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ABSTRACT
Molecular genetic approaches are playing an increasing role in conservation science

by identifying biodiversity that may not be evident by morphology-based taxonomy

and systematics. So-called cryptic species are particularly prevalent in freshwater

environments, where isolation of dispersal-limited species, such as crayfishes,

within dendritic river networks often gives rise to high intra- and inter-specific

genetic divergence. We apply here a multi-gene molecular approach to

investigate relationships among extant species of the crayfish genus Pacifastacus,

representing the first comprehensive phylogenetic study of this taxonomic

group. Importantly, Pacifastacus includes both the widely invasive signal crayfish

Pacifastacus leniusculus, as well as several species of conservation concern like the

Shasta crayfish Pacifastacus fortis. Our analysis used 83 individuals sampled across

the four extant Pacifastacus species (omitting the extinct Pacifastacus nigrescens),

representing the known taxonomic diversity and geographic distributions within

this genus as comprehensively as possible. We reconstructed phylogenetic trees from

mitochondrial (16S, COI) and nuclear genes (GAPDH), both separately and using

a combined or concatenated dataset, and performed several species delimitation

analyses (PTP, ABGD, GMYC) on the COI phylogeny to propose Primary

Species Hypotheses (PSHs) within the genus. All phylogenies recovered the genus

Pacifastacus as monophyletic, within which we identified a range of six to 21 PSHs;

more abundant PSHs delimitations from GMYC and ABGD were always nested

within PSHs delimited by the more conservative PTP method. Pacifastacus

leniusculus included the majority of PSHs and was not monophyletic relative to the

other Pacifastacus species considered. Several of these highly distinct P. leniusculus

PSHs likely require urgent conservation attention. Our results identify research

needs and conservation priorities for Pacifastacus crayfishes in western North

America, and may inform better understanding and management of P. leniusculus

in regions where it is invasive, such as Europe and Japan.
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INTRODUCTION
The conservation and management of freshwater biodiversity is dependent on

recognizing this biodiversity across levels of the ecological hierarchy, from genes to

ecosystems (Geist, 2011; Mace, Norris & Fitter, 2012). Molecular, and increasingly

genomic, approaches have emerged over recent decades as invaluable for identifying

biodiversity of conservation value that may not always be evident by traditional

morphology-based taxonomy and systematics (Bickford et al., 2007). Whether identifying

cryptic species (e.g., Witt, Threloff & Hebert, 2006) or evolutionary significant units

(ESUs) within species (Waples, 1991), molecular approaches are now considered

foundational to the field of conservation science. Although molecular approaches should

not replace or marginalize traditional taxonomy and systematics, these methods do

offer considerable power to clarify cases where convergent evolution (e.g., Breinholt,

Porter & Crandall, 2012) or complex evolutionary histories (e.g., Niemiller, Fitzpatrick &

Miller, 2008) obscure our understanding of biodiversity and consequently impair its

conservation.

Freshwater crayfish are an important taxonomic group in the world’s streams, rivers,

lakes, and wetlands (Crandall & Buhay, 2008). Crayfish are polytrophic, generalist

consumers that can achieve high population densities and function as strong interactors

in food webs (Momot, 1995). Further, crayfish are among the most imperiled freshwater

taxa globally (Richman et al., 2015), while also producing some of the planet’s most

harmful freshwater invasive species (Gherardi, 2007). Endemic to western North America,

the crayfish genus Pacifastacus (Astacidae) represents a microcosm of issues in crayfish

conservation and management globally (Larson & Olden, 2011). Of five modern

Pacifastacus species, one has been declared extinct (Pacifastacus nigrescens), a second is

listed as endangered under the United States Endangered Species Act (ESA; Pacifastacus

fortis), two are effectively unstudied (Pacifastacus connectens and Pacifastacus gambelii),

and the last is a widespread invasive species with well-documented impacts on both

freshwater biodiversity and ecosystem structure and function (Pacifastacus leniusculus;

Lodge et al., 2000; Harvey et al., 2011).

