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Holography and the Weyl anomaly
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Abstract. We review our calculation of the Weyl anomaly for d-dimensional conformal
field theories that have a description in terms of a (d + 1)-dimensional gravity theory.

1 Introduction

In the last few months, we have learned that a theory containing gravity and
defined on an open (d + 1)-manifold X can, in some cases, be equivalent to a
d-dimensional conformal field theory defined on the boundary M of X [1], [2],
[3]. The manifold X has a causal structure similar to that of (d+1)-dimensional
anti-de Sitter space, i.e. the boundary M at conformal infinity is timelike. This
means that the space X is not globally hyperbolic, i.e. it does not admit any
Cauchy surfaces, since new information may come in through the boundary M .
The action functional S[φ] or the equations of motion for the gravity theory on X

therefore do not completely determine the dynamics and must be supplemented
by appropriate boundary data φ(0) on M for each field φ on X . The partition
function is then a functional of these boundary data:

Zgrav[φ(0)] =

∫

φ(0)

Dφ exp(−S[φ]),

where the subscript on the integration sign indicates that the functional integral
is over field configurations φ that satisfy the boundary condition given by φ(0).
The precise relationship between this gravity theory on X and the conformal
field theory on the boundary M can now be described as follows: There is a one-
to-one correspondence between the fields φ on X and the primary operators O

on M . The set of correlation functions of the latter are conveniently summarized
by a generating functional:

ZCFT [φ(0)] =
〈

exp

∫

M

ddxOφ(0)

〉

,

where φ(0) is now regarded as a formal expansion parameter. The partition
function of the gravity theory on X and the generating functional on M are
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then equal, regarded as functionals of φ(0):

Zgrav[φ(0)] = ZCFT [φ(0)].

This relationship is particularly useful when the gravity theory is weakly coupled.
We can then calculate the partition function at tree level, where it is given by the
exponential of the action functional evaluated for a field configuration φcl(φ(0))
that solves the classical equations of motion and obeys the boundary conditions
given by φ(0):

Ztree
grav[φ(0)] = exp

(

−S[φcl(φ(0))]
)

.

A field of particular importance in a theory containing gravity is of course
the metric Gµν . The corresponding operator in the boundary conformal field
theory is the stress-energy tensor Tij . The boundary data for the metric Gµν

is not a boundary metric g(0) ij , but only a conformal structure [g(0)]. (This is
defined as an equivalence class of boundary metrics when two metrics that differ
by a local rescaling are considered equivalent, i.e. g(0) ∼ exp 2σ(x)g(0) for an
arbitrary positive function σ(x).) Indeed, the metric Gµν on X has a second
order pole at the boundary M and thus does not induce a metric there. To get
a finite metric on M , we could multiply Gµν by f2, where f is some positive
function on X with a simple zero on M and then restrict to M . The freedom
to choose f means that only the conformal equivalence class of the metric so
obtained is unambiguously defined. Conversely, a choice of conformal structure
[g(0)] on M together with Einstein’s equations on X suffice to determine an
(up to diffeomorphisms) unique metric Gµν on X [4]. We thus naturally get a
conformal field theory on M . Indeed, to consider a more general theory on M , we
would need a background metric. However, as we have seen, only the conformal
structure of M is well-defined, so only conformal field theories are meaningful
on M .

In the following, we will consider the effective action WCFT [g(0)] = − log ZCFT [g(0)]
of the theory on M . This can be regarded as minus the logarithm of the zero-
point function or partition function of the theory. (It is a zero-point function
in the sense that there are no insertions of any operators). A priori, this is
a functional of the metric g(0) on M , but by conformal invariance, it should
actually only depend on the conformal equivalence class [g(0)]. However, this
invariance is sometimes broken by a conformal (or Weyl) anomaly. This means
that WCFT [g(0)] is not invariant under a conformal rescaling δg(0) = 2δσg(0) of
the metric, but transforms as

δWCFT [g(0)] =

∫

M

ddx
√

det g(0)Aδσ,

where A is the anomaly. On general grounds, the gravitational part of the Weyl
anomaly vanishes when the dimension d of M is odd. When d is even, it is of
the form

A = E + I + DiJ
i,
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where E is proportional to the d-dimensional Euler density, and I is a conformal
invariant [5] [6]. The total derivative term DiJ

i is irrelevant, since it can be can-
celed by adding a local counterterm to the effective action. There is of course a
unique Euler density in every even dimension d. The number of linearly indepen-
dent conformal invariants grows with d, though. There are no such invariants for
d = 2, one (the square of the Weyl tensor) for d = 4, three for d = 6, etcetera. We
will outline how to calculate the conformal anomaly for d-dimensional conformal
field theories that have a description in terms of a (d + 1)-dimensional gravity
theory as described above. Technical details (and some intermediate results not
presented in [7]) are relegated to the appendix.

