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Abstract

Background: Microbial interaction between human-associated objects and the environments we inhabit may have
forensic implications, and the extent to which microbes are shared between individuals inhabiting the same space
may be relevant to human health and disease transmission. In this study, two participants sampled the front and back
of their cell phones, four different locations on the soles of their shoes, and the floor beneath them every waking hour
over a 2-day period. A further 89 participants took individual samples of their shoes and phones at three different
scientific conferences.

Results: Samples taken from different surface types maintained significantly different microbial community structures.
The impact of the floor microbial community on that of the shoe environments was strong and immediate, as evidenced
by Procrustes analysis of shoe replicates and significant correlation between shoe and floor samples taken at the same
time point. Supervised learning was highly effective at determining which participant had taken a given shoe or phone
sample, and a Bayesian method was able to determine which participant had taken each shoe sample based entirely on
its similarity to the floor samples. Both shoe and phone samples taken by conference participants clustered into distinct
groups based on location, though much more so when an unweighted distance metric was used, suggesting sharing of
low-abundance microbial taxa between individuals inhabiting the same space.

Conclusions: Correlations between microbial community sources and sinks allow for inference of the interactions
between humans and their environment.
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Background
In recent years, research into the microbial interactions
between humans and their surroundings has revolutionized
our understanding of the microbial ecology of the built en-
vironment [1]. The dynamic relationship between the bac-
teria associated with human skin and the microbiome of
indoor surfaces and of objects we interact with has demon-
strated the degree to which the human microbiome can
shape the microbial ecology of our homes, offices, hospitals,
and cities [2-6]. Characterizing this microbial dynamic is
critical for many purposes, such as determining the rate
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and progression of microbial colonization of human infants
exposed to the indoor microbiome [7,8]. We therefore be-
lieve it is essential to determine how the microbial ecology
of the built environment establishes and fluctuates over
time.
Research on the microbial exchange between human

and built environments has illuminated the forensic poten-
tial of the microbiome. In some cases, human microbial
signatures have been used to match individuals to objects
they have interacted with, including computer keyboards
[9]. Work on the microbiome of multiple home surfaces
has shown that the microbial signature of a family can be
highly predictive of the microbiome of that family’s home
and that individuals within a home can be differentiated
[2]. Indeed, recent work on the microbial assemblages
associated with smart phones has shown that individuals
leave their skin microbiome on the surface of their phones
[10]. The rate at which these microbial communities
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change after they are deposited on a surface is also po-
tentially valuable for forensic applications. Recent work
has shown that postmortem, the microbiome of animal
hosts changes dramatically, but in a predictable man-
ner [11]. This predictability enables us to use microbial
assemblages to help explore not just where someone is
right now but also where they may have been recently
[12]. To explore the potential to determine the microbial
fingerprint of individuals on personal items, we performed
a detailed biogeographic and longitudinal characterization
of the microbial communities on personal mobile phones.
Additionally, we examined whether the microbial com-
munities associated with an individual’s shoes were deter-
mined by the floor microbiome associated with where
they were walking.

Results and discussion
Identifying signatures on shoe and phone samples
To determine the extent to which the microbial commu-
nities of samples were driven by surface type (that is, shoe,
phone, or floor) and study participant, we employed a
combination of ordination and supervised learning
analyses. We found that microbial community struc-
ture was determined both by surface type and partici-
pant (PERMANOVA on weighted UniFrac; Pseudo-F =
Figure 1 Ordination of samples based on weighted and unweighted phylog
coordinate (PCoA) plots for all samples in the study based on pairwise weigh
surface and person, respectively. (C, D) are similarly colored by surface and pe
UPGMA clustering of pooled and evenly rarified sample groupings based on
highlighted to reflect person of origin (colors as in B and D) and group name
19.7 and 22.7, respectively; P < 0.0001). The relative in-
fluence of surface type and interacting individual on mi-
crobial community structure was demonstrated by the
weighted (Figure 1A, B) and unweighted (Figure 1C, D)
UniFrac distance between samples. In both cases, the
first principle coordinate clearly demarcated sample sur-
face while the second principal coordinate demarcated
study participant. UPGMA hierarchical clustering of sam-
ples pooled by individual and surface type (Figure 1E, F)
further suggested surface type as the dominant influence
on microbial community structure, with phone and shoe
samples forming distinct groups, which were in turn
subdivided individually. In both ordination analyses, floor
samples clustered tightly with their longitudinally associ-
ated shoe samples.
The diagnostic power of microbial community profiles

