) for all n eventually.

This provides the required contradiction by the choice of w. So, if there is
an m and a > 0 such that limr→∞ w(

∨
βr) = a, where

∨
βr is the disjunction

of state descriptions on a1, ..., ar that are clones of some state description on
a1, ..., am, then eventually every state description consistent with K should
be clone of some state description a1, ..., am. As pointed out earlier, this con-
tradicts the assumption of the existence of a state description on a1, ..., am+1

consistent with K that is not a clone of any state description on a1, ..., am.

Before we proceed to prove Claim 4 it might be helpful to mention that
the idea here is that because Δ(a1, ..., an) is not a clone of any state de-
scription Ψ(a1, ..., am), for large r > p, Δ(a1, ..., an) has far more clones ex-
tending it than there are clones of state descriptions on a1, ..., am. Then, in
the long run, it will be more advantageous in terms of entropy to spread the
probability measure uniformly onto these clones of Δ(a1, ..., an) than (pos-
sibly non-uniformly) on the clones of state descriptions on a1, ..., am. This
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is exactly what is happening in the definition of W above. We take some
probability off from the clones of the state descriptions on {a1, . . . , am} and
divide it equally among the state descriptions that are clones of Δ(n).

Proof of Claim. 4. Let Γr denote the set of state descriptions of Lr

and remember that w = MEw(K) and W as defined above. We will first
show that W extends to a probability function on SL. To show this, by
(II), it is enough to show that

∑
Λ

(r)
i

W (Λ(r)
i ) = 1 where Λ(r)

i ranges over

Γr and that W (Λ(r)) =
∑

Λ
(r+1)
j �Λ(r) W (Λ(r+1)

j ) where Λ(r+1)
j ranges over

state descriptions of Lr+1 , i.e. Γr+1. To see that
∑

Λ
(r)
i

W (Λ(r)
i ) = 1, let Γ1

r

be those state descriptions in Γr that extend Δ(n) and are clones of Δ(n)

and Γ2
r be those that are clones of some state descriptions on a1, ..., am. Set

Γ3
r = Γr − (Γ1

r ∪ Γ2
r). Thus

∑

Λ
(r)
i

W (Λ(r)
i ) =

∑

Λ
(r)
i ∈Γ1

r

W (Λ(r)
i ) +

∑

Λ
(r)
i ∈Γ2

r

W (Λ(r)
i ) +

∑

Λ
(r)
i ∈Γ3

r

W (Λ(r)
i )

=
∑

Λ
(r)
i ∈Γ1

r

(
w(Λ(r)

i ) + Q−1
r a

)
+

∑

Λ
(r)
i ∈Γ2

r

(
w(Λ(r)

i ) − wc(Λ(r)
i )

)

+
∑

Λ
(r)
i ∈Γ3

r

w(Λ(r)
i )

=
∑

Λ(r)∈Γr

w(Λ(r)) −
∑

Λ(r)∈Γ2
r

wc(Λ(r)) + a = 1 + a

−
∑

Λ(r)∈Γ2
r

wc(Λ(r)) = 1.

To see that W extends correctly to a probability function on SL, as in (II),
we will consider each case separately. For the first case, that is when Λ(r)

extends Δ(n) and is a clone of Δ(n),

W (Λ(r)) = w(Λ(r)) + Q−1
r a =

⎛

⎜⎜⎜⎜⎝

∑

Λ(r+1)
j ∈Γr+1

Λ(r+1)
j �Λ(r)

w(Λ(r+1)
j )

⎞

⎟⎟⎟⎟⎠
+ Q−1

r a. (XXXIII)

Let Γr+1 = ΓΔ
r+1 ∪ ΓΔ

r+1 where ΓΔ
r+1 is the set of those state descriptions

in Γr+1 that are clones of Δ(n). Notice that state descriptions in ΓΔ
r+1 that

extend Λ(r) are not clones of any state description on a1, ..., am since Δ(n)
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is not a clone of any state description on a1, . . . , am and Λ(r) extends Δ(n).
Thus for Λ(a1, ..., ar+1) ∈ ΓΔ

r+1, W (Λ(a1, ..., ar+1)) = w(Λ(a1, ..., ar+1)) also
Qr+1 = |ΓΔ

r+1| = n|ΓΔ
r | = nQr as every state description in ΓΔ

k has exactly
n extensions to state descriptions ΓΔ

k+1
1. So for (XXXIII) we have,

W (Λ(a1, ..., ar)) = Q−1
r a +

∑

Λj∈Γr+1
Λj�Λ

w(Λj(a1, ..., ar+1))