2 The calculation

According to the recipe above, WCFT [g(0)] is given by minus the logarithm of the
partition function of the gravity theory with a certain conformal structure [g(0)]
induced by the metric Gµν on the boundary. All other fields of the gravity theory
should vanish on the boundary M , since we are not inserting any operators in
the conformal field theory correlation function. If a tree-level computation is
justified, so that we only need to consider field configurations on X that solve
the classical equations of motion, this means that all fields expect the metric
vanish everywhere on X . The theory in bulk is then reduced to pure gravity
described by the Einstein-Hilbert action plus a cosmological constant term:

Sbulk =
1

16πGN

∫

X

dd+1x
√

detGµν (R + 2Λ) . (1)

On a manifold with boundary, we also have the term

Sboundary =
1

16πGN

∫

M

ddx
√

det g̃ij2K, (2)

where g̃ij is the metric on the boundary and K is the trace of the second fun-
damental form. This boundary term is necessary in order to get an action that
depends only on first derivatives of the metric[8]. As described in the first sec-
tion, a choice of conformal structure [g(0)] on the boundary M determines a
unique metric Gµν in the bulk of X that solves the equations of motion

Rµν −
1

2
RGµν = ΛGµν . (3)

(This is of course true only up to diffeomorphisms). However, the bulk action
diverges when evaluated for such a field configuration because of the second
order pole in Gµν on the boundary. Furthermore, the boundary terms in the
action are ill-defined, since Gµν does not induce a finite metric g̃ij on M .

To regulate the theory in a manner consistent with general covariance, we
pick a specific representative g(0) of the boundary conformal structure [g(0)].
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This determines a distinguished coordinate system (ρ, xi), in which the metric
on X takes the form [9]

Gµνdxµdxν =
l2

4
ρ−2dρdρ + ρ−1gijdxidxj . (4)

Here the tensor g has the limit g(0) as one approaches the boundary represented
by ρ = 0. The length scale l is related to the cosmological constant Λ. Einstein’s
equations for Gµν can then be solved order by order in ρ with the result that g

is of the form

g = g(0) + ρg(2) + . . . + ρd/2g(d) + ρd/2 log ρ h(d) + O(ρd/2+1). (5)

The regularization procedure now amounts to restricting the bulk integral in the
action to the domain ρ > ǫ for some cutoff ǫ > 0 and evaluating the boundary
integrals at ρ = ǫ. The regulated action evaluated for this field configuration is
then of the form

W [g(0)] =
1

16πGN

∫

ddx
√

det g(0)

(

ǫ−d/2a(0) + ǫ−d/2+1a(2) + . . . + ǫ−1a(d−2) − log ǫa(d)

)

+Wfin[g(0)]. (6)

The coefficients a(0), a(2), . . . , a(d) are all given by covariant expressions in
g(0) and its curvature tensor Ri

jkl (see appendix). The divergences as ǫ goes
to zero can thus be canceled by adding local counterterms to the action, so
that we are left with a finite effective action Wfin[g(0)]. To find the variation
of Wfin[g(0)] under a conformal rescaling of the boundary metric g(0), we note
that the regulated action W [g(0)] is invariant under the combined transforma-
tion δg(0) = 2δσg(0) and δǫ = 2δσǫ for a constant parameter δσ. The terms
proportional to negative powers of ǫ are separately invariant, so the variation
of Wfin[g(0)] must therefore equal minus the variation of the logarithmically
divergent term. The latter is given by

Aδσ =
1

16πGN
(−2a(d))δσ,

since log ǫ transforms with a shift whereas a(d) itself is invariant. Although this
formula was derived under the assumption that δσ is a constant, it follows from
the general form of the conformal anomaly that it can be applied also for a
non-constant δσ.

3 The results

The discussion in the preceding section shows that, up to a constant, the con-
formal anomaly of a theory related to a gravity theory only depends on the
space-time dimension d. We will now evaluate the anomaly explicitly for the
physically relevant cases d = 2, 4, 6.
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3.1 d = 2 and the asymptotic symmetry algebra of adS3

Here we get

A = −
c

24π
R

with the central charge

c =
3l

2GN
.

This agrees with a computation based on the asymptotic symmetry algebra of
three-dimensional anti-de Sitter space [10]!

