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Abstract It is shown that the plactic monoid M of rank 3 satisfies the identity
wvvwvw = wvwvvw where v = xyyxxyxyyx and w = xyyxyxxyyx . This is
accomplished by first showing that certain simple monoids related to M satisfy this
identity. These simple monoids are natural generalizations of the bicyclic monoid B,
which satisfies the identity w = v by a result of Adjan.
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1 Introduction

For an integer n ≥ 1 we consider the finitely presented monoid Mn = 〈a1, . . . , an〉
defined by the relations

ai aka j = akai a j for i ≤ j < k,

a j ai ak = a j akai for i < j ≤ k.

It is called the plactic monoid of rank n and was introduced in [14]. It is known that
the elements of Mn can be written in a canonical form, which implies that they are in a
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Identities of the plactic monoid 101

one-to-one correspondence with Young tableaux of certain type. In particular, Mn has
polynomial growth of degree n(n + 1)/2. Because of its strong connections to Young
tableaux, the plactic monoid has proved to be a very powerful tool in representation
theory and in algebraic combinatorics, see [7,13]. The combinatorics of Mn has been
extensively studied, recently including also the aspect of the Gröbner-Shirshov bases
[2,6,11]. The algebraic structure and representations of the monoid algebra K [Mn]
of Mn over a field K have been investigated, [4,10]. This paper is motivated by the
following conjecture.

Conjecture The plactic monoid of any rank n ≥ 1 satisfies a nontrivial identity.

On one hand, a motivation comes from general problems concerning existence of
identities in classes of finitely generated semigroups of polynomial growth. In par-
ticular, it is known (by results of Gromov and Grigorchuk) that a finitely generated
cancellative semigroup of polynomial growth satisfies a nontrivial identity, see [15].
However, as shown by Shneerson in [17], this is no longer true without the cancella-
tivity hypothesis. On the other hand, linear semigroups of polynomial growth satisfy a
nontrivial identity, [15], Corollary 5.8, while there exist linear semigroups satisfying
a nontrivial identity that have subexponential growth, see [15], Example on page 186,
and [5] for further results in this direction. Further connections between polynomial
growth and the theory of varieties of semigroups were explored in [18], motivated in
particular by Sapir’s problem on relatively free semigroups of polynomial growth [19].
While simple monoids seem to be of special interest from the point of view of varieties
of semigroups, it is also worth mentioning that the structure of Mn heavily depends
on certain simple monoids discovered in [10]. These monoids can be considered as
generalizations of the bicyclic monoid B. Therefore, a result of Adjan [1], asserting
that the bicyclic monoid B = 〈p, q | qp = 1〉 satisfies the identity

xyyxxyxyyx = xyyxyxxyyx . (1)

is the starting point for our approach.
On the other hand, the conjecture is motivated by the fact that a class of strongly

related monoids, called Chinese monoids Cn, n ≥ 1, satisfies identity (1). This class
was introduced and studied in [3]. Actually, the monoids Cn and Mn are isomorphic if
n ≤ 2. It was shown in [9] that Cn embeds into the product Bi ×Z

j , for some positive
integers i, j depending on n, where Z denotes the additive group of integers. This
is a consequence of the description of the minimal prime spectrum of the semigroup
algebra K [Cn] over a field K . Therefore, since the bicyclic monoid satisfies identity
(1), Cn also satisfies this identity.

Applying some of the results of [10] we prove in this paper that M = M3 satisfies
the identity

wvvwvw = wvwvvw (2)

where v = v(x, y) = xyyxxyxyyx and w = w(x, y) = xyyxyxxyyx . Our approach
is based on homomorphic images of M arising from natural maps K [M] → K [M]/P ,
where P are minimal prime ideals of K [M] and on certain infinite dimensional linear
representations of M . All such primes P of K [M] and all irreducible representations
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102 Ł. Kubat, J. Okniński

of M have been determined [10], while in case of plactic monoids Mn with n ≥ 4 the
corresponding problems remain a challenge. In particular, there is no obvious starting
point for an attempt to extend our proof to the class of all plactic monoids. One might
expect that for every n ≥ 4 the monoid Mn satisfies some identities, which however
would be more complicated than those satisfied by Mn−1 (unlike the case of Chinese
monoids mentioned above) and thus the proofs might be more involved, accordingly.