=
∑

Λj∈ΓΔ
r+1

Λj�Λ

(
w(Λj(a1, ..., ar+1)) + Q−1

r+1a
)

+
∑

Λj∈ΓΔ
r+1

Λj�Λ

W (Λj(a1, ..., ar+1))

=
∑

Λj∈ΓΔ
r+1

Λj�Λ

W (Λj(a1, ..., ar+1))+
∑

Λj∈ΓΔ
r+1

Λj�Λ

W (Λj(a1, ..., ar+1))

=
∑

Λj∈Γr+1
Λj�Λ

W (Λj(aa, ..., ar+1))

We shall now show that W is closer to P= than w. To this end, it is
enough to show that for r large enough

∑
Λ(r)∈Γr

W (Λ(r)) log(W (Λ(r))) <∑
Λ(r)∈Γr

w(Λ(r)) log(w(Λ(r))) or
∑

Λ(r)∈Γ1
r

W (Λ(r)) log(W (Λ(r))) +
∑

Λ(r)∈Γ2
r

W (Λ(r)) log(W (Λ(r)))

+
∑

Λ∈Γ3
r

W (Λ(r)) log(W (Λ(r))) <
∑

Λ(r)∈Γr

w(Λ(r)) log(w(Λ(r))).

Expanding the left hand side we have
∑

Λ(r)∈Γ1
r

(
w(Λ(r)) + Q−1

r a
)

log
(
w(Λ(r)) + Q−1

r a
)

+
∑

Λ(r)∈Γ2
r

(
w(Λ(r)) − wc(Λ(r))

)
log

(
w(Λ(r)) − wc(Λ(r))

)

+
∑

Λ(r)∈Γ3
r

w(Λ(r)) log
(
w(Λ(r))

)
<

∑

Λ(r)∈Γr

w(Λ(r)) log
(
w(Λ(r))

)
.

1Notice that here we are using the fact that a1, ..., an are all distinguishable in
Δ(a1, ..., an).
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Notice that 0 < w(Λ(r)) − wc(Λ(r)) ≤ 1 and so log(w(Λ(r)) − wc(Λ(r))) ≤ 0
and

∑
Λ(r)∈Γ2

r
(w(Λ(r))−wc(Λ(r))) log(w(Λ(r))−wc(Λ(r))) ≤ 0 so expanding

the left hand side and rearranging the equation, it is enough to show that
∑

Λ(r)∈Γ1
r

w(Λ(r)) log
(

1 +
a

Qrw(Λ(r))

)
+ Q−1

r a
∑

Λ(r)∈Γ1
r

log
(
w(Λ(r)) + Q−1

r a
)

<
∑

Λ(r)∈Γ2
r

w(Λ(r)) log(w(Λ(r))) (XXXIV)

The first thing to notice here is that if Λ(r)
1 , Λ(r)

2 ∈ Γ1
r then we can assume

that w gives them the same probability, otherwise we can define a bijection
σs from Δ(s) ∈ Γ1

s extending Λ(r)
1 to Δ(s) ∈ Γ1

s that extend Λ(r)
2 for s ≥ r

such that if Δ′(s+1) ∈ Γ1
s+1 extends Δ(s) ∈ Γ1

s then σs+1(Δ′(s+1)) ∈ Γ1
s+1

extends σs(Δ(s)) ∈ Γ1
s. Now defining for s ≥ r

w′(Δ(s)) = 2−1(w(Δ(s)) + w(σs(Δ(s))))

for Δ(s) ∈ Γ1
s extending Λ(r)

1 and

w′(Δ(s)) = 2−1(w(Δ(s)) + w(σ−1
s (Δ(s))))

for Δ(s) ∈ Γ1
s extending Λ(r)

2 and w′(Δ(s)) = w(Δ(s)) on other state descrip-
tions gives a probability function satisfying K that is closer to P= than w.
Thus for Λ(r)

1 , Λ(r)
2 ∈ Γ1

r, w(Λ(r)
1 ) = w(Λ(r)

2 ).
Let w(Λ(r)) = b

Qr
for Λ(r) ∈ Γ1

r. Then (XXXIV) will become

(a + b) log
(

a + b

Qr

)
+ b log

(
b

Qr

)
<

∑

Λ(r)∈Γ2
r

w(Λ(r)) log(w(Λ(r))).