Related to these conservation and management concerns, the genus Pacifastacus also

suffers from a complicated taxonomic history. The endangered P. fortis was split out of the

now extinct P. nigrescens, first as a subspecies and subsequently as a species. Similarly,

P. connectens was split from P. gambelii as a subspecies and then species. Conversely,

P. leniusculus was initially described as three separate species that were subsequently

demoted to subspecies, which now are largely ignored by most researchers and

managers (reviewed in Larson & Williams, 2015). Most recently, Bouchard (1977b)

recommended that P. connectens, P. fortis, and P. gambelii be recognized as the subgenus

Hobbsastacus on the basis of similar mandible morphology (blade-like mandibles)

relative to P. leniusculus (tooth-like mandibles), among other traits. Molecular genetic

approaches offer great potential in resolving many of these ambiguities with respect to

the taxonomy and phylogenetic relationships of Pacifastacus crayfishes, which in turn

can direct future management and study.
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We apply here a multi-gene molecular approach to investigate relationships among

extant species of the genus Pacifastacus. In addition, we use several molecular-based

species delimitation methods to gain insight into species designations independent of

potentially confounding morphological characters historically used for Pacifastacus

taxonomy. This work is motivated in part by a previous study that used a single gene

to identify morphologically-cryptic diversity within crayfishes historically recognized as

P. leniusculus (Larson et al., 2012). We significantly expand the scope of Larson et al. (2012)

by increasing both taxonomic breadth and gene inclusion. Notably, this represents the

first dedicated, comprehensive phylogenetic study of the crayfish genus Pacifastacus.

These results should be of high interest both to researchers concerned with the

conservation of imperiled Pacifastacus crayfishes in western North America (e.g.,

Light et al., 1995), as well as for those interested in better understanding and managing

populations of P. leniusculus where invasive (e.g., Lodge et al., 2000).

MATERIALS AND METHODS
Sampling and data collection
Our ingroup sampling included a total of 83 specimens representing the four extant

Pacifastacus species. Unfortunately, we were unable to obtain tissue from the presumed

extinct Pacifastacus nigrescens (i.e., Bouchard, 1977a). We incorporated 40 P. leniusculus

samples (i.e., both DNA and published sequence data) from Larson et al. (2012) to:

(a) represent the geographic breadth of the native range of this nominal species (i.e.,

P. leniusculus sensu lato), omitting samples from geographic areas of western North

America where the species is known or suspected to have been introduced; and

(b) maximize representation of the genetic variation previously observed using the 16S

rDNA gene (Larson et al., 2012). We added 43 new Pacifastacus specimens: 11 individuals

of P. connectens from three sites; six individuals of P. fortis from three sites; eight

individuals of P. gambelii from two sites; and 18 additional individuals of P. leniusculus

sensu lato from eight sites.

The majority (N = 31) of new specimens were collected in 2011 and 2012 by E.R.

Larson and B.W. Williams, with additional individuals collected in 2012 by L. Beck of

the Malheur National Wildlife Refuge (five P. connectens and one P. leniusculus) and in

2005 by M. Ellis of Spring River Ecological Sciences (all P. fortis specimens under US

permit TE806679-3 and California permit 801319-02). New collections sought to fill in

sampling gaps of Larson et al. (2012) within the range of P. leniusculus sensu lato, and to

represent the known distributions of the Hobbsastacus crayfishes P. connectens, P. fortis,

and P. gambelii as comprehensively as possible. For example, P. connectens was collected

from both the endorheic (closed) Harney Basin as well as the Pacific-draining (via

Columbia River) Snake River drainage, and P. gambelii was collected from both the

endorheic Bonneville Basin and the Snake River drainage (Larson & Williams, 2015).

