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Abstract Let P d
n denote the space of polynomials on R

d of total degree n. In this
work, we introduce the space of polynomials Qd

2n such that P d
n ⊂ Qd

2n ⊂ P d
2n and

which satisfy the following statement: Let h be any fixed univariate even polynomial
of degree n and A be a finite set in R

d . Then every polynomial P from the space Qd
2n

may be represented by a linear combination of radial basis functions of the form
h(‖x + a‖), a ∈ A, if and only if the set A is a uniqueness set for the space Qd

2n.
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1 Introduction

Let R
d be the real d-dimensional Euclidean space with norm ‖x‖ = (

∑d
i=1 x2

i )1/2.
Denote by B

d(a, r) = {x : ‖x −a‖ ≤ r} the Euclidean ball with center a and radius r .
Let B

d = B
d(0,1) and S

d−1 = {‖x‖ = 1} be the unit ball and sphere in the space R
d ,

respectively.
Let h(t) be a function defined on R+. Consider the radial function h(‖x‖) on R

d .
Given a point a in R

d , we introduce the shifted radial function ha = h(‖x + a‖) with
center −a. Let A be a subset in R

d . Denote by R(h, A) the class of functions of the
form h(‖x + a‖), where a runs over the set A. Consider the class of functions

R(h, A) = spanR(h, A)

formed by all possible finite linear combinations of functions from the set R(h, A).
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The problem of the representation of functions by linear combination of shifts
of radial basis functions is of current interest in different applications of nonlin-
ear approximation, including approximation by wave functions, learning theory, and
tomography. Results about density of the spaces formed by linear combinations of
shifts of fixed functions were obtained by Wiener (see Edwards [4]), Pinkus [11, 12],
Schwartz [15], Agranovsky and Quinto [1], and many others. A series of important
results on approximation by radial basis functions are obtained in [2, 8, 9, 13, 14].

Since a large class of functions may be approximated by polynomials, then the
problem of the representation of polynomials by shifts of radial basis polynomials is
closely connected with the above problems.

Let s = (s1, . . . , sd) ∈ Z
d be any vector with nonnegative integer coordinates.

We set xs = x
s1
1 · · ·xsd

d and |s| = s1 + · · · + sd . Consider the space P d = span{xs :
s ∈ Z

d+} of all polynomials on R
d , i.e., linear combinations of a finite number of

monomials xs . If p(x) = ∑
s csx

s is a polynomial from P d , then the total degree of
p is defined by degp = max{|s| : cs �= 0}. Denote by P d

n the space of all polynomials
from P d of degree at most n. The total dimension of P d

n equals Dn = (
n+d
d

)
.

2 Orthogonal System P of Polynomials on the Ball

In this section, we introduce the polynomial orthogonal basis P = {PI } on the ball
Bd which we will use in proofs of the main results (for a more detailed exposition of
this basis, see [7]). For the construction of the basis P, we use work by [3, 5, 6, 10].
A series of applications of the basis P for approximation by ridge and radial functions
is contained in [6, 7].

First, we discuss some well-known results connected with orthogonal polynomi-
als, which we use in this present work.

1. The Gegenbauer polynomials: The Gegenbauer polynomials (see [16–18, 20])
are usually defined via the generating function

(
1 − 2tz + z2)−λ =

∞∑

k=0

Cλ
k (t)zk,

where |z| < 1, |t | < 1, and λ > 0. The coefficients Cλ
k (t) are algebraic polynomi-

als of degree k and are termed the Gegenbauer polynomials associated with λ. The
Gegenbauer polynomials possess the following properties:

(a) The family of polynomials {Cλ
n }∞0 is a complete orthogonal system for the

weighted space L2(Q, σ ), Q = [−1,1], σλ(t) := (1 − t2)λ−1/2, and

∫

Q

Cλ
m(t)Cλ

n(t)σλ(t) dt =
{

0, m �= n,

vn,λ, m = n,
(1)

where we use the usual notation vn,λ := π1/2(2λ)nΓ (λ+1/2)
(n+λ)n!Γ (λ)

and (a)0 := 1, (a)n :=
a(a + 1) · · · (a + n − 1).
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Let d be a natural number. We set Un(t) = v
−1/2
n,d/2C

d/2
n (t). Then the family of poly-

nomials {Un}∞0 is the complete orthonormal system in the weighted space L2(Q, σ ),
where σ(t) = σd/2(t) = (1 − t2)(d−1)/2.