for predicting which of the two study participants a shoe
or phone sample had been taken from was determined
using random forest supervised learning. Random forest
models were highly successful at determining which of the
two participants’ shoes a sample was taken from, correctly
classifying samples more than 50 times as effectively as
one would expect by chance (Table 1), which indicates
consistent differentiation in the shoe microbial commu-
nities of these two different people, even accounting for
enetic dissimilarity in community composition. (A, B) depict principal
ted UniFrac distance between samples, with sample points colored by
rson but are based on unweighted UniFrac distance. (E, F) depict
weighted and unweighted UniFrac distance, respectively. Branches are
s at branch tips are colored by surface as in A and C.



Table 1 Summary of predictive accuracy of random forest supervised learning models

Sample subset Predicted category N Estimated error ± SD Baseline error Ratio

All phone samples Person 104 0.037 ± 0.062 0.500 13.63

All shoe samples Person 211 0.010 ± 0.020 0.479 50.26

P1 phone samples Front/back 52 0.417 ± 0.206 0.481 1.15

P2 phone samples Front/back 52 0.268 ± 0.180 0.481 1.79

P1 shoe samples Shoe surface 110 0.705 ± 0.125 0.736 1.05

P2 shoe samples Shoe surface 101 0.796 ± 0.090 0.732 0.92

Tenfold cross validation models were constructed with 1,000 trees using OTUs from evenly rarified samples as predictors of sample origin. P1, person 1; P2, person 2,
SD, standard deviation, N, number.
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temporal variability. This is likely due to the presence
of a ‘core microbiome’ on the shoes of individual study
participants, which we assessed by looking at the abun-
dances over time of the 100 taxa with the highest fea-
ture importance scores in the model (Additional file 1:
Figure S1). The majority of those 100 operational taxo-
nomic units (OTUs) were consistently detected on the
shoes of one participant over the course of the time
series, but not on those of the other participant.
In contrast to the high error ratio of models predicting

study participant, the models did no better than expected
by chance in determining which of the four shoe sites a
sample had been taken from, even when models were
segregated by study participant. We propose that this is
due to the homogenization of communities across the
shoe sole over time or to rapid changes in community
structure at each sampling site. A similar pattern was
observed in phone samples, with the models able to
classify the participant a phone sample was taken from
(error ratio of 13.6) but unable to determine whether
the sample had been taken from the front or back of a
given phone (Table 1).
Random forest models were also used to assess which

bacterial taxa were most associated with different surface
types. Models were trained on a genus-level summary of
the OTU table, and shoe and floor samples were merged
into a single surface type based on their similarity in or-
dination analyses. When trained at the genus level, models
were able to determine whether a sample was taken from a
phone or a shoe/floor with an error ratio of 3.6. The 20
genera with the highest feature importance scores are sum-
marized in Additional file 2: Figure S2, with skin-associated
genera such as Streptococcus, Propionibacterium, and
Corynebacterium highly enriched in phone samples rela-
tive to shoe samples.