Pacifastacus fortis specimens were chosen from a subset of sampled locations representing

each of three genetic clusters identified through previous analysis of nine microsatellite

loci (Petersen & May, 2008).
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We chose five outgroup taxa to represent major lineages within the Holarctic-

distributed crayfish superfamily Astacoidea based on relationships to Pacifastacus from

recent crayfish phylogenies (Bracken-Grissom et al., 2014; Owen et al., 2015) and

availability of publicly accessible data for the focal genes used in the current study. We

included the Astacidae species Astacus astacus and Austropotamobius torrentium and

the Cambaridae species Cambaroides similis, Cambarus hamulatus and Orconectes virilis

(Table 1). An additional O. virilis specimen collected by B.W. Williams was also used,

following laboratory procedures outlined below.

DNA extraction, PCR amplification and DNA sequencing
We extracted total DNA from abdominal muscle or gill tissue using the standard protocol

for the Qiagen DNeasy Blood and Tissue kit (Qiagen, Valencia, CA, USA). DNA

was diluted 1:10 in ddH2O prior to PCR amplification. We amplified fragments of two

mitochondrial genes, 16S rDNA and COI, and one nuclear locus, glyceraldehyde-3-

phosphate dehydrogenase (GAPDH) using the primer pairs 16Sar-L and 16Sbr-H (Imai

et al., 2004), LCOI1490 and HCO2198 (Folmer et al., 1994), and G3PCq157F and

G3PCq981R (Buhay et al., 2007; Mathews et al., 2008), respectively. Amplification of

COI and GAPDH products were generated by an initial denaturation step of 5 min at

95 �C followed by 35 cycles of denaturation at 95 �C for 45 s (60 s for GAPDH), annealing

at 50 �C for 45 s (60 s for GAPDH) and extension at 72 �C for 2 min, with an additional

final extension of 72 �C for 10 min (5 min for GAPDH). Amplification of 16S

products were generated by an initial denaturation step of 3 min at 98 �C followed by

12 ‘touchdown’ cycles of denaturation at 98 �C, annealing at 50–65 �C for 30 s (with

temperature decreasing by 5 �C every 3 cycles), and extension at 72 �C for 30 s, and then

30 amplification cycles with denaturation step at 98 �C for 30 s, annealing at 48 �C for 30 s,

and extension at 72 �C for 30 s, and an additional final extension of 72 �C for 2 min.

PCR products were purified using ExoSAP-IT (Affymetrix/USB) and sequenced

bi-directionally using the above PCR primers and BigDye Terminator v 3.1

(Thermofisher). These reactions were then purified using DyeEx 2.0 Spin Kits (Qiagen)

and run on a 3130xl genetic analyzer (Applied Biosystems).

Sequences were aligned using the FFT-NS-I strategy in MAFFT v. 7 (Katoh et al.,

2002; Katoh & Toh, 2010; http://mafft.cbrc.jp/alignment/server/). We used BioEdit

version 7.2.5 (Hall, 1999) to check for poorly aligned sites, and MEGA v 4.0 (Tamura

et al., 2007) to translate protein-coding sequences (i.e., COI and GAPDH) to screen for

premature stop codons. We calculated number of haplotypes/genotypes, number of

polymorphic sites, and number of parsimony informative sites for each gene alignment

using MEGA and DnaSP v. 5.10.01 (Librado & Rozas, 2009). All new sequences were

deposited in GenBank (Accession numbers: KU603429–KU603606).

Phylogenetic analyses
Using the Bayesian Information Criterion in jModelTest 2.1.6 (Darriba et al., 2012),

the suggested best-fit models of nucleotide evolution were HKI+G+I for COI and

16S genes, and TIM2ef+G for GAPDH. Three independent single-gene phylogenies
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were constructed using COI, 16S and GAPDH genes, excluding any redundant

sequences between specimens. After checking for congruency among the tree topologies

derived from the single-gene phylogenies, we conducted a fourth analysis based on

concatenated sequences from a minimum of two out of the three genes analyzed. We used

concatenation because this approach can outperform species tree methods when few

loci are used and gene trees have low phylogenetic signal (Bayzid & Warnow, 2013;

Mirarab, Bayzid & Warnow, 2014). All phylogenetic trees were built using both Maximum

likelihood (ML) and Bayesian approaches (BA). First and second codon and third

codon positions were used as two different partitions in COI and GAPDH analyses,

whereas the noncoding 16S gene was considered a single partition. In the concatenated

analysis, mutation rates were partitioned among genes, and the partitions among codon

positions (first and second codon and third codon positions) were conserved for the

different coding regions.