(b) Let P d
n be the set of all algebraic polynomials of total degree n in d real

variables. Let ξ be any point on the sphere S
d−1. Then the polynomial Un(ξ · x) is in

P d
n and is orthogonal to P d

n−1 in L2(B
d) (see [3, 10]), i.e.,

∫

Bd

Un(ξ · x)p(x)dx = 0, ∀p ∈ P d
n−1. (2)

(c) For each ξ, η ∈ Sd−1 and n ∈ Z+, we have (see [10])
∫

Bd

Un(ξ · x)Un(η · x)dx = Un(ξ · η)

Un(1)
. (3)

(d) For each polynomial p(x) ∈ Pn such that p(x) = (−1)np(−x) for all x ∈ Rd ,
we have ([10, 16])

∫

Sd−1
p(ξ)Un(ξ · η)dξ = cnp(η), where cn = 2(2π)d−1Un(1)

(n + 1)d−1
. (4)

2. An Orthogonal System of Polynomials on the Sphere: Let j be a nonneg-
ative integer number. Let Hhom

j be the subspace in P d
j formed by all harmonic

homogeneous polynomials (i.e., the spherical harmonics) of degree j . We know
[16, 20] that the dimension lj of Hhom

j equals lj = ( d+j−1
j

) − ( d+j−3
j−2

)
, j ≥ 2, and

l0 = 1, dim l1 = d . It is easy to verify that the dimension lj = (1 + 2
(d−2)! +

c(s, d))s(s + 1) · · · (s + d − 3), where 0 ≤ c(s, d) ≤ 1 is some constant depend-
ing only on s and d . Let Πj = {Yj,1, . . . , Yj,lj } be an orthonormal basis in the
space Hhom

j (Sd−1) of functions formed by restrictions of functions from Hhom
j to the

sphere S
d−1. Then the set

⋃∞
j=0 Πj is an orthonormal basis in the space L2(S

d−1),
i.e., for any functions Yj,k and Yj ′,k′ from

⋃∞
j=0 Πj , the following holds:

(Yj,k, Yj ′,k′) =
∫

Sd−1
Yj,k(ξ)Yj ′,k′(ξ) dξ = δj,j ′δk,k′ ,

where by dξ we denote the normalized Lebesgue measure on S
d−1.

3. An Orthogonal System of Polynomials on the Ball: Consider the Hilbert
space L2(S

d−1) of complex-valued square-integrable functions h on the sphere S
d−1

with the inner product

(s1, s2) =
∫

Sd−1
s1(ξ)s2(ξ) dξ, s1, s2 ∈ L2

(
S

d−1).

Also consider the Hilbert space L2(Q, σ ) of real functions on the segment Q =
[−1,1] with the norm

‖g‖L2(Q,σ ) =
(∫

Q

∣
∣g(t)

∣
∣2

σ(t) dt

)1/2

, where σ(t) = (
1 − t2)(d−1)/2

.
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Consider the system of normed Gegenbauer polynomials {Ui(t)}, i = 0,1, . . . , on the
segment Q, forming a complete orthonormal system in the space L2(Q, σ ).

Introduce the set of triple indices

I = {
I := (i, j, k) : i ∈ Z+, j ∈ {0, . . . , i}, j = i (mod 2), k = 1, . . . , lj

}
, (5)

where lj is the dimension of space Hhom
j of harmonic homogeneous polynomials of

degree j . For every index I = (i, j, k) from I, we construct the function on R
d ,

PI (x) := Pi,j,k(x) := νij

∫

Sd−1
Ui(x · ξ)Yj,k(ξ) dξ, (6)

where the coefficient νij is the normalizing factor such that ‖PI‖L2 = 1 and x · ξ =
x1ξ1 + · · · + xdξd is the inner product of the vectors x and ξ . From (6), we see that
the function PI is the polynomial on R

d of total degree i. Consider the system of
polynomials

P = {PI }I∈I. (7)

The system P is the complete orthonormal system of polynomials in the space L2(B
d)

(see [7]). In particular, for any natural n, the finite subsystem of polynomials

Pn = {
PI : I = (i, j, k) ∈ I, i ≤ n

}
(8)

in P forms ([7]) an orthogonal basis in the space P d
n of all polynomials on R

d of total
degree n.