Longitudinal interaction between shoe and floor
communities
To determine the extent to which the floor environments
a shoe has interacted with influence the sole’s microbial
community and to assess whether individual shoe and
floor time series could be matched based on similarity, we
employed a Bayesian source tracking approach [13]. These
Bayesian models predicted a dominant influence from
the correct source (Figure 2), which we believe shows
the similarity between shoe and floor microbial community
composition and may be used to infer where someone has
recently walked. On average, the models predicted that a
floor sample was the source of microbes for approximately
three quarters of the microbial community associated with
that shoe at that time point. Strikingly, floor samples had
significant predictive power despite often being taken in
areas the shoe did not directly touch (that is, proximate to
where the participant had actually stepped), which suggests
localized homogeneity of the floor microbial community.
We also formulated individual SourceTracker models for
each participant, in which the floor samples of individual
locations were treated as sources to the shoe samples
(Additional file 3: Figure S3). These models demonstrated
that bacterial taxa associated with the floor of a particular
location often increased in abundance on the shoe soles of
study participants while walking through that space.
To determine whether changes in the microbial commu-

nity of the four shoe environments tended to be similar at
each hourly sampling interval, we employed Procrustes
analysis of the four sets of principal coordinates (Additional
file 4: Figure S4). All three pairwise comparisons for each
study participant produced significant P values (P < 0.005;
Additional file 5: Table S1), demonstrating that changes in
the microbial communities of the four shoe environments
resemble each other at each sampling interval, and thus
suggesting a consistent impact from the floor microbial
community. Procrustes analysis of the principal coordi-
nates from the front and back of participants’ phones
did not produce significant P values, which we hypothesize
is likely due to greater heterogeneity in community com-
position across the surface area of an individual phone
at a given time point than would be observed across a
shoe at a given time point due to lower overall biomass
and high volatility in hand-associated microbial com-
munities. It is also likely that microbes from the back
of phones are likely to be sourced mostly from hands
while the front may also be sourced from the face of
the owner.



Figure 2 Summary of predictive accuracy of SourceTracker models in determining which of the two study participants a sample was taken from
based only on the microbial communities of the floor samples those shoes had interacted with. For the models, all four shoe samples taken by
each participant at a given time point were consolidated and treated as individual sinks (N = 29 and 27 for persons 1 and 2, respectively). All floor
samples from the two participants’ time series were collapsed and treated as the two possible sources to the shoe sink communities.
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To assess the speed at which the floor environment
influences the shoe sole microbial community, we looked
at the relationships between shoe and floor samples taken
from the same time point in principal coordinate (PC)
space. For both study participants, PC1 values for the floor
and shoe samples at each time point were highly corre-
lated for all four shoe environments (Figure 3A); we be-
lieve this is likely due to rapid contamination of the
shoe sole by the floor microbial community. In all but
one shoe environment (the right shoe heel of person 2),
A

Figure 3 Immediate impact of floor microbial community on shoe microb
of shoe and floor samples taken at the same time point. (B) Principal coordin
floor type and location at time of sampling.
the correlation between shoe and floor PC1 values from
the same time point was substantially higher than the
correlation between samples taken one time step apart
(Additional file 5: Table S2). In most cases, shoe microbial
communities quickly converged on a PC space similar to
that of the floor community (Figure 3B). These communi-
ties were largely segregated by the geographic location the
sample was taken from and by the material of that loca-
tion’s floor (wood, linoleum, etc.), further supporting the
possibility of rapid microbial transfer to the shoe sole.
B

ial communities. (A) Correlation in the first principal coordinate values
ate plots of all shoe and floor samples, split by individual and colored by
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Although our experimental design only allows us to
assess the impact of the floor microbial community on that
of the shoe sole, it is of course also true that shoes influence
floor microbial communities by depositing microbes that
have adhered to them. As participants walk, bacteria may
adhere to shoes and be subsequently transferred back to
the floor in a dynamic process of continual loading and
unloading of microbes. A study of uptake and deposit of
particles via indoor foot traffic showed that in many cases
downplay of particles in the size range of bacteria from
shoe to floor is greater than uptake by the shoe [14].
To assess the stability of microbial community struc-

ture across the 12 individual shoe and phone time series,
we focused on weighted UniFrac distance between sam-
ples from consecutive time points and visualized community
volatility as a density plot of those distances (Additional
file 6: Figure S5). Phone-associated microbial commu-
nities were observed to be both less stable (higher me-
dian distance) and more variable in their rate of change
over time (broader distribution) than shoe-associated
A C