Best-scoring ML trees were estimated for each dataset using RAxML HPC2 v.8.2.4

(Stamatakis, 2006) on Teragrid v.7.2.7, implemented in the Cyber Infrastructure for

phylogenetic Research (CIPRES) portal v.3.1. (Miller, Pfeiffer & Schwartz, 2010; https://

www.phylo.org/). One hundred independent searches, each starting from distinct random

trees, were conducted. Robustness of the nodes was assessed using nonparametric

bootstrapping (Felsenstein, 1985) with 1,000 bootstrap replicates. Bayesian trees were

calculated using the uncorrelated lognormal relaxed-clock model implemented in BEAST

1.8.2 with an input file generated in BEAUti version 1.8.0 (Drummond et al., 2012).

When an optimal model of nucleotide evolution was not available in BEAUti 1.8.0 we

selected a similar but more complex near-optimal model (Huelsenbeck & Rannala, 2004).

The Yule process of speciation, which assumes a constant speciation rate among lineages,

was applied as a tree prior. Each analysis ran for 100,000,000 generations with sample

frequency of 1,000. The final trees were calculated based on 99,000 trees (after a burn-in

of 1,000 generations) with maximum clade credibility and median node heights.

Length of burn-in was determined by examination of traces in Tracer 1.5

(Rambaut & Drummond, 2009). Support for nodes was determined using posterior

Table 1 Outgroup crayfish in phylogenetic analyses. GenBank accession numbers, with associated references, for species used as outgroups in

Pacifastacus genus phylogenetic and species delimitation analyses across the COI, 16S, and GAPDH genes.

Species COI 16S GAPDH

Astacus astacus AY6671461, GU727619* AF2359837

Austropotamobius torrentium AM1809462 AM1813462

Cambaroides similis NC0169253 NC0169253

Cambarus hamulatus DQ4117614 DQ4117394 DQ4117864

Orconectes virilis EU4427295, KU6035416 EU4426725, KU6035696 EU5962695, KU6036066

Notes:
1 Trontelj, Machino & Sket (2005).
2 Shubart & Huber (2006).
3 Kim et al. (2012).
4 Buhay et al. (2007).
5 Mathews et al. (2008).
6 This study.
7 Crandall, Harris & Fetzner (2000).
* Unpublished.
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probabilities (PP; calculated by BEAST). In addition, a time-calibrated ultrametric tree

based on the COI gene was produced using BEAST for GMYC analyses (described below).

A coalescent model of constant population size was used as a tree prior and the

heterogeneity of the mutation rate across lineages was set under an uncorrelated

lognormal clock. The mutation rate was set to one to get branch lengths in units of

substitution per site. Two independent analyses, starting from distinct coalescent trees,

were run over 100,000,000 generations and sampled each 1,000 steps. After checking

adequate mixing and convergence of all runs with Tracer, 10,000,000 samples were

discarded as a burn-in, the two runs were pooled together and re-sampled each 20,000

steps. The maximum clade credibility tree was extracted from these results of pooled

analyses using TreeAnnotator (default parameters).

Species delimitation
Consensus support across multiple species delimitation approaches is generally preferable

to reliance on a single method (Carstens et al., 2013; Fontaneto, Flot & Tang, 2015).