3 Main Results

In this paper, we introduce another subspace of polynomials, which is defined by the
following. Consider the subset of indices In = {I = (i, j, k) ∈ I : i + j ≤ 2n} in the
set I and the corresponding collection of polynomials from the system P,

Q2n = {PI : I ∈ In}.

Definition Let Qd
2n = span Q2n be the linear space of polynomials formed by the

linear span of polynomials from Q2n.
It is obvious that for every natural n, we have

P d
n ⊂ Qd

2n ⊂ P d
2n. (9)

Denote by Sn the dimension of the space Qd
2n. From (9), we have Dn ≤ Sn ≤ D2n.

Since the collection of polynomials {PI }I∈In is the complete orthonormal system in
the space Qd

2n, then Sn coincides with the cardinality of the set In.

Let h be any fixed univariate even polynomial of degree 2n. We show that every
polynomial pn from the space Qd

2n may be represented by the linear combination of
some Sn shifts h(‖x+ai‖), i = 1, . . . , Sn, of the radial polynomial h(‖x‖). Moreover,
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we show that the representation is valid for any collection of points a1, . . . , aSn from
R

d forming a uniqueness set for the space Qd
2n.

Let n be any natural number. Let h(t) = b2nt
2n + · · · + b0, b2n �= 0, be any uni-

variate even polynomial of degree 2n; that is, all coefficients bm with m odd are equal
to zero.

A set of points An = {a1, . . . , aSn} is said to be a h-basis set for the space Qd
2n if

R(h, An) = Qd
2n; that is, every polynomial p from Qd

2n can be represented as

p(x) = c1h
(‖x + a1‖

) + · · · + cSnh
(‖x + aSn‖

)
, ci ∈ R.

A set of points An is called a uniqueness set for the space Qd
2n if, for any two poly-

nomials p1 and p2 from Qd
2n, the relations p1(ai) = p2(ai), i = 1, . . . , Sn, implies

the equality p1(a) = p2(a) for all a ∈ R
d .

Theorem 3.1 Let n be any natural number and h be any univariate even polynomial
of degree 2n. Then set An is an h-basis set for the space Qd

2n if and only if An is the
uniqueness set for Qd

2n.

Consider the Hilbert space L2 = L2(B
d) of complex functions on the ball Bd with

inner product

〈f1, f2〉 =
∫

Bd

f (x)g(x) dx, f1, f2 ∈ L2.

Let f and G be a function and a subspace in L2, respectively. Denote by E(f,G) =
infg∈G ‖f − g‖L2 the distance of the function f from G. Let F be a function class in
L2. By E(F,G) = supf ∈F infg∈G ‖f − g‖L2 , we denote the deviation of the class F

from G. The following follows directly from Theorem 3.1 and the embedding (9).

Corollary 3.2 Let n be any even number, An be a uniqueness set for Qd
2n, and h

be any univariate even polynomial of degree n. Then for any function f from the
space L2, the following inequality holds:

E
(
f, R(h, An)

) = E
(
f, Qd

2n

)
.

Let s = (s1, . . . , sd) ∈ Z
d+ and |s| = s1 + · · · + sd . Introduce the differential operator

Ds = ∂ |s|/∂s1x1 · · · ∂sd xd . Let r be any natural number. In the space L2, we consider
the Sobolev class of functions

Wr
2

(
B

d
) :=

{
f : ‖f ‖Wr

2
= ‖f ‖L2 + max|s|=r

∥
∥Dsf

∥
∥

L2
≤ 1

}
.

