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1 Introduction
This work considers the existence of solutions to the following initial value problem (IVP)
for a class of impulsive retarded fractional differential inclusions at variable times:

CDα
[CDβx(t) – g(t, xt)

] ∈ F(t, xt), t ∈ J , t �= τk
(
x(t)

)
, ()
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(
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)
, t = τk

(
x(t)

)
, ()

CDβx
(
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= I∗
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(
x(t)

)
, t = τk

(
x(t)

)
, ()

x(t) = φ(t), t ∈ [–r, ], ()
CDβx() = μ ∈ R, ()

where CDα and CDβ are Caputo fractional derivatives,  < α,β ≤ ,  < α +β < , J = [, T],
 < r < ∞, D = {ψ : [–r, ] → R is continuous everywhere except for a finite number of
points s at which ψ(s–) and ψ(s+) exist and ψ(s–) = ψ(s)}, and φ ∈ D, F : J × D → P(R)
is compact convex valued multivalued map (P(R) is the family of all nonempty subsets of
R), g : J × D → R, Ik , I∗

k : R → R, τk : R → R, k = , , . . . , p are given functions satisfying
some conditions to be specified later. For any function x defined on [–r, T] and any t ∈ J
we denote by xt the element of D defined by xt = x(t + θ ), θ ∈ [–r, ]. Here xt(·) represents
the history of the state from time t – r up to the present time t.

The subject of impulsive fractional differential equations and inclusions has generated
a good deal of interest among a good many researchers due to fact that fractional calculus
and impulsive theory arise in mathematical modeling of some certain problems in science
and engineering [–]. We refer the interested reader to [–] and [–] for some re-
cent works on fractional differential equations and inclusions and for those on impulsive
ones, respectively.
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Furthermore, several authors investigate the existence of solutions of functional (neutral
or retarded) differential equations and inclusions of fractional order [–] and impul-
sive functional fractional differential inclusions with fixed moments [–]. However, to
the best of our knowledge, impulsive retarded fractional differential inclusions with vari-
able moments have not been considered yet.

Therefore, inspired by mentioned works above as well as the study [] including the
following problem:

d
dt

[
y′(t) – g(t, yt)

] ∈ F
(
t, y(t)

)
, a.e. t ∈ [, T], t �= τk

(
y(t)

)
,

y
(
t+)

= Ik
(
y(t)

)
, t = τk

(
y(t)

)
,

y′(t+)
= Ik

(
y(t)

)
, t = τk

(
y(t)

)
,

y(t) = φ(t), t ∈ [–r, ], y′() = η,

we deal with the existence of an initial value problem for impulsive retarded functional
fractional differential inclusions with variable times ()-() in view of fixed point theorem
for multivalued maps.

The present paper is organized as follows: We will briefly give some fundamentals and
preliminary results on fractional calculus and multivalued maps in Section . We will es-
tablish some existence results of the IVP ()-() by making use of the nonlinear alternative
of Leray-Schauder type for multivalued maps in Section .

2 Preliminaries
In this section, let us introduce some notations, definitions, and preliminary facts to be
used throughout this study.

By C(J , R), C([–r, ], R), and C([–r, T], R) we denote the Banach space of all continuous
functions from J into R with the norm

‖x‖C := sup
{∣∣x(t)

∣∣ : t ∈ J
}

,

the Banach space of all continuous functions from [–r, ] into R with the norm

‖x‖D := sup
{∣∣φ(θ )

∣∣ : θ ∈ [–r, ]
}

and the Banach space of all continuous functions from [–r, T] into R with the norm

‖x‖ := ‖x‖C + ‖x‖D ,

respectively. Let us denote the Banach space of all continuous β-differentiable functions
from [–r, T] into R by Cβ ([–r, T], R) with the norm

‖x‖β := max
{‖x‖,

∥∥CDβx
∥∥}

,

where Cβ ([–r, T], R) = {x ∈ C([–r, T], R) : CDβx(t) exists and CDβx(t) ∈ C([–r, T], R)}.
In addition, in order to define the solutions of the problem ()-() we will consider the

piecewise continuous spaces:
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	 = {x : [–r, T] → R : there exists  = t < t < t < · · · < tp < tp+ = T such that
tk = τk(x(tk)) and xk+ ∈ C((tk , tk+], R), k = , , , . . . , p; also, there exist x(t+

k ) and x(t–
k )

with x(t–
k ) = x(tk) for k = , , . . . , p, and x(t) = φ(t), t ≤ t}

and
	β = {x ∈ 	, CDβx(t) ∈ C((tk , tk+], R) : there exist CDβx(t+

k ) and CDβx(t–
k ) with

CDβx(t–
k ) = CDβx(tk),  ≤ k ≤ p,  < β ≤ }, where xk+ is the restriction of x over