B D

Figure 4 Ordination of biogeographic samples based on weighted and un
A and B depict principal coordinate (PCoA) plots for all biogeographic sam
with sample points colored by surface and location respectively. C and D d
based on weighted and unweighted UniFrac distance, respectively. E and F
and are based on weighted and unweighted UniFrac distance, respectively
communities. By contrast, little difference was observed
between the four shoe environments or between the
two phone environments. We hypothesize that the high
volatility of phone-associated microbial communities is
likely due to a small microbial biomass that would be
prone to a rapid turnover in community composition and
the very high volatility of hand-associated microbiota that
has been observed in previous studies [8].

Biogeographic influence on community structure
In addition to the two time series participants, we also col-
lected individual shoe and phone samples from volunteers
at three academic conferences, one in Vancouver, BC
(N = 29), one in Washington, D.C. (N = 26), and one in
California (N = 34). California samples were taken from
two different rooms at the same conference while
Vancouver and Washington samples were all taken from
the same room. We used these data both to corroborate
the patterns of diversity observed in the time series
with a larger number of participants and to assess the
E

F

weighted phylogenetic dissimilarity in community composition. Panels
ples based on pairwaise weighted UniFrac distance between samples,
epict ordinations of shoe samples, colored by sampling location,
depict ordinations of phone samples colored by sampling location

.
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differentiation in community structure attributable to
geographic segregation.
As in the time series analyses, phone and shoe micro-

bial communities were significantly different (Figure 4;
Pseudo-F = 38.2 for weighted UniFrac, P < 0.0001). The
location at which samples were collected also played a
significant role in shaping community similarity, espe-
cially in shoe samples (Pseudo-F = 8.8, weighted UniFrac,
P < 0.0001) though also significantly in phone samples
(Pseudo-F = 4.9, weighted UniFrac, P < 0.0001). Random
forest models were able to determine which of the three
conferences a sample was taken from significantly better
than expected by chance for both the shoe and phone en-
vironments (error ratio = 11.7 and 8.0, respectively). This
suggests to us that, as seen in the time series data, differ-
ent sites maintain a significantly different floor microbial
community, which in turn shapes the microbial assem-
blage structure associated with the shoe samples.

Conclusions
Microbial communities show unique structure and com-
position based on surface type, the identity of the person
interacting with the surface, and geographic location.
This has significant implications for a variety of applica-
tions. While we suggest that it is possible to infer indi-
vidual identities based on the microbial community
associated with their smart phone surface, it is less likely
that this assemblage could be used to track where that
person has been recently located in space due to the rapid
turnover of the surface-associated microbial community.
We believe that the personalized-nature of the human
microbiome and the distinct community types associated
with urban and built environments may play a significant
role in future forensic investigations.

Methods
Sample collection
This article reports the results of two studies, one of
which employed longitudinal sampling of shoe and phone
microbial communities (time series study) and one of
which collected individual shoe and phone samples from
individuals attending three geographically disparate con-
ferences (biogeographical study). For the time series study,
two participants were recruited to sample their shoes and
phones every hour over the course of two 12-hour time
periods on consecutive days. Samples were collected by
the participants by rubbing sterile swabs pre-moistened
with 0.15 M saline solution on each site of interest. Floor
samples were taken immediately adjacent from wherever
the participant was standing at the time of shoe sampling;
not necessarily in an area where they had recently stepped.
All samples were immediately placed at −20°C, or on dry
ice in cases where samples were collected while partici-
pants were away from home or office. At each sampling
site, participants made note of their current environment
and of all actions taken over the proceeding hour. Par-
ticipant 1 wore flat-bottomed, rubber soled boots while
participant 2 wore sneakers with a more complex sole
topography. Each participant wore the same pair of shoes
on their 2 days of sampling, both with rubber soles.
For the biogeographical study: At three national and