2 Identities of M3

Adjan’s result was recently reproved in a completely different but quite complicated
way in [8], starting from an embedding of B into the semigroup of 2×2 tropical matri-
ces. We start with a simple conceptual proof of this result, and for a more detailed study
of identities satisfied by the bicyclic monoid we refer to [16]. It is worth mentioning
that one of the key ideas of the proof of our main result is based on a strategy similar
to the argument given below.

Proposition 2.1 The bicyclic monoid B satisfies the identity

w(x, y) = v(x, y). (3)

Proof We apply the faithful representation φ : B → End(V ), where V is a vector
space over a field K with a basis {es : s ≥ 0} and

φ(p)(es) = es+1, φ(q)(es) =
{

0 if s = 0,

es−1 if s > 0,

see Exercise 11.9 in [12]. For simplicity we write bes = φ(b)(es) for b ∈ B. Notice
that pi q j (es) = es− j+i if it is nonzero, which holds exactly when j ≤ s. In particular,
if bes = 0 then bet = 0 for every t ≤ s.

Let x = pi q j , y = pkqm ∈ B. In order to show that w(x, y) = v(x, y) we may
assume that i + k − j − m ≥ 0, because otherwise we apply the involution on B
defined by p �→ q, q �→ p, which reduces the problem to this case. It is now enough
to show that for every s ≥ 0 we have xyxyyxes = yxxyyxes . We may assume that
one of these elements is nonzero. Then xyyxes 	= 0. Write yxes = es′ , xyyxes = es′′ .
Then

s′′ = s′ + (i + k − j − m) ≥ s′ = s + (i + k − j − m) ≥ s

by the assumption.
Since s′′ ≥ s and yxes 	= 0, we must have yxxyyxes = yxes′′ 	= 0. Second, since

s′′ ≥ s′ and xyes′ = es′′ 	= 0, we also have xyxyyxes = xyes′′ 	= 0.
Hence, both elements wes, ves are nonzero, and therefore they are both equal to

es+3(i+k− j−m). The result follows. ��
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Identities of the plactic monoid 103

It is known that anan−1 · · · a2a1 is a central and regular element of K [Mn]. In
particular M2 = 〈a, b〉 ⊆ M2〈ba〉−1 ∼= B × Z and M2 satisfies identity (1) by
Proposition 2.1, as was already noticed in [9].

We recall from [10] basic information on certain homomorphic images N1 and N2
of M = M3 that were used in the context of the classification of minimal prime ideals
of the monoid algebra K [M]. Namely, M is described by the presentation

M = 〈a, b, c〉,

where

aba = baa, bab = bba, aca = caa, cac = cca,

cbb = bcb, cbc = ccb, bac = bca, acb = cab

and we define N1 = M/(ac = ca) and N2 = M/(bacb = cbba). Here, for any
elements u1, u2 ∈ M by M/(u1 = u2) we mean the factor semigroup M/τ , where τ

is the congruence on M generated by the pair (u1, u2). We will denote the generators
of M and their natural images in the considered homomorphic images of M in the
same way, if unambiguous.

The element z = cba is a central and regular element of K [M] and also of K [Ni ]
for i = 1, 2, and one can consider the central localizations M〈z〉−1and Ni 〈z〉−1.
Moreover we have

M〈z〉−1 ∼= M/(z = 1) × 〈z, z−1〉 ∼= M/(z = 1) × Z (4)

Ni 〈z〉−1 ∼= Ni/(z = 1) × 〈z, z−1〉 ∼= Ni/(z = 1) × Z (5)

and

Ni 〈z〉−1/(z = 1) ∼= Ni/(z = 1).

The map f : M → M defined by a �→ cb, b �→ ca, c �→ ba is an antimonomorphism,
which induces an involution M/(z = 1) → M/(z = 1). Moreover, M is a subdirect
product of N1 and N2 and M/(z = 1) is a subdirect product of N1/(z = 1) and
N2/(z = 1). Notice that f induces an antiisomorphim of the latter two monoids. It
follows that in order to decide whether M satisfies nontrivial identities it is sufficient
to verify this for the monoid N1/(z = 1). Namely, let us say that a pair of words
s = s(x, y), t = t (x, y) in x, y is reversive if one obtains the same two words (as a
set) when reading s(x, y), t (x, y) backwards. Then we get

Lemma 2.2 The monoids M, M/(cba = 1) and N1/(cba = 1) satisfy the same
identities of the form s(x, y) = t (x, y), where s, t is a reversive pair of words.

