
Assertions to Better Specify the Amazon Bug

L. Baresi, G. Denaro, L. Mainetti, and P. Paolini
Dipartimento di Elettronica e Informazione

Politecnico di Milano
Piazza L. da Vinci 32, I-20133 Milano, Italy

baresi|denaro|mainetti|paolini@elet.polimi.it

ABSTRACT
Modern Web applications are mainly distributed systems
that exploit the Internet as communication means and the
Web as neutral interface to access services and data. The
addition of services to Web applications poses problems that
are usually tackled at the technology level, but that should
be addressed during design to deliver quality Web applica-
tions. A typical example of these problems is the Amazon
bug, an annoying problem that the user could encounter if
after adding products to his shopping cart, he rolls back to a
page with a previous version of the cart and tries to buy it.
This would make the user buy the last version of the cart’s
contents, which in some subtle cases could be different from
what expected.

In this paper, we do not want to discuss all design aspects,
but only how provided services/operations should jointly be
designed with the rest of the system. We propose a new
reference model for Web applications: Operations require a
more complex model where they are not simply appended
to information and navigation elements, but they can co-
operate with them. Besides the reference model, the paper
proposes the use of assertions to constraint the behavior of
designed operations. Assertions do not only predicate on
how data should be modified, but must also take into ac-
count how presentation and navigation could be affected by
the execution of the operation.

Keywords
Web application design, Web operation, assertions

1. INTRODUCTION
Modern Web applications are mainly distributed systems
that exploit the Internet as communication means and the
Web as neutral interface to access services and data. These
applications, in many cases, change the perspective of what
the Web is: We are moving from applications where the Web
was the key feature (e.g., data-intensive systems) to applica-

tions for which the Web is a means to supply services ([3]).

This new perspective is appealing for several different rea-
sons. The Internet offers a highly available neutral (with
respect to application domains and implementation tech-
nology) communication means. The Web is easy to access
and does not require special-purpose client-side technology:
A simple browser is enough to connect to the server and ex-
ploit its services. Moreover, off-the-shelf technology (mid-
dlewares, markup languages, and enterprise components)
can be used to plug new services and make the system scale
according to the actual needs ([14, 12]). The Web offers
also a fancy way for implementing more engaging user in-
teraction. Essentially, operation-oriented interfaces, which
offer the minimum interactivity, are replaced by more user-
oriented interfaces to let the user mix navigation, data ac-
cess, and service invocation in a natural way.

The Web could simply introduce a visual make-up of the
application through a Web interface, without improving the
ergonomics and interaction paradigm. This applies to the
attempts of porting legacy systems on dedicated intranets
(e.g., accounting and billing systems). The Web can also
imply a stronger coupling: The application becomes an ho-
mogeneous mix of navigation and services. This applies to
new applications, like the e-services available on the Inter-
net, or to completely rethought systems. All important as-
pects must be revised to fully exploit the Web in engaging
users and improving accessibility and usability.

In both cases, the addition of services to Web applications
does not come for free ([17, 19]). It poses problems that are
usually tackled at the technology level, but that should be
addressed during design as well. Our strong belief is that
quality Web applications come from good design: Improv-
ing our design standards and our ability for validating the
design are today crucial factors to improve the quality of
Web applications. A typical example of these problems is
the Amazon bug, an annoying problem that the user could
encounter if after adding products to his shopping cart, he
rolls back to a page that displays a previous version of the
cart and tries to buy it. This would make the user buy the
last version of the cart’s contents, which in some subtle cases
could be different from what expected. A proof that even
famous Web applications are prone to errors and could be
improved if carefully designed.

In this paper, we do not want to discuss all design aspects,

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy,
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
SEKE '02, July 15-19, 2002, Ischia, Italy.
Copyright 2002 ACM 1-58113-556-4/02/0700...$5.00.

- SEKE '02 - 585 -

but only how provided services/operations should jointly be
designed with the rest of the system. The first consequence
is the need for a new reference model for Web applications:
The conventional layered view typical of data-intensive Web
sites is not enough anymore. Operations require a more
complex model where they are not simply appended to in-
formation and navigation elements, but they can cooper-
ate with them. Thus, the paper sketches a new reference
model, mainly inspired by HDM/W2000 (Hypermedia De-
sign Model,[7, 1]), but whose main concepts could be applied
to all other similar approaches.