Accordingly, we conducted species delimitation analyses using three methods: (i) the

Poisson Tree Processes (PTP) method of Zhang et al. (2013); (ii) the General Mixed Yule

Coalescent (GMYC, single threshold algorithm) method of Pons et al. (2006), and; (iii) the

Automatic Barcode Gap Discovery (ABGD)method of Puillandre et al. (2012). We applied

these methods only to the codon-partitioned COI dataset to remain consistent with a

reliance on this gene fragment to identify Primary Species Hypotheses (PSHs) in animals

(i.e. “DNA barcoding”; Hebert, Ratnasingham & DeWaard, 2003). Unlike ABGD that uses

detection of the ‘barcode gap’ in the distribution of genetic pairwise distances, GMYC and

PTP use a phylogenetic input tree from which the fit of speciation and coalescent

processes are modeled to delineate PSHs (Tang et al., 2014). The ABGD method was

implemented based on all available COI sequences and using the online version of the

program (http://wwwabi.snv.jussieu.fr/public/abgd/) with default parameter, except that

we set the relative gap width (X) to 10 to avoid the capture of smaller local gaps. The

GMYCmethod was implemented using the time-calibrated ultrametric tree based on COI

gene produced earlier using BEAST, and was run from the Exelixis Lab web server (http://

species.h-its.org/gmyc/). The PTP method was implemented using the best-scoring ML

tree based on COI gene produced earlier using RAxML HPC2 v.8.2.4, and was run in

Python using the Environment for Tree Exploration package (Huerta-Cepas, Dopazo &

Gabaldón, 2010).

RESULTS
Sampling, alignment, and phylogenetic analyses
From the total 93 individuals used (including outgroups), we obtained COI sequences

for 79 specimens (639 bp unambiguous alignment), 16S rDNA for 86 specimens (446 bp

aligned, including gaps), and GAPDH for 69 specimens. We trimmed the GAPDH

sequences to a final unambiguous alignment of 581 bp, representing the gene region for

which we recovered fully overlapping forward and reverse sequences. For the COI gene

fragment, the ingroup included 33 haplotypes displaying 149 polymorphic sites, of which
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121 were parsimony informative. For the 16S gene fragment, the ingroup included 25

haplotypes displaying 42 polymorphic sites, of which 40 were parsimony informative.

For GAPDH, the ingroup included 33 different genotypes displaying 20 polymorphic

sites, of which 18 were parsimony informative. Phylogenetic tree topologies were

congruent between Bayesian and maximum likelihood analyses. The genus Pacifastacus

was monophyletic in the concatenated tree (Fig. 1; posterior probability value, PP = 100,

bootstrap value, BS = 83) and each of the single gene analyses (Appendix S1; COI:

PP = 99, BS < 50; 16S rDNA: PP = 100, BS = 65; GAPDH: PP = 76, BS = 100). Several

moderately- to well-supported subclades were recovered within Pacifastacus, only in

part reflecting morphotaxa. Pacifastacus leniusculus sensu lato was paraphyletic relative to

a monophyletic Hobbsastacus subgenus, and the Hobbsastacus species P. connectens was

not monophyletic in any tree.

Species delimitation and taxonomic interpretation
The likelihood of the null model in the PTP analysis (i.e., that all sequences belong to a

single species) was found to be significantly lower than the maximum likelihood species

delimitation (178 versus 226, P < 0.001). The PTP analysis resulted in the delimitation of

six ingroup PSHs, hereafter denoted PSH-A–PSH-F (Fig. 2). Pacifastacus leniusculus sensu

lato was delimited as three PSHs (A–C; Fig. 2). Two of the three P. leniusculus cryptic

groups (Central Oregon, PSH-A; Okanagan, PSH-B) identified by Larson et al. (2012)

delimited as PSHs, whereas the third did not (Chehalis). We do not map the three

P. leniusculus subspecies names or morphologies to PSHs because morphological traits

associated with subspecies are not conserved among phylogenetic lineages (Larson

et al., 2012). All Hobbsastacus species delimited as separate species by PTP (P. connectens,

PSH-D; P. fortis, PSH-F; P. gambelii, PSH-E). Sample locations with species names,

cryptic group designations, and both PTP- and ABGD-delimited PSHs labels are given

in Fig. 3. The GMYC method resulted in recovery of 21 PSHs within Pacifastacus,

including 17 clusters and four entities (i.e., a single sequence representing a group).