Every element u ∈ N1 can be uniquely written in the form

u = (cba)k1(ba)k2 ak3(cb)k4 bk5 ck6 , (6)

where ki ≥ 0, see [10], Lemma 2.3. Hence, in view of (5), every element u of the
monoid N1/(z = 1) can be uniquely written in the form
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104 Ł. Kubat, J. Okniński

u = (ba)k2 ak3(cb)k4 bk5 ck6 , (7)

where ki ≥ 0. And it follows that N1/(z = 1) is a simple monoid, and hence so is
N2/(z = 1). Since cb · a = c · ba is the unity of N1/(z = 1), these monoids carry
some flavor of the monoid B, see [10], Proposition 2.6.

Consider the natural homomorphisms

φ1 : N1 → N1/(ab = ba)

and

φ2 : N1 → N1/(bc = cb).

So, the former makes the image of a central. It is easy to see that

N1/(ab = ba) ∼= 〈a〉 × 〈b, c〉 ∼= N × M2 (8)

and similarly
N1/(bc = cb) ∼= 〈c〉 × 〈a, b〉 ∼= N × M2, (9)

with N denoting the additive monoid of non-negative integers.
Assume that two elements

α = (cba)k1(ba)k2 ak3(cb)k4 bk5 ck6 ,

α′ = (cba)k′
1(ba)k′

2 ak′
3(cb)k′

4 bk′
5 ck′

6

of N1 satisfy φi (α) = φi (α
′) for i = 1, 2. Using the canonical form of elements of

N × M2 it is easy to see that

φ1(α) = ak1+k2+k3(cb)k1+k4 bk2+k5 ck6 , φ2(α) = ck1+k4+k6(ba)k1+k2 ak3 bk4+k5

and similar presentations hold for the elements φ1(α
′) and φ2(α

′). Consequently, we
get

k1 + k2 + k3 = k′
1 + k′

2 + k′
3, k1 + k4 = k′

1 + k′
4, k2 + k5 = k′

2 + k′
5, k6 = k′

6

and

k1 + k4 + k6 = k′
1 + k′

4 + k′
6, k1 + k2 = k′

1 + k′
2, k4 + k5 = k′

4 + k′
5, k3 = k′

3.

This is equivalent to the conditions

k1 + k2 = k′
1 + k′

2, k1 + k4 = k′
1 + k′

4, k2 + k5 = k′
2 + k′

5, k3 = k′
3, k6 = k′

6.

If k1 = k′
1 then clearly kq = k′

q for q = 1, 2, 3, 4, 5, 6, so that α = α′. Hence, assume
for example that k1 > k′

1. Let k′
1 = i and k1 = i + s for some s ≥ 1. Then also
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Identities of the plactic monoid 105

k′
2 = k2 + s, k′

4 = k4 + s, k5 = k′
5 + s and k′

2 = k2 + s. Put j = k2, k = k3, l =
k4, m = k5, r = k6. Then α, α′ are of the form

α = (cba)i+s(ba) j ak(cb)lbm+scr = [(cba)i+s(ba) j ak]bs[(cb)lbmcr ], (10)

α′ = (cba)i (ba) j+sak(cb)l+sbmcr = [(cba)i (ba) j ak]((ba)s(cb)s)[(cb)lbmcr ] (11)

and the images of α, α′ in N1/(z = 1) are of the form

(ba) j akbs(cb)lbmcr , (ba) j ak((ba)s(cb)s)(cb)lbmcr , (12)

respectively. So α, α′ are in the congruence ρ on N1 generated by all pairs
((cba)sbs, (ba)s(cb)s), s ≥ 1. It follows that ρ = Ker φ1 ∩ Ker φ2, the intersec-
tion of the congruences determined by φ1 and φ2 and N1/ρ embeds into the monoid
N1/(ab = ba) × N1/(bc = cb).

We know that N × M2 satisfies Adjan’s identity (1) because the plactic monoid of
rank 2 satisfies every identity holding in the bicyclic monoid. Hence, in view of (8)
and (9), N1/ρ satisfies this identity.