(tk , tk+] and denoted by xk+ := x|(tk ,tk+], k = , , , . . . , p.
The spaces 	 and 	β form Banach spaces with the norms

‖x‖	 := max
{‖xk+‖, k = , , . . . , p + 

}
+ ‖x‖D

and

‖x‖	β := max
{‖x‖	,

∥∥CDβx
∥∥

	

}
,

respectively.
Let L(J , R) denote the Banach space of measurable functions x : J → R which are

Lebesgue integrable with the norm

‖x‖L =
∫ T



∣∣x(t)
∣∣dt for all x ∈ L(J , R).

Definition  ([, ]) The fractional (arbitrary) order integral of the function h ∈ L(J , R)
of order q ∈ R+ is defined by

Iq
+ h(t) =

∫ t



(t – s)q–


(q)
h(s) ds,

where 
(·) is the Euler gamma function.

Definition  ([, ]) For a function h given on the interval J , the Caputo fractional deriva-
tive of order q >  is defined by

CDq
+ h(t) =

∫ t



(t – s)n–q–


(n – q)
h(n)(s) ds, n = [q] + ,

where the function h(t) has absolutely continuous derivatives up to order (n – ).

Now, we focus on some fundamental facts of multivalued maps. See Gorniewicz [],
Aubin and Frankowska [], Deimling [], and Hu and Papageorgiou [].

For a Banach space (X,‖ · ‖), let us denote:
P(X) = {Y ⊆ X : Y �= ∅},
Pcl(X) = {Y ∈P(X) : Y is closed},
Pb(X) = {Y ∈P(X) : Y is bounded},
Pcv(X) = {Y ∈P(X) : Y is convex},
Pcp(X) = {Y ∈P(X) : Y is compact},
Pcv,cp(X) = Pcv(X) ∩Pcp(X).
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A multivalued map G : X → P(X) has convex (closed) values if G(x) is convex (closed)
for all x ∈ X. G is bounded on bounded sets if G(B) =

⋃
x∈B G(x) is bounded in X for all

B ∈Pb(X) (i.e. supx∈B{sup{‖y‖ : y ∈ G(x)}} < ∞).
A multivalued map G : [, ] → Pcl(X) is said to be measurable if for every x ∈ X, the

function Y : [, ] → X defined by Y (t): dist(x, G(t)) = inf{‖x – z‖ : z ∈ G(t)} is Lebesgue
measurable.

A multivalued map F : J ×D →P(R) is said to be L-Caratheodory if
(i) t → F(t, u) is measurable for each u ∈D,

(ii) u → F(t, u) is upper semi-continuous for almost all t ∈ J ,
(iii) for each q > , there exists φq ∈ L(J , R+) such that

∥
∥F(t, u)

∥
∥ = sup

{|v| : v ∈ F(t, u)
} ≤ φq(t)

for all ‖u‖D ≤ q and for almost all t ∈ J .
For a function u ∈ 	β , we define the set

SF ,u =
{

v ∈ L(J , R) : v(t) ∈ F(t, u) for a.e. t ∈ J
}

,

which is known as the set of selection functions of F .
The next lemmas and proposition play a pivotal role in the subsequent results.

Lemma  ([]) Let F : J ×D →Pcv,cp(R) be L-Caratheodory multivalued map with SF ,x �=
∅ and let L be a linear continuous mapping from L(J , R+) to C(J , R), then the operator

L ◦ SF : C(J , R) →Pcp,c
(
C(J , R)

)

x �→ (L ◦ SF )(x) := L(SF ,x)

is a closed graph operator in C(J , R) × C(J , R).

Proposition  ([]) Assume ϕ : X → Y is a multivalued map such that ϕ(X) ⊂ K and the
graph 
ϕ of ϕ is closed, where K is a compact set. Then ϕ is upper semi-continuous.

Lemma  ([]) Let X be a Banach space with C ⊂ X convex. Assume that U is a nonempty
open subset of C with  ∈ U and let G : U → Pcp,cv(C) be an upper semi-continuous and
compact map. Then either,

(a) G has a fixed point in U , or
(b) there exist u ∈ ∂U and λ ∈ (, ) with u ∈ λG(u).