The proposed model allows designers to think of navigation
and services jointly, trying to foresee how they can influence
each other to avoid mutual side effects that could jeopar-
dize the system. Besides the reference model, the paper
proposes the use of assertions to constraint the behavior of
designed operations: pre- and post-conditions and invariants
are the standard way for specifying the behavior of opera-
tions. Roughly, pre- and post-conditions define what must
hold true in the system before and after executing the op-
eration; invariants define properties of application elements
that must always be true. The use of natural language is
the simplest way to express them, but more specific nota-
tions, like iContract [13], Eiffel [16], and OCL [8]1, would
guarantee a higher degree of rigor. To the best of authors’
knowledge there is neither a proposal that is specific to hy-
permedia systems, nor an approach for blending hypermedia
and operations. Assertions cannot only predicate on how
data should be modified, but must also take into account
how presentation and navigation could be affected by the
execution of the operation.

This is why, the paper identifies the main requirements for
such an assertion system. It does not aim at proposing a
completely new approach, but rather it is based on OCL,
the standard UML assertion language. The additions are
partially motivated by and exemplified on the Amazon bug.

Finally, the presentation follows a user-oriented perspective.
We want to clearly state what the application should do with
respect to its users. The system-oriented perspective could
introduce further requirements and constraints that are hid-
den to users. The two design aspects are obviously corre-
lated, in the sense that latter must consistently implement
the former, but are also different from a methodological per-
spective.

The rest of the paper is organized as follows. Section 2
motivates the paper by introducing the Amazon bug, a typ-
ical annoying behavior that we found in the well-known e-
commerce site and in several other applications. The pur-
pose is not to blame Amazon but to convince readers. Sec-
tion 3 paves the ground to assertions by proposing a first tax-
onomy of Web operations, identifying the main new require-
ments as to design models, and sketching the new reference
model. Section 4 describes how assertions can be exploited
to define the behavior of Web operations and explains how

1iContract is an assertion language for the Java program-
ming language. Eiffel is an object-oriented language that
supplies assertions as built-in concepts. OCL is part of the
UML family and associates model objects with constraints
at design time.

they could solve – how their use would have avoided – the
Amazon bug. Finally, Section 5 concludes the paper and
presents our future work.

2. THE AMAZON BUG
The annoying behavior discussed in this section is only an
example, taken from the well-known e-commerce site, of
a class of (subtle) problems that unfortunately belong to
many Web applications. We exemplify the problem using
the Amazon site only because of the site’s renown - we nei-
ther want to blame Amazon, nor we want to complain. Our
intention is rather to warn readers that similar bugs can be
everywhere.

The example is simple, but sufficient to understand what
types of situations users may stumble on. The user wishes
to buy some DVDs and browses through the catalogue to
select what he wants to buy. After choosing the first DVD,
the application presents to the user the shopping cart with
the selected item (say, the Fantasia 2000 DVD) (Figure 1).
From his shopping cart page (Figure 1), the user can:

• Check its purchase out, using the proceed to checkout
button;

• Return to shopping, using the continue shopping but-
ton;

• Cancel selected items, using the delete button;

• Use the browser to navigate back, using the back but-
ton.

In the latter case, the user would not exploit the application
logic, instead he would benefit from application-independent
capabilities offered by the browser.

If after Fantasia 2000, the user wanted to buy also Fantasia,
he could use continue shopping, locate the DVD in the page
that lists all Disney DVDs (step 1 of Figure 2), and check it
out for purchase. The selection makes the user move to the
shopping cart page (step 2 of Figure 2), which now contains
two DVDs: Fantasia and Fantasia 2000.

Thinking of price, the user changes his mind and decides
that he does not want to buy the second DVD, i.e., Fantasia,
any more. The rigorous user (that is, the user who follows
the suggested application logic) would delete the DVD from
the shopping cart, using the delete button (step 3a of Fig-
ure 2) and then he would checkout the shopping cart with
just Fantasia 2000 (step 4a of Figure 2).