Delineations among these 21 groups did not conflict with PTP-delimited PSHs; however,

additional phylogenetic species were suggested within PTP-delimited PSHs for both

P. leniusculus sensu lato and the Hobbsastacus species P. connectens (Fig. 2). Similarly,

we estimated six a priori thresholds using ABGD, resulting in six partitions with 13, 14, 14,

15, 17 and 18 PSHs. Like GMYC, ABGD results were not inconsistent with the six

PSHs identified by PTP, with further splitting into additional phylogenetic species,

particularly within P. leniusculus senso lato. Results of only the intermediate 15 PSHs

partition of ABGD are given in Figs. 2 and 3.

DISCUSSION
Our multi-gene phylogenetic analyses, in combination with species delimitation

estimation, provide evidence that P. leniusculus sensu lato includes morphologically

cryptic diversity. Further, crayfish historically recognized as P. leniusculus are not

monophyletic relative to the separate subgenus Hobbsastacus (P. connectens, P. fortis,

and P. gambelii). This is similar to recent results challenging the validity of subgenera
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Figure 1 Combined gene phylogenetic tree for Pacifastacus. Combined gene (COI, 16S, GAPDH) Bayesian phylogenetic tree for Pacifastacus
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classifications in crayfishes of the family Cambaridae (e.g., Breinholt, Porter & Crandall,

2012). This cryptic diversity may ultimately merit taxonomic description as new species,

albeit in consideration with other factors like sympatric coexistence or hybridization,

ecological exchangeability, and morphology–in particular, tools like geometric

morphometrics (e.g. Helms et al., 2015) may be useful in future applications to

Pacifastacus crayfishes (see below). Similarly, two of our species delimitation approaches

(ABGD, GMYC) identified additional PSHs within not only P. leniusculus, but also

within P. connectens of the subgenus Hobbsastacus, relative to the more conservative PTP

method. Notably, P. connectens was not monophyletic in any of our phylogenetic trees.

Cumulatively, these results have important implications for the management and

conservation of crayfishes in the Pacific Northwest of North America, as well as for regions

like Europe and Japan where P. leniusculus is a widespread invasive species.
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Figure 3 Study region with species and cryptic group ranges, as well as sample sites with Primary
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senting native range locations reported by Miller (1960) for the crayfish species P. connectens, P. fortis,

P. gambelii, and P. leniusculus (see also Larson & Olden, 2011; Larson et al., 2012), as well as convex

hulls representing all locations for three cryptic groups of P. leniusculus (Central Oregon, Chehalis,

Okanagan) identified by Larson et al. (2012). Sampling sites used in the current study are noted by red

diamonds, with the number of crayfish from each site (in parenthesis) assigned to Primary Species

Hypotheses (PSHs) by species delimitation analysis on COI (Fig. 2). Codes for PSHs are based on both

Poisson Tree Processes (PTP) and, in some cases, more resolved assignments from the intermediate

15 partition scenario of Automatic Barcode Gap Discovery (ABGD).
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Phylogenies and species delimitation
Some of the conflict between molecular-based phylogenetic approaches to classifying

biodiversity and traditional morphology-based taxonomy is likely caused by a tendency

for molecular phylogenetic approaches to be mutable over short time scales, owing to

rapid advances in laboratory and statistical techniques, resulting in the potential

misconception that they are arbitrary or indecisive. Overcoming this tension requires an

appreciation that results of phylogenetic studies based on all data types, whether

morphological or molecular, are not fixed, but rather are dynamic sources of data and

hypotheses for subsequent inquiry, reanalysis and interpretation (Owen et al., 2015).

We do not advance our analyses here as definitively overturning existing Pacifastacus

taxonomy, or precluding future phylogenetic studies. Rather, we provide further

robust support for previously reported patterns of potentially high conservation and

management relevance (Larson et al., 2012), while also identifying priorities for ongoing

investigation. Nevertheless, a comprehensive taxonomic revision of this genus would

be useful.