In particular, for every x, y ∈ N1 the elements xy2xxyxy2x, xy2xyxxy2x must be
of the form described in (10) and (11), while their images in N1/(z = 1) are of the
form (12). Moreover, if k1 = k′

1 (equivalently s = 0) then α = α′, with the notation
as above.

Hence we obtain the following consequence.

Lemma 2.3 Let w1, w2 be two distinct words in the free monoid of rank two of the
same total degree. Assume also that every evaluation of the words w1(v,w) and
w2(v,w) in N1 (with v = v(x, y), w = w(x, y) defined in (2)) leads to two elements
of N1 with equal exponents of cba in the canonical form. Then N1 satisfies a nontrivial
identity, namely

w1(xy2xxyxy2x, xy2xyxxy2x) = w2(xy2xxyxy2x, xy2xyxxy2x).

For our main result we will use an idea analogous to that used in the proof of
Proposition 2.1. Consider the representation φ of M coming from Proposition 3.6 in
[10] (with β = γ = 1). Namely, let V be a vector space over a field K with basis
{epq : p, q ≥ 0}. Let the action of a, b, c ∈ M on V be given by

aepq = ep,q+1, bepq =
{

epq if q = 0,

ep+1,q−1 if q > 0,
cepq =

{
0 if p = 0,

ep−1,q if p > 0.

Then this action makes V a (simple) left K [M]-module. Actually, this is also a K [N1]-
module and a K [N1/(z = 1)]-module.

We will use the fact that

bsepq = ep+min{s,q},q−min{s,q}
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106 Ł. Kubat, J. Okniński

and another easy consequence of the definition

(ba)s(cb)sepq =
{

0 if p + q < s,

ep+min{s,q},q−min{s,q} ifp + q ≥ s.

In particular, bsepq = (ba)s(cb)sepq if (ba)s(cb)sepq 	= 0. Moreover, the latter is 0
only if p + q < s and then bsepq = ep+q,0.

Lemma 2.4 The representation φ is faithful on N1/(z = 1).

Proof We use the canonical form (7) of elements in N1/(z = 1). Suppose that φ(t) =
φ(t ′) for some

t = (ba)k2 ak3(cb)k4 bk5 ck6 , t ′ = (ba)k′
2 ak′

3(cb)k′
4 bk′

5 ck′
6 ∈ N1/(z = 1),

where ki ≥ 0. If k′
6 > k6 then t ′ek6,k4 = 0 and tek6,k4 	= 0. So we may assume

k′
6 = k6. If k′

4 > k4 then t ′ek4+k6,0 = 0 and tek4+k6,0 	= 0. So k4 = k′
4. Now

tepq = ep−k6+k5+k2,q−k5−k4+k3 if p ≥ k6 and q ≥ k4+k5. Hence k5+k2 = k′
5+k′

2 and
−k5+k3 = −k′

5+k′
3. If k′

5 ≥ k5 then t ′ek6,k4+k′
5

= ek′
5+k2,k3

and tek6,k4+k′
5

= ek5+k2,k3 .
Hence k′

5 = k5 and the assertion follows easily. ��
We will often use the following standard fact [10,14].

Lemma 2.5 If t ∈ M then t = cubu′a for some u, u′ ∈ M if and only if t = cbat ′
for some t ′ ∈ M.

We will also use the involution ε : M → M determined by ε(a) = c, ε(b) = b,
ε(c) = a. It also leads to an involution of N1, also denoted by ε for simplicity.

Theorem 2.6 The monoid M = M3 satisfies the identity wvvwvw = wvwvvw,
where v = xyyxxyxyyx and w = xyyxyxxyyx represent the left-hand and respec-
tively the right-hand side of identity (1).