In contrast, the “normal” user (the typical ”free” navigator)
would roll back the session to the previous shopping cart,
that is, the one with one item, using the back button of his
browser twice: The first time to return to the page listing
all Disney DVDs; the second time to bring the user to the
previous cart, that is, the page shown as step 3b of Figure 2,
which contains only Fantasia 2000. Thus, he would check
out this page/cart with the surprise that he is about to buy
the two DVDs (step 4b of Figure 2), instead of just Fantasia
2000.

- SEKE '02 - 586 -

Back

Proceed to
checkout

Continue
shopping

Delete

Figure 1: The shopping cart with one DVD

Back Delete
Back

2

… Proceed to checkout
4a

3b 3a

… Proceed to checkout
4b

1

Add to Shopping Cart

2 items

1 item

2 items

1 item

1 item

Figure 2: Different alternatives to complete the purchase

- SEKE '02 - 587 -

The anomaly is twofold. By clicking the proceed to checkout
button in the page that contains one item only (step 3b), the
user ends up buying two items (step 4b), unless he stops the
process. By clicking the same button - proceed to checkout -
in two visually identical pages (steps 3a and 3b of Figure 2)
the user gets two different operational results: He buys one
item in the first case, and two items in the second case.

3. COPING WITH WEB OPERATIONS
The purpose of this section is to discuss the relevant issues
for designing Web-based operation/services. In this paper,
we do not distinguish between operation and service: We
consider them as synonyms, even if we could say that a
service comprises several operations.

The Amazon bug demonstrates that the coexistence of dif-
ferent interaction paradigms, i.e., navigational and opera-
tional, introduce mutual side effects and may lead to anoma-
lous behaviors and unpredictable effects for the users.

Operations may take control over standard navigation, tak-
ing the user to different pages within the hypermedia nav-
igation schema. Usually, operations can be invoked from a
page, but lead the user through different pages during their
execution.

The sequence of information items (nodes) used by opera-
tions should be based on the intrinsic navigation possibilities
of the application, both for usability and accessibility rea-
sons and to support reuse. In other words, if item2 follows
item1 in a given operational context, the user naturally ex-
pects to find also a navigational connection between the two
items, and the designer should be able to exploit and reuse
this underlying navigational structure.

Free hypermedia navigation, directly activated by the user
while browsing the interlinked information structures, may
disrupt the standard flow of information required by the
execution of an operation. Think of, for example, the back
and forward buttons supplied by the browser.

These examples clearly indicate the need for a design ap-
proach that help designers master this complexity and re-
duce the risk of introducing inconsistencies and unpredictable
behaviors. Unfortunately all known design approaches are
suitable to either data-intensive Web applications, that is,
are hypertext oriented, but do not allow for modeling real
operations (for example, [7, 10, 6, 9, 20]), or come from “tra-
ditional” software engineering and do not pay enough atten-
tion to hypermedia. Just a couple of approaches ([2, 18]) ad-
dress operations, but are limited to “simple” input/output
operations; only Conallen [4] tries to intertwine the two do-
mains, but with a very implementation-oriented viewpoint.

3.1 A preliminary taxonomy of Web opera-
tions

Before introducing our new reference model, let us try to
identify a preliminary taxonomy for Web operations and
point out the requirements that they induce. Web opera-
tions can allow users to:

Select the actual parameters to complete an opera-
tion. In many cases, while the user browses the information
repository, he also collects those data that will become the
actual parameters of his operation. For example, when we
select a book we want to buy, we identify it as the param-
eter of the buy operation. Even if the user perceives he is
navigating, he changes the way available information is or-
ganized (according to the HDM jargon, he is changing the
collections defined for the application). This may lead also
to changing the state of the pointed element (e.g., the ap-
plication immediately decrements the number of available
copies of the selected book) and the way users can navigate
through the application (e.g., the application forbids users
from navigating through the pages of non-available books).

Change the way users can navigate through pages
(data). Even if operations do not change the application
contents, they can guide the user while navigating through
the pages. Specific choices could allow some links, but dis-
allow others. For example, the operation could change the
order used to present the elements of a collection: Books
could be presented by title or by author’s name. In this
case, we would not change the elements in the collection,
but simply the links among them.

