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Summary

This is an automated pipeline that extracts and reconstructs chloroplast genomes from
whole genome shotgun data. It is capable to assemble the incidentally sequenced
chloropast DNA, which is present in almost all plant sequencing projects, due to
the extraction of whole cellular DNA. It works by analyzing the k-mer distribution
(determined with Jellyfish, (Marçais and Kingsford 2011), peak detection with R (R
Core Team 2008)) of the raw sequencing reads. Usually the coverage of the chloroplast
genome is much higher than that of the nuclear genome. Using mapping to reference
chloroplast sequences (using bowtie2 (Langmead and Salzberg 2012), samtools (“The
Sequence Alignment/Map Format and Samtools” 2009), and bedtools (Quinland and
Hall 2010)) and the k-mer distribution candidate chloroplast reads are extracted from the
complete set (Figure 1). Afterwards, the targeted assembly of those sequences is much
faster and yields less contigs compared to an assembly of all reads. Assemblers usually
fail to assemble chloroplast genomes as a single contig due to their structure, consisting
of two single copy regions and an inverted repeat. The size of the inverted repeat is in
most cases multiple kilobasepairs in size, therefore it can not be resolved using short
reads only. However SPAdes (Nurk et al. 2013) returns the assembly graph where the
typical chloroplast structure can be recognized and reconstructed using the knowledge
of its structure. Using our demo set, one can achieve a single contig assembly of the
chloroplast of Spinacia oleracea . If the assembly process does not finish with a single
chloroplast sequence all remaining sequences are BLASTed (Camacho et al. 2009) against
a database of reference chloroplasts to retain all partial sequences of interest. The final
chloroplast sequence can be further annotated with tools like DOGMA (Wyman, Jansen,
and Boore 2004), cpGAVAS (Liu et al. 2012) and VERDANT (McKain et al. 2017).
Such assemblies, can be used to remove chloroplast reads before a genomic assembly of
the remaining nuclear DNA. Moreover, chloroplast genomes are useful in phylogenetic
reconstruction (Huang et al. 2016) or barcoding applications (Coissac et al. 2016). A
similar tool, aiming the assembly of whole chloroplast genomes is the Python program
org.ASM, but it is not production ready, yet. Also plasmid SPAdes (Antipov et al. 2016)
could possibly be used for this purpose although it is not intended for it. In the future,
we plan to use our chloroExtractor to screen NCBI’s Sequence Read Archive (Leinonen,
Sugawara, and Shumway 2011) for chloroplast genomes in public sequencing datasets
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Figure 1: Schematic workflow of chloroExtractor.

that are not yet available in chloroplast databases, eg. chloroDB (Cui et al. 2006) to
broaden our knowledge about chloroplasts.
In addition to the components cited above the chloroExtractor uses Ghostscript, Phyton,
and Perl. Further the following Perl modules are used: Moose, Log::Log4Perl, Graph,
Term::ProgressBar, IPC::Run, and File::Which.
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