Proof The main difficulty of the proof is to show that this identity is satisfied on N1.
Our approach will be based on Lemma 2.4 and on Lemma 2.3. For x, y ∈ N1 and
w = w(x, y), v = v(x, y) we have

{w, v} = {(cba)i+s(ba) j akbm bs(cb)l cr , (cba)i (ba) j akbm ((ba)s(cb)s)(cb)l cr }

for some s, see (10),(11). Hence, in order to decide whether α(w(x, y), v(x, y)) =
β(w(x, y), v(x, y)) in N1 for some x, y ∈ N1 and some words α, β of the same
degree in each of the two variables, it is enough to show that α(w(x, y), v(x, y)) and
β(w(x, y), v(x, y)) have the same kernel on the basis {epq : p, q ≥ 0} of the module
V introduced before Lemma 2.4. (Indeed, in this case their images must be equal in
N1/(z = 1) by the observation made before Lemma 2.4, so that a degree argument
shows that they are equal in N1.) We will use this observation several times without
further comment.
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Identities of the plactic monoid 107

First, we consider the case where

w = (cba)i+s(ba) j akbm bs(cb)l cr ,

v = (cba)i (ba) j akbm ((ba)s(cb)s)(cb)l cr .
(13)

We will show that in N1 either wvwv = vwwv and vwvw = wvvw, or wvwv =
wvvw and vwvw = vwwv. The case where the roles of w and v are switched then
also follows because of the symmetry of these equalities.

We write u = (ba) j ak , t = (cb)lbmcr , so that

w = (cba)i+subst, v = (cba)i u((ba)s(cb)s)t (14)

and consider the following four cases:

1. r ≤ j and l ≤ k,
2. r ≤ j and l > k,
3. r > j and l ≤ k,
4. r > j and l > k.

It is easy to see that the product tu is divisible by (cba)r+l , (cba)r+k+min{l−k, j−r},
(cba) j+l , (cba)k+ j in these cases, respectively. So, the central regular element
cba appears in this way the same number of times in each of the elements
wvwv, vwwv, vwvw and wvvw. Moreover, the initial segment u of each of these
elements and the terminal segment t do not affect the exponent of cba in the canonical
form of these elements in N1. Therefore, deleting from u and from t the appropri-
ate factors (those that produce the maximal power of cba in the product tu) we may
assume that u, t have one of the following forms (corresponding to the cases 1–4 listed
above):

1. u = (ba) j (a)k and t = (b)m ,
2. u = (ba) j and t = (cb)l(b)m ,
3. u = (a)k and t = (b)m(c)r ,
4. u = 1 and t = (cb)l(b)m(c)r .

In the second case, if the exponents of ba and cb are nonzero, the situation is also
reduced to case 1. or case 4., due to the possible cancellation of cba coming from the
factor cb ba arising from tu.

So, cancelling the appropriate exponents of cba in w and v, we may assume that
the elements w, v are of one of the following forms (corresponding to cases 1, 4, and
3, respectively):

(i) w = (ba) j akbm+s and v = ak(ba) j+s(cb)sbm ,
(ii) w = bm+s(cb)l cr and v = (ba)s(cb)l+sbmcr ,

(iii) w = akbm+scr and v = ak(ba)s(cb)sbmcr .

In the following computations we often apply Lemma 2.5 and the relations defining
N1 without further comment.

We consider the three cases indicated above.
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108 Ł. Kubat, J. Okniński

Case (i). The proof of this case will be based on Lemma 2.4. First, we will show
that vwvw = wvvw. As observed in the first paragraph of the proof, to establish the
latter equality it is enough to check that

vwvwepq 	= 0 iff wvvwepq 	= 0 for all p, q ≥ 0. (15)

Before we proceed to the proof of (15) let us first note that wepq 	= 0 for all
p, q ≥ 0. Moreover vepq = 0 if and only if (cb)sbmepq = 0. Since we have

(cb)sbmepq =
{

0, if p + q < s,

ep−s+min{q,m+s},q−min{q,m+s}, if p + q ≥ s,

it is easy to see that vepq = 0 if and only if p + q < s. Next, let us note that elements
ba and a acting on epq increase p + q exactly by 1. Similarly, cb annihilates epq or
decreases p + q exactly by 1, while b does not change p + q. Hence we conclude that
if ep′q ′ = wepq or ep′q ′ = vepq 	= 0, then necessarily p + q ≤ p′ + q ′.