Enter new data in the system. For example, all pages
that embed forms implicitly provide these operations. But
this means that if we have forms, the application data may
be augmented and changed. It could be the case also that
not all inserted information becomes “navigable”, i.e., it is
not rendered in Web pages. In many cases, when we supply
a system with our personal data to register ourselves, we
cannot browse them.

Perform complex state-aware computations. For ex-
ample, consider those applications that log their users and
adjust what they can do with respect to what they have
already done. Otherwise, we can mention those applica-
tions that have a high degree of computations, like billing
or special-purpose applications. These operations must ex-
ploit computational “objects”: They can simply be used to
store the state of the computation or of the particular user,
but they can also be delegated to compute some complex
algorithmic tasks that could hardly be striven on a DBMS.

Besides these classes, we can also think of other operations
that we do not want to consider now. The first group can
be seen as fake navigation: for example, when users graph-
ically reshape the elements they are browsing. The second
group comprises all those operations that we could term
as advanced, that is, those that deal with customizing the
application with respect to specific contexts ([11]): devices,
user profiles, quality of service, etc. Orthogonally, we should
model the fact that sets of operations should be considered
logical transactions: This is an important aspect, but it is
not covered in this paper. Interested readers can refer to [5]
for a complete presentation.

3.2 A new reference model
This partial taxonomy poses a set of clearly identifiable re-
quirements to the supporting design model, which must en-
compass all features that are common to hypermedia sys-
tems, but, at the same time, must integrate operations and

- SEKE '02 - 588 -

the effects they have on the whole system. Figure 3 presents
a simplified – to concentrate on the main concepts – refer-
ence model2 for Web applications: It borrows the layers from
data-intensive systems, namely HDM/W2000, and adds new
elements to cope with the problems introduced so far. For
the sake of clarity, new elements are depicted with a gray
background.

Web Application

Presentation Model

Nav. Info InfoState

Information Model

Link

Page

Operation

Navigation Model

Node Link Temp NodeNode

Figure 3: Our reference model for Web applications

In this paper, we refer to HDM as underlying starting point,
but the layered organization of Figure 3 with Information,
Navigation, and Presentation models applies to almost all
known approaches. These layers can be seen as an appli-
cation to the hypermedia domain of the well-known model-
view-control design pattern.

Operations can change the application data, but also – or
only – the way they can be navigated or presented. The
box operation has been added in the Presentation model,
because it is the level at which the user perceives operations,
but they can work at all levels. Its associations state that
an operation can work on/with pages and links, but also
with all the elements in the other two models3.

The equation that modeled information must be browsable
is not true anymore. Operations, and more generally Web
applications, need to model both navigable information, but
also the data required by supported computations. To cope
with this requirement, we distinguished between nav info

and info to explicitly consider the two different uses of the
modeled information.

Not all data must be persistent anymore. Temporary data,
and thus nodes and pages, could be required to build per-

2According to the UML jargon, Figure 3 describes the meta-
model of Web applications.
3Instead of transforming the model in a kind of “spaghetti”
diagram, we used thick lines to define an association between
an operation and all elements in a model.

manent information by following a given process. To cope
with this problem we added temp nodes that can be used to
model temporary information items and then be rendered
into special-purpose pages.

Application data cannot be state-less anymore. Theoret-
ically, each information element could be associated with
a set of states through which it can evolve during its life.
States could also become important to implicitly define which
elements belong to which collections. This is why we added
states as meaningful properties of modeled information.
But now, since data can change, pages do not embody infor-
mation elements, but they simply render them. This means
that the assumption that a page is an information element is
not correct anymore, but a page is simply a materialization
of an information element in a precise instant.

4. ASSERTIONS AND THE WEB
Assertions, as proposed by Bertrand Meyer [16], can be seen
as contracts between the service provider and the customer,
that is, the “entity” that will use the service. These con-
tracts are a light and precise way for specifying what must
hold true in the system. Assertions can be expressed using
natural language, but more precise notations increase the
quality of delivered design.

The following sections explain how we propose to extend
assertions and how they can be used to better specify the
Amazon bug at design level.