international conferences during 2012, samples were
collected at random from participants’ phones and shoes.
Samples were collected by the participants by rubbing
sterile swabs pre-moistened with 0.15 M saline solu-
tion on each site of interest. All samples were immedi-
ately placed on dry ice and shipped to Argonne National
Laboratory, where they were stored at −80°C until
processed.
Library preparation
Total DNA was extracted from swabs using the Extract-
N-Amp plant PCR kit (Sigma, St. Louis, USA) following
the manufacture’s protocol with minor modifications.
After extraction, DNA was quantified using PicoGreen
(Invitrogen, Grand Island, USA) and a plate reader. DNA
was then amplified using the Earth Microbiome Project
barcoded primer set, adapted for the Illumina HiSeq2000
and MiSeq (Illumina, San Diego, USA) by adding nine
extra bases in the adapter region of the forward amplifica-
tion primer that support paired-end sequencing. The V4
region of the 16S rRNA gene (515 F-806R) was amplified
with region-specific primers that included the Illumina
flowcell adapter sequences and a 12-base barcode se-
quence [15,16]. Each 25 μl PCR reaction contained the
following: 12 μl of MoBio PCR Water (Certified DNA-Free;
MoBio, Carlsbad, USA), 10 μl of 5 Prime HotMasterMix
(1×), 1 μl of forward primer (5 μM concentration, 200 pM
final), 1 μl of Golay Barcode Tagged Reverse Primer (5 μM
concentration, 200 pM final), and 1 μl of template DNA.
The conditions for PCR were as follows: 94°C for 3 min to
denature the DNA, with 35 cycles at 94°C for 45 s, 50°C for
60 s, and 72°C for 90 s, with a final extension of 10 min at
72°C to ensure complete amplification. Amplicons were
quantified using PicoGreen (Invitrogen) and a plate reader.
Once quantified, different volumes of each of the prod-
ucts are pooled into a single tube so that each amplicon
is represented equally. This pool is then cleaned up
using UltraClean® PCR Clean-Up Kit (MoBio, Carlsbad,
USA), and then quantified using Qubit (Invitrogen, Grand
Island, USA). After quantification, the molarity of the pool
is determined and diluted down to 2 nM, denatured, and
then diluted to a final concentration of 4 pM with a 30%
PhiX spike for loading on the Illumina HiSeq2000 sequen-
cer (for the time series study), and a final concentration
of 6.1 pM with a 30% PhiX spike for sequencing on the
Illumina MiSeq (for the biogeographical study).
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Sequence processing and analysis
Unpaired reads of length 151 bp for both the time series
and biogeographic studies were clustered together at
97% identity using the Quantitative Insights Into Micro-
bial Ecology (QIIME) script pick_open_reference_otus.py,
with the May 2013 release of Greengenes (greenge-
nes.lbl.gov) as the reference. OTUs comprising only a
single read were discarded, and samples were rarified to
an even depth of 1,000 reads.
Analysis of beta-diversity was performed by calculating

the pairwise weighted and unweighted UniFrac [17] dis-
tance between each pair of samples, and the resulting
distance matrix was used for all downstream statistical
tests of sample similarity. The significance of sample
groupings was assessed using PERMANOVA (QIIME’s
compare_categories.py script) and statistical significance
was calculated by comparing the Pseudo-F statistic to a
distribution generated by 10,000 permutations of the
randomized dataset.