In particular, several phylogenetic relationships among lineages within Pacifastacus

remain poorly supported, in part because the fragment of the nuclear gene used in

the current study (GAPDH) presented little variation within the genus. Further, these

phylogenetic relationships might also be clarified by increased sampling within some of

the problematic lineages in future studies. In addition, next generation sequencing and

genomic approaches may advance understanding of phylogenetic relationships for

Pacifastacus crayfishes (McCormack et al., 2013). Although the three species delimitation

methods applied in this study did not achieve consensus support for number of PSHs

within Pacifastacus (PTP = 6 PSHs; ABGD = 13–18; GMYC = 21), the results did

not appear to conflict, as the divisions among PTP-defined PSHs were also recovered

by GMYC and ABGD. The recovery of multiple PSHs within Pacifastacus combined

with a failure to recover a monophyletic P. leniusculus senso lato relative to the

Hobbsastacus subgenus for each gene independently supports morphologically

cryptic taxa.

Pacifastacus taxonomy
The species P. leniusculus, Pacifastacus klamathensis, and Pacifastacus trowbridgii were

demoted by Miller (1960) to subspecies of P. leniusculus on the basis of observed

intermediate morphologies proposed to represent hybridization in sympatry, a view

subsequently adopted by Hobbs (1974). Unfortunately, the characters used to distinguish

P. leniusculus subspecies are not discrete, but rather continuous gradients for several

seemingly independent morphological traits. As primary examples, subspecies are

distinguished by narrow (P. l. leniusculus) to intermediate (P. l. trowbridgii) to broad

carapaces (P. l. klamathensis); long rostrums and acumens with pronounced postorbital

spines (P. l. leniusculus) to intermediate (P. l. trowbridgii) to short, broad rostrums with

reduced acumens and postorbital spines (P. l. klamathensis); and broad chelae with convex

palms (P. l. leniusculus) to intermediate (P. l. trowbridgii) to narrow chelae with long,

straight palms (P. l. klamathensis).
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Miller (1960) proposed a Discriminant Function Analysis (DFA) to classify

P. leniusculus to subspecies on a reduced set of morphological characters; Larson

et al. (2012) applied this DFA to a subset of samples also considered in the current study

and found that subspecies assignments were not conserved within distinct phylogenetic

lineages as inferred from a fragment of the mitochondrial gene 16S rDNA. For

example, P. l. klamathensis morphologies can be found among Central Oregon (A) and

Okanagan (B) cryptic groups, the Chehalis cryptic group (C-A and C-B per ABGD),

and a number of additional P. leniusculus PSHs reported here (e.g., C-C, C-D, and C-F

per ABGD). Not all of these P. leniusculus lineages in disparate geographic regions

can be P. l. klamathensis. As such, considerable work is needed to determine whether

morphological attributes historically associated with P. leniusculus subspecies represent

shared ancestral polymorphism or convergent evolution between distinct phylogenetic

lineages, hybridization among them, or phenotypic responses to environmental

conditions. The degree to which these distinct P. leniusculus lineages occur and persist

in sympatry is unknown, and is likely confounded by ongoing human introductions of

these crayfishes within the region (Larson et al., 2012). Even omitting the pronounced

Central Oregon and Okanagan cryptic groups recognized here by the more conservative

PTP analysis, the other primary lineage of P. leniusculus senso latu includes considerable

genetic variability recovered as a diversity of PSHs by ABGD and GMYC that similarly

merit future scrutiny.

Pacifastacus connectens was described as a subspecies of P. gambelii by Faxon (1914),

and subsequently elevated to a species by Hobbs (1972) with little clear justification.