4.1 Assertions and Web Operations
This section presents the basic extension to OCL specific
to Web applications. Since operations are dynamic entities,
the actual elements related to an operation are expected to
vary while the operation executes. For example, in many
cases the current page at the beginning of the operation
differs from the current page at the end of the operation it-
self. Moreover, the integrity relationships of the elements
distributed among the different application layers cannot
be guaranteed a-priori. On the contrary, it is part of the
operation semantics to state whether the coherence among
elements in different application layers must be ensured or,
if not, which of the available representations must be used.
To model the possible cases, operations are associated with
a set of formal parameters ([15]). This enables designers to
constrain the desired behavior by stating whether the actual
parameters of an operation come from the current page, or
the (current) internal state, or the two representations must
be consistent.

Operations can be of two types: low level operations, i.e.,
single activities, and high level services associated with se-
quences of both user actions and low level operations. Low
level operations are atomic and they can be specified in
terms of pre- and post-conditions. High level operations are
not atomic: Invariants can be used to describe properties
that are expected to be true at each point of the execution
of the service.

The reference model as to operations is presented in Figure 4
and can be considered a kind of zoom with respect to the
model of Figure 3. This model is hidden to designers, but it
is needed to define the semantics of the OCL extensions, i.e.,

- SEKE '02 - 589 -

Operation

Page
(from presentation model)

Low Level Operation

High Level Operation

current page[1..1]

Formal
Parameter

[0..*]

current internal state

InformativeElement
(from information model)

NavigationElement
(from navigation model)

[0..1]

Operation Model

[1..1]

current internal state

[1..1]

[0.. *]

[0..*]

[0..*]

[0..*]

[0..1]

[0..*]

[1..*]

type

type

Figure 4: Reference model for operations

we explain each extension by means of plain OCL constraints
on the reference model.

The OCL extensions relevant to the Amazon bug are pre-
sented below. The new keywords are prefixed with wcl (that
is, WebOCL).

wclCurrentPage() : Page In the context of4 a Web op-
eration op, this function returns the page currently
visualized. The precise semantics is:

wclCurrentPage , op.currentpage

wclIsVisualized(i: Item)5 : Boolean In the context of
a Web operation op, this function results true if the
element i is visualized in the current page. The precise
semantics is6:

wclIsV isualized(item) ⇐⇒
op.curPage.section.sctElement− > exists(item)

Note that in HDM sections are independent parts of
pages and section elements are the items that each sec-
tion contains (See [1] for a more complete presentation
of the HDM/W2000 framework).

wclIsStored(i: Item) : Boolean In the context of a Web
operation op, this predicate results true if the element i

4This means that the function is available within the asser-
tions of an operation.
6Due to space limitations, some references to Figure 4 have
been abbreviated: current page with curPage, current
initial state with ciState, and formal parameter with
formalPar.

is currently stored in the application state. The precise
semantics is:

wclIsStored(item) ⇐⇒
op.ciState.navElement− > includes(item) or
op.ciState.infoElement− > includes(item)

wclActualParameterLikePresented(i: Item) : Boolean
In the context of a Web operation op, this predicate
results true if the actual value of i comes from the
current application state. The precise semantics is:

wclActualParameterLikePresented(item) ⇐⇒
op.formalPar− > includes(item) and
wclIsV isualized(item)

wclActualParameterLikeStored(i: Item) : Boolean In
the context of a Web operation op, this predicate re-
sults true if the actual value of i comes from the current
page. The precise semantics is:

wclActualParameterLikeStored(item) ⇐⇒
op.formalPar− > includes(item) and
wclIsStored(item)

wclActualParameterUpToDate(i: Item) : Boolean In
the context of a Web operation op, this predicate re-
sults true if the actual value of i is both in the one from
current page and the one from the current application
state. The precise semantics is:

wclActualParameterUpToDate(item) ⇐⇒
wclActualParLikeStored(item) and
wclActualParLikePresented(item)

wclLinkFollowed(l: string) : Boolean In the context of
a Web operation op, this predicate results true if the