Random forest models
Random forest supervised learning models were used to
determine the diagnostic power of microbial community
profiles in predicting the surface type or participant a
sample originated from. These models form decision trees
using a subset of samples to identify patterns associated
with a metadata category and then test the accuracy of
the tree on the remaining samples not used for training.
Each model runs a number of independent trees and
reports the ratio of model error to random error as a
metric for the predictive power of the category’s micro-
bial communities. A greater ratio of baseline to model
error indicates a better ability to classify that grouping
by microbial community alone. The models were run using
the supervised_learning.py command in QIIME, with 1,000
trees per model and tenfold cross validation.

SourceTracker models
For the SourceTracker models, all four shoe samples taken
by each participant at a given time point were consoli-
dated and treated as individual sinks (N = 29 and 27
for participants 1 and 2, respectively). All floor samples
from the two participants’ time series were collapsed and
treated as the two possible sources to the shoe sink com-
munity. Models were run following QIIME tutorial guide-
lines (http://qiime.org/tutorials/source_tracking.html).

Procrustes
Procrustes analysis compares the shape of two PCoA
plots by optimally rotating and scaling one plot to best
fit the other, with the goodness of fit measured by the
M2 statistic. P values are generated using a Monte Carlo
simulation in which sample identifiers are shuffled (here
1,000 times) and the M2 statistic is compared to the
distribution drawn from these permutations. The pro-
portion of M2 values that are equal or lower than the
actual M2 value is the Monte Carlo P value.
Only time points in which all four shoe samples passed

quality filtering were considered (N = 24 for participant 1
and 19 for participant 2). For each participant, samples
were divided by shoe environment and four different
sets of principal coordinates were computed based on
weighted UniFrac distance between samples. The QIIME
script transform_coordinate_matricies.py was used for Pro-
crustes analysis, with the left heel coordinates used as the
reference and the other three coordinate matrices trans-
formed to best fit the reference.

Availability of supporting data
All sequencing data as well as the OTU table and
mapping file are available at http://figshare.com/articles/
Forensic_analysis_of_the_microbiome_of_phones_and_
shoes/1311743.

Additional files

Additional file 1: Figure S1. Heatmap of the abundances of the 100
OTUs with the highest feature importance scores in the random forest
model differentiating shoe samples by participant. Each row represents a
single OTU. All shoe samples taken by a participant at each time point
are collapsed, and blocks are ordered first by participant and then by time.

Additional file 2: Figure S2. Heatmap of the abundances of the 20
genera with the highest feature importance scores in the random forest
model differentiating shoe/floor and phone samples. For the heatmap, all
samples taken from a given surface environment were collapsed across
time points and heatmap color was normalized for each genus.

Additional file 3: Figure S3. SourceTracker models for individual
participants. All floor samples taken at each location were consolidated
and treated as possible sources. All four shoe samples per time point
were consolidated and treated as sinks. Bar height represents the mixing
proportion estimate for each source in each sink sample, with the source
environment where the participant was located at time of sampling
indicated by a higher opacity and a black box. For person 2, time point
10, the participant was on lawn outdoors and the floor sample failed to
produce enough reads to be included in the study.

Additional file 4: Figure S4. Procrustes analysis of shoe samples,
demonstrating relatedness of community succession in the four shoe
environments sampled in each person’s time series. Samples in the PCoA
plots are colored by the time point in which they were taken, and the
four samples per time point (left heel, right heel, left tip, right tip) are
connected by edges.

Additional file 5: Table S1. Summary of goodness of fit and respective
Monte Carlo P values for each Procrustes alignment in Figure S4. Table S2.
Correlation between PC1 values for floor and shoe samples taken from the
same time point (as in Figure 3A) and with a plus or minus 1 time point
differential. In all but one case, correlation is highest with no time lag,
suggesting an immediate impact of the floor community on the shoe
communities.

Additional file 6: Figure S5. Volatility of individual surfaces across their
time series, visualized as density plots of weighted UniFrac distances
between samples from consecutive time points. Plots are colored by the
median distance in those series of consecutive distances.
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