For the right hand side, let
∑

Λ(r)∈Γ2
r
w(Λ(r)) = d and notice that since

any Λ(r) ∈ Γ2
r is a clone of some state description on Lm we should have

|Γ2
r| ≤ D (m)r−m ≤ D (n − 1)r where D is the number of state descriptions

of Lm consistent with K. On the other hand, by convexity,
∑

Λ(r)∈Γ2
r

w(Λ(r)) log(w(Λ(r))) ≥ |Γ2
r|

d

|Γ2
r|

log
(

d

|Γ2
r|

)
≥ d log

(
d

D (n − 1)r

)

whilst the left hand side of (XXXIV) is at most c−a log(Qr) = c′ −a log(nr)
for some constants c and c′ and to show (XXXIV) it will be enough to show
that c′ − a log(nr) < d log( d

D (n−1)r ) that is (1/r)(c′ + d(log(D) − log(d))) <

a log(n) − d log(n − 1) which holds for r large enough. This completes the
proof of Claim 4.
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So where K allows at least m + 1 distinct constants, for any m the limit
as p → ∞ of the probability of the state descriptions on a1, ..., ap that are
a clone of some state descriptions on a1, ..., am will tend to zero. In other
words MEW will in the limit put all the probability on the structures in
which there are as many explicitly distinct individuals as possible.
This result, concerning the treatment of cloned state descriptions, is not
meant as a shortcoming nor an advantage of the Maximum Entropy models.
The relevance (or lack thereof) of the cloned state descriptions is highly con-
textual. It does, however, provide a structural analysis that, in our opinion,
links the behaviour of the Maximum Entropy models (that we have, so far,
studied in terms of the treatment of the state descriptions) to the treatment
of the constants, which can hopefully provide better intuition regarding the
behaviour of these models. One way of reading this result is thus that, as
one would expect, the most entropic models admit as many different types
of constants as possible.

4. Conclusions

We studied the problem of determining the least committal model of a proba-
bilistic theory K. The problem has attracted a lot of attention from different
disciplines and is relevant to many scientific areas. There are two approaches
for defining such models on propositional languages; either as the probabil-
ity function with maximum Shannon entropy, ME(K), or as the one that
minimises the informational distance to the most non-committal probability
function over all (P=), MEW . It is known that these approaches agree for
theories from propositional languages.

We focused on the second characterisation, MEW , and studied the gen-
eralisation of MEW (K) to a set of constraints K over a first order language
in terms of the quantifier complexity of K. We showed that MEW is unique
for purely unary languages as well as for Σ1 constraints and in these cases
it agrees with limr→∞ ME(K(r)). The case of Π1 constraint sets remains
open. It is also not known whether limr→∞ ME(K(r)) for these constraint
sets exists in general or not. In [18] Paris and Rafiee Rad showed the ex-
istence of this limit for theories consisting of only slow formulae, that are
those whose models of any size are bounded exponentially.

However, for a set of constraints K with quantifier complexity of Σ2 or
higher, MEW (K) is not always unique. In particular we showed that for such
constraint sets one can always increase the entropy of the model by making
the witness of the existential quantifier scarcer. Although we established
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this by means of an example, our analysis gives a general account of why
the maximum entropy models for these theories do not exist. Finally, we
proved that the MEW solution exclusively favours those models with as
many explicitly distinct individuals as possible.
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[17] Paris, J. B., and A. Vencovská, In defense of the maximum entropy inference

process, International Journal of Approximate Reasoning 17(1):77–103, 1997.

[18] Paris, J. B., and S. Rafiee Rad, A note on the least informative model of a theory,
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