3.2 d = 4 and N = 4 super Yang-Mills theory

Here we get

A = −
2l3

16πGN

(

−
1

8
RijRij +

1

24
R2

)

.

Inserting for example the values of l and GN appropriate for the adS5 × S5

geometry of N coincident D3-branes in type IIB string theory, we get N2 (∼
dim SU(N)) times the conformal anomaly of an N = 4 supermultiplet (one
vector, four chiral spinors and six scalars) [11]! The agreement between our
strong coupling calculation and this weak coupling result indicates that there is
a non-renormalization theorem for the conformal anomaly.

3.3 d = 6 and tensionless strings

Here we get

A = −
2l5

16πGN

(

−
1

128
RRijRij +

3

3200
R3 +

1

64
RijRklRijkl

+
1

320
RijDiDjR −

1

128
RijDkDkRij +

1

1280
RDiDiR

)

.

Inserting the values of l and GN corresponding to the adS7 ×S4 geometry of N

coincident five-branes in M -theory, we find that A is proportional to N3 (>>

dim GL(N)). This agrees with considerations based on the entropy of the brane
system [12], [13]. This provides information about the mysterious tensionless
string theory that appears when M5-branes coincide.



6 MånsHenningson and Kostas Skenderis

A Appendix

In this appendix we present some technical details of the calculation of the
conformal anomaly.

Einstein’s equation (3) for G given in (4) amount to

ρ
(

2g′′ − 2g′g−1g′ + Tr(g−1g′)g′
)

+ l2Ric(g) − (d − 2)g′ − Tr(g−1g′)g = 0

(g−1)jk
(

∇ig
′

jk −∇kg′ij
)

= 0

Tr(g−1g′′) −
1

2
Tr(g−1g′g−1g′) = 0,(7)

where differentiation with respect to ρ is denoted with a prime, ∇i is the covari-
ant derivative constructed from the metric g and Ric(g) is the Ricci tensor1 of
g. We solve these equations iteratively in ρ.

The g(k) for k < d in (5) are given by

g(2)ij =
1

d − 2

(

Rij −
1

2(d − 1)
Rg(0)ij

)

g(4)ij =
1

d − 4

(

−
1

8(d − 1)
DiDjR +

1

4(d − 2)
DkDkRij

−
1

8(d − 1)(d − 2)
DkDkRg(0)ij −

1

2(d − 2)
RklRikjl

+
d − 4

2(d − 2)2
Ri

kRkj +
1

(d − 1)(d − 2)2
RRij

+
1

4(d − 2)2
RklRklg(0)ij −

3d

16(d − 1)2(d − 2)2
R2g(0)ij

)

. (8)

Although the above formulas for g(k)ij do not make sense for d = k, their
traces are smooth in the d goes to k limit and in fact give the correct values for
Tr(g−1

(0)g(k)) for k ≤ d. Actually the easiest way to calculate the traces is to use

the last equation in (7). By differentiating this equation with respect to ρ and
then setting ρ to zero one obtains

Tr
(

g−1
(0)g(4)

)

=
1

4
Tr

(

(g−1
(0)g(2))

2
)

Tr
(

g−1
(0)g(6)

)

=
2

3
Tr

(

g−1
(0)g(2)g

−1
(0)g(4)

)

−
1

6
Tr

(

(g−1
(0)g(2))

3
)

(9)

The above data are sufficient in order to obtain the anomaly up to d = 6. In
general, to determine the Weyl anomaly at dimension d one needs to determine
the full metric up to order d − 2. The trace of the metric at order d can be
determined from metric at lower orders using the last equation in (7).

The explicit expression of a(n)’s in (6) can be derived by inserting the general
form of the metric (4) in (1), perform the ρ integration, and evaluate (2) at ρ = ǫ.
The coefficients a(d) (in d dimensions) of the logarithmic divergences, which are

1 Our conventions are as follows Rijk
l = ∂iΓjk

l + Γip
lΓjk

p
− i ↔ j and Rij = Rikj

k.
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relevant for the calculation of the Weyl anomaly, receive contributions only from
the bulk integral. Their explicit form for d = 2, 3, 6, are given by

a(2) = l Tr(g−1
(0)g(2))

a(4) = l3
1

2

(

[Tr(g−1
(0)g(2))]

2 − Tr[(g−1
(0)g(2))

2]
)

a(6) = l5
(

1

8
[Trg−1

(0)g(2)]
3 −

3

8
Tr[g−1

(0)g(2)]Tr[(g−1
(0)g(2))

2]

+
1

2
Tr[(g−1

(0)g(2))
3] − Tr[g−1

(0)g(2)g
−1
(0)g(4)]

)

.
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