- SEKE '02 - 590 -

link l is followed. The definition of a precise semantics
for this predicate would need a proper event model for
Web applications. Here, we assume that for all links at
Presentation layer, hereafter presentationLink, a cor-
responding event is defined. We also assume that it is
possible to know whether or not an event is fired by
means of the primitive predicate followLinkIsF ired.
The definition of a proper event model can be found
in [5]. The semantics of wclLinkFollowed is:

wclLinkFollowed(stringlinkname) ⇐⇒
exists(l : PresentationLink |
l.name = linkname and
l.wclIsV isualized() and
l.followLinkIsF ired())

4.2 How assertions specify the Amazon bug
Given the extensions defined in the previous section, the
Amazon bug can be solved in several different ways. Actu-
ally, it is not a real solution, which depends on the technol-
ogy used to implement the application, but it is a precise
way to start thinking of that since the early design phases.

<<Entity>>
Customer

<<Collection>>
Shopping Cart

[0..*][1] <<Entity>>
DVD

[0..*][0..*]

<<Page>>
CartPage

renders

<<Center>>
Quantity

Figure 5: An excerpt of the model of an Amazon-
like application

The model fragment of Figure 5 introduces the mandatory
elements to explain the Amazon bug. A CartPage page type
defines how we want to visualize a cart. This page type
renders the ShoppingCart collection type, which is the way
we model the cart at the information/navigation level. The
cart is a set of DVD objects (entities according to the HDM
jargon). The Center stores the quantity in the cart of each
bought item. Each cart belongs to a Customer.

The Amazon bug comes from an assumption that was cor-
rect for state-less applications: A page is always a correct
visual materialization of the corresponding node (informa-
tion element). Nowadays, Web applications can modify their
data and thus a page can become old with respect to the in-
formation contents it materializes. This constraint could be
modeled as an invariant associated with the CartPage page
definition:

contextCartPage
inv : wclIsStored(self.renders)

Where, wclIsStored is the predefined function that states
the consistency between the body of the page and the state
of the node it renders. Since we used an invariant, we would

state that the page must always be consistent: it will be
responsibility of implementations to guarantee that pages
stacked in the browser’s history are correct when accessed.
A less stringent requirement could be that the pages must
not be stacked by the browser. This would require a ded-
icated invariant to represent that the page once visualized
must not be added to the navigation history.

A further possibility is the definition of the constraint as a
property of the operation that could use the page. Instead
of predicating on a property that must always hold true, we
limit our attention to a particular operation. If we consider
the buy operation, we could say:

contextbuy(s : ShoppingCart, c : Customer)
pre :

wclActualParameterUpToDate(s)and
wclLinkFollowed(“Proceedtocheckout′′)

post :
wclCurrentPage = SupplyUserDataPage

Finally, we could change the perspective and consider that
the actual visualized information is always correct. In this
case, for the buy operation, we could say:

contextbuy(s : ShoppingCart, c : Customer)
pre :

wclIsV isualized(s)and
wclLinkFollowed(“Proceedtocheckout′′)and
wclAcualParameterLikePresented(s)

post :
wclCurrentPage = SupplyUserDataPageand
wclIsStored(s)

To complete these assertions, we should also say that the
products in the shopping cart s, e.g., DVDs, must be avail-
able and the customer c must be registered. These further
constraints would only make the pre- and post-condition
more complex, but they do not change the approach.

5. CONCLUSIONS AND FUTURE WORK
In this paper, assertions are used to better specify the Ama-
zon bug at design level, but our strong belief is that their
applicability is more general and can address a wider class of
problems. The main thesis of this paper is that the careful
design of Web operations is the best way to avoid annoying
behaviors and increase the quality of released applications.
We briefly describe the main requirements that arise from
the integration between the Web and “real” operations. We
sketch a new reference model for accomplishing these re-
quirements and reason on Web applications. We propose
also how to exploit assertions to specify Web operations and
we exemplify our approach on specifying the Amazon bug.
Needless to say, the use of assertions in not new in software
engineering, but to the best of authors’ knowledge, this is
the first time they have been applied in the context of Web
applications. Our proposal is part of a multidimensional de-
sign approach that clearly distinguishes between user- and
system-oriented design and orthogonally considers informa-
tion, navigation, and presentation design in a coordinated
way.