Corollary 3.3 Let n be any even number, An be an uniqueness set for Qd
2n, and h be

any univariate even polynomial of degree n. Then the inequalities

c1n
−r ≤ E

(
Wr

2

(
B

d
)
, R(h, An)

) ≤ c2n
−r (10)

hold, where c1 and c2 depend only on r and d .
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The upper bound for E(Wr
2 (Bd), R(h, An)) directly follows from Corollary 3.2 and

Jackson’s theorem. The lower bound follows from the estimate of the Kolmogorov
n-widths of the class Wr

2 (Bd) (see [19]).

4 Moments of Radial Functions

In this section, we establish some auxiliary results which we will use in the proof
of the main theorem. Let f be a function from the space L2(B

d). Denote by
MI(f ) = 〈f,PI 〉 the I -moment of the function f . Let a be any point in R

d and s be
a natural number. Introduce the functions r(x) = ‖x‖ and ra(x) = ‖x +a‖. In the fol-
lowing lemma, we calculate the moments MI(r

2s
a ) of the shifted radial function r2s

a =
‖x + a‖2s .

Given triple index I = (i, j, k) from I, we consider the normed Gegenbauer poly-
nomial Ui(t) on the segment Q = [−1,1] of degree i and the spherical harmonic
Yj,k(θ) on the sphere S

d−1 of degree j .

Lemma 4.1 Let I = (i, j, k) be any triple index from I and a be any point from R
d .

We write

uβ,i := (
tβ,Ui

)
Q

:=
∫

Q

tβUi(t)σ (t) dt (11)

and consider the function on R
d

Vi,j,k(a) := (
(a · θ)i, Yj,k

) :=
∫

Sd−1
(a · θ)iYj,k(θ) dθ. (12)

Then, for every natural s, the I -moment of the function r2s
a equals

MI

(
r2s
a

) = ν

2s∑

α=0

(
2s

α

)

u2s−α,iVα,j,k(a),

where ν depends only on I, d , and s.

Proof Given s, we will use the equality

‖x‖2s = cs

∫

Sd−1
(x · θ)2s dθ, where cs =

(∫

Sd−1
(e · θ)2s dθ

)−1

, (13)

and where by e we denote the point e = (0, . . . ,0,1). Equality (13) directly follows
from the homogeneity of the polynomials ‖x‖2s , (x · θ)2s , and the invariance of the
measure dθ with respect to the rotation operator in R

d .
For a fixed point θ on S

d−1, we consider the univariate polynomial wθ(t) =
(t + a · θ)2s of degree 2s. From (13), we have

‖x + a‖2s = cs

∫

Sd−1
(x · θ + a · θ)2s dθ = cs

∫

Sd−1
wθ(x · θ) dθ. (14)
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Using (14) and (6), we can represent the I -moment of the function r2s
a by the follow-

ing:

〈
r2s
a ,PI

〉 =
∫

Bd

‖x + a‖2sPI (x) dx

= csij

∫

Bd

PI (x) dx

∫

Sd−1
wθ(x · θ) dθ

= csij

∫

Bd

dx

∫

Sd−1
Ui(x · ξ)Yjk(ξ) dξ

∫

Sd−1
wθ(x · θ) dθ,

where csij = csνij . Therefore, we have

〈
r2s
a ,PI

〉 = csij

∫

Sd−1×Sd−1
Yjk(ξ) dξ dθ

∫

Bd

wθ (x · θ)Ui(x · ξ) dx. (15)

Given θ , we decompose the function wθ by the orthogonal system of Gegenbauer
polynomials {Uα}:

wθ(t) =
2s∑

α=0

(wθ ,Uα)Q Uα(t).

Then the last integral in (15) equals

∫

Bd

wθ (x · θ)Ui(x · ξ) dx =
2s∑

α=0

(wθ ,Uα)Q

∫

Bd

Uα(x · θ)Ui(x · ξ) dx. (16)

The following identity holds (see (3)):
∫

Bd

Uα(x · θ)Ui(x · ξ) dx = Ui(θ · ξ)

Ui(1)
δα,i .

Therefore, from (16), we obtain
∫

Bd

wθ (x · θ)Ui(x · ξ) dx = (wθ ,Ui)Q

Ui(θ · ξ)

Ui(1)
.