In order to prove (15) we may assume that one of the elements vwvwepq , wvvwepq

is nonzero. In this situation, we have vwepq 	= 0. Therefore, ep1q1 = wepq 	= 0,
ep2q2 = vep1q1 	= 0 and ep3q3 = wep2q2 	= 0, for some natural numbers
p1, p2, p3, q1, q2, q3. As observed above, in this case p1 + q1 ≤ p2 + q2 ≤ p3 + q3.
If vep2q2 = 0, then using p1 + q1 ≤ p2 + q2 < s we would get vep1q1 = 0, a contra-
diction. Hence ep′

3q ′
3

= vep2q2 	= 0 for some p′
3, q ′

3. Finally, from p2 + q2 ≤ p3 + q3
we conclude that vep3q3 	= 0 and consequently we get

vwvwepq = vwvep1q1 = vwep2q2 = vep3q3 	= 0,

wvvwepq = wvvep1q1 = wvep2q2 = wep′
3q ′

3
	= 0.

Hence, by (15), in Case (i) the elements vwvw and wvvw are equal in N1. In a similar
way one shows that wvwvepq 	= 0 if and only if vwwvepq 	= 0 for all p, q ≥ 0 and
hence wvwv = vwwv.

Case (ii). In this case we apply the involution ε of N1 and we get

ε(w) = ε(bm+s(cb)l cr ) = ar (ba)lbm+s,

ε(v) = ε((ba)s(cb)l+sbmcr ) = ar bm(ba)l+s(cb)s .

This leads to Case (i). Therefore, we get relations: vwvw = vwwv and wvwv =
wvvw in N1.

Case (iii). First, assume that r ≥ k. We consider three subcases:

(I) s ≤ k ≤ r ,
(II) k ≤ s ≤ r ,

(III) k ≤ r ≤ s.

If (I) holds then

wv = [akbm+scr ][ak(ba)s(cb)sbmcr ] = (cba)su
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Identities of the plactic monoid 109

for some u /∈ cbaM and

vw = [ak(ba)s(cb)sbmcr ][akbm+scr ] = (cba)su′

for some u′ /∈ cbaM . By Lemma 2.3 we get wv = vw in N1.
If (II) holds then

wv = [akbm+scr ][ak(ba)s(cb)sbmcr ]
= akbm+scr−sak(cba)s(cb)sbmcr

= (cba)sak(ba)kbm+s−kcr−s(cb)sbmcr

= (cba)sak(ba)k t

where t ∈ 〈b, c〉. Then

v(wv) = u(cb)scr (cba)sak(ba)k t = u(cba)s+k+k t1

where u ∈ 〈a, b〉, t1 ∈ 〈b, c〉. So vwv /∈ (cba)s+2k+1 M . Moreover

vw = [ak(ba)s(cb)sbmcr ][akbm+scr ]
= ak(ba)s(cba)kbm(cb)s−kcr bm+scr

= (cba)kak(ba)s t ′

where t ′ ∈ 〈b, c〉. Hence

v(vw) = u(cb)scr (cba)kak(ba)s t ′ = u(cba)s+k+k t2

where t2 ∈ 〈b, c〉. So vvw /∈ (cba)s+2k+1 M .
By Lemma 2.3 we get vwv = vvw in N1.
Similarly

w(wv) = [akbm+scr ][(cba)sak(ba)k t] ∈ (cba)s+k M \ (cba)s+k+1 M

and

w(vw) = [akbm+scr ][(cba)kak(ba)s t ′] ∈ (cba)s+k M \ (cba)s+k+1 M.

Hence we also have wwv = wvw. So in Case (II) we also get wvwv = wvvw and
vwwv = vwvw in N1.

If (III) holds then

wv = [akbm+scr ][ak(ba)s(cb)sbmcr ]
= akbm+s(cba)r (ba)s−r ak(cb)sbmcr

= (cba)r akb2m+s−k(ba)s−r+k(cb)scr
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vw = [ak(ba)s(cb)sbmcr ][akbm+scr ]
= ak(ba)sbm(cba)k(cb)s−kcr bm+scr

= (cba)kak(ba)sbm(cb)s−k+r bm+s−r cr

= (cba)kak(ba)sb2m+s−r (cb)s−k+r cr .