Our future work will consist in completing and refining our

- SEKE '02 - 591 -

proposal to extend assertions (OCL) to specify Web oper-
ations. We will complete the set of primitives presented in
this paper, but we will investigate also other problems, like
customization and user profiles, that are not considered now.

6. REFERENCES
[1] L. Baresi, F. Garzotto, and P. Paolini. From web sites

to web applications: New issues for conceptual
modeling. In Proceedings of the International
Workshop on The World Wide Web and Conceptual
Modeling, co-located with the 19th International
Conference on Conceptual Modeling, 2000.

[2] A. Bongio, S. Ceri, P. Fraternali, and A. Maurino.
Modeling data entry and operations in webml. In
WebDB (Informal proceedings) 2000, pages 87–92,
2000.

[3] G. Booch. The architecture of web applications, 2001.
http://www.developer.ibm.com/library/articles/

booch_web.html.

[4] J. Conallen. Building Web Applications with UML.
Addison-Wesley, Reading, 1 edition, 1999.

[5] G. Denaro. Extending OCL to meet web application
requirements. Technical report, Politecnico di Milano,
2001.

[6] P. Fraternali and P. Paolini. Model-driven
development of Web applications: the AutoWeb
system. ACM Transactions on Information Systems,
18(4):323–382, 2000.

[7] F. Garzotto, P. Paolini, and D. Schwabe. HDM – A
model for the design of hypertext applications. In
Proc. of ACM Hypertext’91, Hypertext – Integrative
Issues, page 313, 1991.

[8] O. M. Group. Object constraints language
specification, Feb. 2001.

[9] R. Hennicker and N. Koch. A UML-based
methodology for hypermedia design. In UML 2000 -
The Unified Modeling Language. Advancing the
Standard. Third International Conference, York, UK,
October 2000, Proceedings, volume 1939 of LNCS,
pages 410–424. Springer, 2000.

[10] T. Isakowitz, E. Stohr, and P. Balasubramanian.
RMM: A methodology for structured hypermedia
design. Communications of the ACM, 38(8):34–44,
Aug. 1995.

[11] G. Kappel, B. Proll, W. Retschitzegger, W. Schwinger,
and T. Hofer. Modeling ubiquitous web applications -
a comparison of approaches. In Proceedings of the
Third International Conference on Information
Integration and Web-based Applications and Services
(iiWAS2001), Linz, Austria, pages 163–174, sep 2001.

[12] N. Kassem and The Enterprise Team. Designing
Enterprise applications with the Java 2 Platform.
Addison-Wesley, 2000.

[13] R. Kramer. iContract – The Java Design by Contract
Tool. In Proceedings of TOOLS26: Technology of
Object-Oriented Languages and Systems, pages
295–307. IEEE Computer Society, 1998.

[14] F. Manola. Technologies for a web object model. IEEE
Internet Computing, jan 1999.

[15] A. M. Memon, M. E. Pollack, and M. L. Soffa.
Automated test oracles for GUIs. In Proceedings of the
ACM SIGSOFT 8th International Symposium on the
Foundations of Software Engineering (FSE-00),
volume 25, 6 of ACM Software Engineering Notes,
pages 30–39. ACM Press, Nov. 2000.

[16] B. Meyer. Eiffel: The Language. Object-Oriented
Series. Prentice Hall, New York, N.Y., 1992.

[17] S. Murugesan and Y. Deshpande. ICSE’99 workshop
on web engineering. In Proceedings of the 1999
International Conference on Software Engineering.
IEEE Computer Society Press / ACM Press, 1999.

[18] O. Pastor, V. Pelechano, E. Insfran, and J. Gomez.
From object oriented conceptual modeling to
automated programming in Java. Lecture Notes in
Computer Science, 1507, 1998.

[19] T. A. Powell. Web Site Engineering: Beyond Web
Page Design. Prentice Hall, Upper Saddle River, New
Jersey, 1998.

[20] D. Schwabe and G. Rossi. An object oriented
approach to web-based applications design. Theory
and Practice of Object Systems, 4(4):207–225, 1998.

- SEKE '02 - 592 -