Substitute this expression into (15):

〈
r2s
a ,PI

〉 = csij

Ui(1)

∫

Sd−1×Sd−1
Yj,k(θ)(wθ ,Ui)Q Ui(θ · ξ) dξ dθ

= csij

Ui(1)

∫

Sd−1
(wθ ,Ui)Q dθ

∫

Sd−1
Yj,k(ξ)Ui(θ · ξ) dξ.

By (4), we have
∫

Sd−1
Yj,k(ξ)Ui(θ · ξ) dξ = c′

iYj,k(θ).
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Hence, we obtain

〈
r2s
a ,PI

〉 = ν

∫

Sd−1
(wθ ,Ui)QYjk(θ) dθ, (17)

where ν = csij c
′
i/Ui(1). The equality

wθ(t) = (t + a · θ)2s =
2s∑

α=0

(
2s

α

)

t2s−α(a · θ)α

implies

∫

Sd−1
(wθ ,Ui)QYj,k(θ) dθ =

2s∑

α=0

(
2s

α

)∫

Sd−1

(
(•)2s−α(a · θ)α,Ui(•)

)
Q
Yj,k(θ) dθ

=
2s∑

α=0

(
2s

α

)
(
(•)2s−α,Ui(•)

)
Q

(
(a · θ)α,Yj,k

)
.

Thus, we obtain from (17),

〈
r2s
a ,PI

〉 = ν

2s∑

α=0

(
2s

α

)
(
(•)2s−α,Ui

)
Q

(
(a · θ)α,Yj,k

)
.

Lemma 4.1 is complete. �

5 The Proof of Theorem 3.1

Let n be any natural number and h(t) = ∑n
s=0 cst

2s , t ∈ R, be an univariate even
polynomial of degree 2n. Given a point a from R

d , consider the polynomials g(x) =
h(‖x‖) and ga(x) = g(x + a). Let I be any index from the set In. Calculate the
moments MI(ga) of the function ga . Lemma 4.1 implies

MI(ga) =
n∑

s=0

csMI

(
r2s
a

) = ν

n∑

s=0

2s∑

α=0

cs

(
2s

α

)

u2s−α,iVα,j,k(a).

Set cs,α = νcs

(2s
α

)
. By properties of orthogonality of the polynomials Ui , we have

from (11),

u2s−α,i =
∫

Q

t2s−αUi(t)σ (t) dt = 0, 2s − α < i.

Analogously, by properties of orthogonality of spherical harmonics Yjk , we have
from (12),

Vα,j,k(a) =
∫

Sd−1
(a · θ)αYj,k(θ) dθ = 0, α < j.
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Also, we see that Vα,j,k(a) = 0 if α �= j (mod 2). Thus,

MI(ga) = ν

n∑

s= i+j
2

2s−i∑

α=j

cs,αu2s−α,iVα,j,k(a).

Note (see (5)) that i = j (mod 2). Therefore, i + j is always an even number. Inter-
changing the order summation, we obtain

MI(ga) =
2n−i∑

α=j

(∑

s

cs,αu2s−α,i

)

Vα,j,k(a), (18)

where the index s runs over the set {α+i
2 , α+i

2 + 1, . . . , n}. Since Vα,j,k(a) = 0 if
α �= j (mod 2), then factually, α runs only over the set {j, . . . ,2n − i}. Therefore, the
equality α = j = i (mod 2) is always true; that is, α + i is always an even number.

Consider two collections of polynomials of the variable a:

Mn = {
Mi,j,k(ga) : (i, j, k) ∈ In

}
and Vn = {

Vi,j,k(a) : (i, j, k) ∈ In

}
.

Lemma 5.1 The linear spans

M̂n = span Mn and V̂n = span Vn

of sets Mn and Vn coincide.