Then

wvvw = [(cba)r akb2m+s−k(ba)s−r+k(cb)scr ][(cba)kak(ba)sb2m+s−r (cb)s−k+r cr ]
= (cba)k+r u(cb)scr ak(ba)s t

= (cba)k+r u(cba)k+r (cb)s−k(ba)s−r t

= (cba)2k+s+r u′t ′

where u, u′ ∈ 〈a, b〉, t, t ′ ∈ 〈b, c〉 and

wvwv = [(cba)r akb2m+s−k(ba)s−r+k(cb)scr ][(cba)r akb2m+s−k(ba)s−r+k(cb)scr ]
= (cba)r+r u′(cb)scr ak(ba)s−r+k t ′′

= (cba)r+r u′(cba)k(cb)s−kcr (ba)s−r+k t ′′

= (cba)s+r+2ku′t ′′′

where u′ ∈ 〈a, b〉, t ′′, t ′′′ ∈ 〈b, c〉. By Lemma 2.3 we get wvwv = wvvw in N1.
Moreover

vwwv = [(cba)kak(ba)sb2m+s−r (cb)s−k+r cr ][(cba)r akb2m+s−k(ba)s−r+k(cb)scr ]
= u(cba)k+r (cb)s−k+r cr ak(ba)s−r+k t

= u(cba)k+r+s−r+kcr bs−r+k(cb)2r−2kakt

= u(cba)2k+s+k t ′

where u ∈ 〈a, b〉, t, t ′ ∈ 〈b, c〉 (because the degree of b in (cb)2r−2kbs−r+k is s + r −
k ≥ k). Also

vwvw = [(cba)kak(ba)sb2m+s−r (cb)s−k+r cr ][(cba)kak(ba)sb2m+s−r (cb)s−k+r cr ]
= u′(cba)k+k(cb)s−k+r cr ak(ba)s t ′′

= u′(cba)k+k(cb)s−k+r ak(cba)r (ba)s−r t ′′

= u′(cba)2k+s+k t ′′′

where u′ ∈ 〈a, b〉, t ′′, t ′′′ ∈ 〈b, c〉 (because the degree of a in ak(ba)s−r is s +k −r ≤
s − k + r ).

By Lemma 2.3 we get vwwv = vwvw in N1.
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It remains to consider the situation where r < k in Case (iii). Then applying the
involution ε on N1 we get

ε(v) = (a)r bm(ba)s(cb)sck, ε(w) = ar bm+sck .

Therefore, this reduces the situation to the case where r > k, considered above. This
means that vwwv = wvwv and wvvw = vwvw in N1.

Conclusion: if w = w(x, y) and v = v(x, y) for some x, y ∈ N1 then either
wvwv = vwwv and vwvw = wvvw or wvwv = wvvw and vwvw = vwwv.
Hence in the former case we have

wv(vwvw) = wv(wvvw)

while in the latter

(wvvw)vw = (wvwv)vw.

Thus, the identity wvvwvw = wvwvvw is satisfied in N1, as claimed at the beginning
of the proof.

Recall that v (viewed as a word in x, y) is obtained by reading backwards the
word w. Therefore, an argument as that leading to Lemma 2.2 shows that also in N2
we get that either wvwv = vwwv and vwvw = wvvw, or wvwv = wvvw and
vwvw = vwwv. So N2 also satisfies the identity wvvwvw = wvwvvw. Since M is
a subdirect product of N1 and N2, this identity is also satisfied in M . ��

One can ask whether M satisfies a simpler identity. We conclude by showing that M
does not satisfy Adjan’s identity w(x, y) = v(x, y). Let x = a3c and y = (ba)b(cb)2.
Then

xy = (cba)a3b(cb)2, yx = (cba)2(ba)2c

and

xyyx = (cba)a3b(cb)2 (cba)2(ba)2c = (cba)5a3b3c,

so that it is easy to see that

w(x, y) = (cba)5a3b3c (cba)a3b(cb)2 (cba)5a3b3c

= (cba)11a3b3a3(cb)3a3b3c

= (cba)14a3(ba)3b3c,

v(x, y) = (cba)5a3b3c (cba)2(ba)2c (cba)5a3b3c

= (cba)12a3b3c(ba)2ca3b3c

= (cba)13a3(ba)b3ca3b3c

= (cba)13a3(ba)4b2(cb)c

123



112 Ł. Kubat, J. Okniński

are written in the canonical forms in M , whence they are different. Notice that vw

and wv again have a different exponent of cba in their canonical forms, namely 29
and 28, respectively; whence they are different. But we get wvvw = vwvw and
vwwv = wvwv.
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