Like the characters associated with P. leniusculus subspecies (above), P. connectens and

P. gambelii are distinguished along gradients of several continuous morphological traits.

Pacifastacus connectens is characterized as having a long, acute rostrum whereas that

of P. gambelii is described as shorter and obtuse, and P. connectens is characterized as

having long, slender chelae whereas those of P. gambelii are characterized as broad and

robust. The degree to which these morphological characters are influenced by genotype

relative to plastic responses to environment is unknown. The PTP species delimitation

analysis identified P. connectens and P. gambelii as separate PSHs, whereas the ABGD and

GMYC species delimitation analyses identified an additional PSH within P. connectens.

These two P. connectens PSHs include a lineage sampled from several sites in the Snake

River and a disjunct location in the Deschutes River (see below), and a second lineage

sampled instead from the endorheic Harney Basin. Given these results in light of

Hobbsastacus taxonomic history and potential morphological ambiguity, we propose

P. connectens for more intensive taxonomic and phylogenetic investigation. In addition,

we collected P. connectens from the lower Deschutes River of north Central Oregon, a

major range expansion for a species never previously observed from tributaries of the

lower Columbia River (Larson & Olden, 2011; Larson & Williams, 2015). We do not

know whether this occurrence represents a historically overlooked component of the

native range of P. connectens, or instead a range expansion by human introduction

that is seemingly common for other species in this region (Larson & Olden, 2011;

Larson et al., 2012).
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Conservation and management
The most important implication of our study is a call to better conserve and manage

unique, and potentially imperiled, genetic diversity within the species historically

recognized as P. leniusculus. For example, the Okanagan and Central Oregon cryptic

groups are directly threatened by recent invasions by the virile crayfish Orconectes

virilis and the rusty crayfish Orconectes rusticus (Larson & Olden, 2011). Given that the

extinction and ESA listing of two other narrowly endemic Pacifastacus crayfishes has been

attributed in part to impacts of invasive crayfish (Bouchard, 1977a; Light et al., 1995),

these cryptic P. leniusculus are very likely at risk of population and range declines from

interactions with invaders. Further work including increased taxonomic recognition

of these cryptic groups will likely be necessary to motivate any conservation action.

This does not necessarily require elevation to species status; for example, the Pacific

Northwest region has ample experience managing ESUs of anadromous salmonids for

conservation (Waples, 1991). However, ESU status is preferably based not only on

genetic distinctiveness between populations, but also on ecological distinctiveness or

exchangeability (Crandall, Harris & Fetzner, 2000). To date, we have no knowledge of the

extent to which the genetic diversity and phylogenetic structure within P. leniusculus

corresponds to differences in ecological function and the expression of phenotypic

traits between these organisms.

Molecular approaches have enabled an increasingly resolved understanding of ways

that genetic variation and its phenotypic expression can affect whole-ecosystem

processes (Bailey et al., 2004; Post et al., 2008). Given that crayfish can have important

but variable effects on the structure and function of freshwater ecosystems (Jackson

et al., 2014), and the wide range of both genetic and phenotypic variation observed

across P. leniusculus, it is plausible that different PSHs identified by our study are

ecologically distinct. As a consequence, an investigation of this possibility has

important conservation and management implications. Where introduced into

California and Nevada, P. leniusculus has been a major invasive species and is

implicated in the extinction of P. nigrescens and ESA listing of P. fortis (Bouchard,

1977a; Light et al., 1995). We do not know which P. leniusculus lineages or PSHs

comprise these invasive populations, or how these PSHs potentially interact with each

other with respect to factors like hybridization, disease or parasite transmission, or

competition, which are the major mechanisms whereby native crayfish are displaced

by invaders (Lodge et al., 2000). Finally, at the global scale, P. leniusculus is an extremely

successful invasive species in Europe and Japan, with well-studied effects on other

crayfish populations, freshwater communities and ecosystems, and habitat structure

(Lodge et al., 2000; Usio et al., 2007; Harvey et al., 2011). Our study provides a baseline

to help identify which lineages or PSHs of P. leniusculus are globally invasive, and

to potentially identify source populations for past and ongoing introductions.

This information could help guide management intervention to focus on specific

introduction pathways and vectors and help slow the ongoing spread of P. leniusculus

globally.
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