Proof Let I = (i, j, k) ∈ In be any index. From (18), we see that

MI(ga) ∈ span
{
Vα,j,k(a) : α ∈ {j, . . . ,2n − i}} ∈ span

{
Vα,j,k(a) : (α, j, k) ∈ In

};
that is, M̂n ⊆ V̂n. We show that V̂n ⊆ M̂n. We fix j and k. The equality (18) we
rewrite as

Mi,j,k(ga) =
2n−i∑

α=j

Cα
i Vα,j,k(a), where Cα

i =
∑

s

cs,αu2s−α,i . (19)

We show that the functions Vα,j,k for every α = j, . . . ,2n belong to M̂n. We use
induction on α. Let α = j . We have from (19) with i = 2n − j ,

Mn−j,j,k(ga) = C
j

2n−jVj,j,k(a). (20)

Hence, Vj,j,k ∈ M̂n. Now assume Vj,j,k, . . . , Vj+β,j,k ∈ M̂n with β ≥ 0. Show that
Vj+β+1,j,k also belongs to M̂n. We have from (19) with i = 2n − j − β − 1,

M2n−j−β−1,j,k(ga) =
j+β+1∑

α=j

Cα
2n−j−β−1Vα,j,k(a)

=
j+β∑

α=j

Cα
2n−j−β−1Vα,j,k(a) + C

j+β+1
2n−j−β−1Vj+β+1,j,k(a).
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Then, taking into consideration that the functions Vj,j,k, . . . , Vj+β,j,k and
M2n−j−β−1,j,k(ga) belong to M̂n, we obtain that Vj+β+1,j,k also belongs to M̂n.

Thus, the functions Vi,j,k(a), for all i ≥ j , belong to M̂n; that is, V̂n ⊆ M̂n.
Lemma 5.1 is proved. �

Lemma 5.2 The spaces V̂n and Qd
2n coincide.

Proof The space V̂n is the linear span of polynomials

Vi,j,k(a) = (
(a · θ)i, Yjk

)
, (i, j, k) ∈ In. (21)

Every polynomial 1, t, . . . , tn is some linear combination of Gegenbauer polynomials
{Ui(t)}ni=0. Therefore, V̂n ⊆ Qd

2n. We now prove that Qd
2n ⊆ V̂n. We show that the

set Vn forms a linear basis in the space Qd
2n. Indeed, consider the system of functions

Q2n consisting of polynomials (6)

Pi,j,k(a) = (
Ui(a · θ),Yjk

) =
i∑

α=o

bi,α

(
(a · θ)α,Yjk

)
, (i, j, k) ∈ In, (22)

where bi,α are the coefficients of the Gegenbauer polynomial Ui . The system Q2n is
a linear basis in the space Qd

2n. On the other hand, from (21) and (22), we see that
Pi,j,k ∈ V̂n for every index (i, j, k) ∈ In. Thus, Vn is a linear basis in Qd

2n. �

Proof of Theorem 3.1 By Lemmas 5.1 and 5.2, the collection of functions of a-
variable Mn = {MI(ga)}, I ∈ In, forms a basis in the space Qd

2n. Therefore, the
following obvious statement holds. �

Proposition 5.3 A set An = {a1, . . . , aSn}, where Sn = dim Qd
2n, is a uniqueness set

for the space of polynomials Qd
2n if and only if the square matrix

(
MI(gaj

)
)
, I ∈ In, j = 1, . . . , Sn,

is nondegenerate.

Proof Assume that a set An is a uniqueness set for the space Qd
2n. We show that any

polynomial p from Qd
2n may be represented by

p(x) = c1h
(‖x + a1‖

) + · · · + cSnh
(‖x + aSn‖

)
. (23)

Using moments MI(p) and MI(ga) of functions p and ga = h(ra), we can construct
the system of linear equations

MI(p) = c1MI(ga1) + · · · + cSnMI (gaSn
), I ∈ In, (24)

with respect to the unknowns coefficients c1, . . . , cSn . By Proposition 5.3, the system
(24) has a unique solution; that is, the polynomial p may be represented by (23).
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Conversely, assume that every polynomial p from Qd
2n may be represented

by (23). Then the matrix (MI (gaj
)), I ∈ In, j = 1, . . . , Sn, is nondegenerate. Hence,

by Proposition 5.3, the set An is a uniqueness set for the space Qd
2n. �
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