3 Existence of solutions
Definition  A function x ∈ 	β is said to be a solution of ()-() if there exists a function
v(t) ∈ SF ,x for which the equation CDα[CDβx(t) – g(t, xt)] = v(t) holds for a.e. t ∈ J , t �=
τk(x(t)), k = , , . . . , p, where the conditions x(t+) = Ik(x(t)), CDβx(t+) = I∗

k (x(t)), t = τk(x(t)),
k = , , . . . , p, and x(t) = φ(t), CDβx() = μ ∈ R, t ∈ [–r, ],  < r < ∞ are satisfied for x.

Lemma  The function x(t) ∈ Cβ ([–r, T], R) is a solution of the problem

CDα
[CDβx(t) – g(t, xt)

]
= v(t), t ∈ J ,
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x(t) = φ(t), t ∈ [–r, ],
CDβx() = μ ∈ R,

if and only if x(t) satisfies the following integral equation:

x(t) =

⎧
⎪⎨

⎪⎩

φ(t), t ∈ [–r, ],
φ() + [μ – g(,φ)] tβ


(β+)

+
∫ t


(t–s)β–


(β) g(s, xs) ds +
∫ t


(t–s)α+β–


(α+β) v(s) ds, t ∈ J ,

where α, β , J are stated as above.

From now on, for the sake of convenience, we assume that

P(t) = φ() +
[
μ – g(,φ)

] tβ


(β + )
+

∫ t



(t – s)β–


(β)
g(s, xs) ds

and

P(k)
tk (t) = Ik

(
xk(tk)

)
+

(
I∗

k
(
xk(tk)

)
– g(tk , xtk )

) (t – tk)β


(β + )
+

∫ t

tk

(t – s)β–


(β)
g(s, xs) ds,

where k = , , . . . , p.

Theorem  Suppose that the following conditions are satisfied:
(A) There exist a continuous non-decreasing function ψ : [,∞) → (,∞) and a

function m(t) ≥ , ∀t ∈ J with m = sup{|m(t)| : t ∈ J} such that
|F(t, u)| ≤ m(t)ψ(‖u‖D) for ∀t ∈ J , ∀u ∈D, where the function
F : J ×D →Pcv,cp(R) is L-Caratheodory.

(A) The function g : J ×D → R is continuous such that |g(t, u)| ≤ c‖u‖D + c for
∀t ∈ J , ∀u ∈D and constants c, c ≥ .

(A) The functions Ik , I∗
k : R → R, k = , , . . . , p are continuous.

(A) There exists a number κ >  such that

min

{ ( – cTβ


(β+) )κ

|φ()| + (|μ| + c) Tβ


(β+) + mTα+β


(α+β+)ψ(κ)
,

( – cTβ


(β+) )κ

|Ik(κ)| + (|I∗
k (κ)| + c) Tβ


(β+) + mTα+β


(α+β+)ψ(κ)

}
> .

(A) There exist functions τk ∈ C(R, R) for k = , , . . . , p such that
 < τ(x) < τ(x) < · · · < τp(x) < T for ∀x ∈ R.

(A) For all ∀x ∈ R, τk(Ik(x)) ≤ τk(x) < τk+(Ik(x)), k = , , . . . , p.
(A) Let x ∈ 	, then for ∀t ∈ J , for every constant ζ ∈ J , and for all xt ∈D we have

〈
τ ′

k
(
x(t)

)
,

d
dt

P(k)
ζ (t) + Iα+β–

ζ v(t)
〉
�= 

for k = , , . . . , p and for all v(t) ∈ SF ,x.
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Then the IVP ()-() has at least one solution on J .

Proof The proof will be given in several steps for convenience.
Step : Consider the following problem:

CDα
[CDβx(t) – g(t, xt)

] ∈ F(t, xt), t ∈ J , ()

x(t) = φ(t), t ∈ [–r, ], ()
CDβx() = μ ∈ R, ()

where  < α,β ≤ ,  < α + β < , J = [, T],  < r < ∞.
Let us transform the problem ()-() into a fixed point problem. By using Lemma 

we consider the operator N : Cβ ([–r, T], R) → P(Cβ ([–r, T], R)) defined by N (x) = {h ∈
Cβ ([–r, T], R)} where, for v(t) ∈ SF ,x,

h(t) =

{
φ(t), t ∈ [–r, ],
P(t) +

∫ t


(t–s)α+β–


(α+β) v(s) ds, t ∈ J .

It is obvious that the set of fixed points of the operator N is solution to the problem ()-
(). In this position, we shall use the nonlinear alternative of Leray-Schauder type in order
to show that the operator N has fixed points. Then let us try to satisfy the conditions of
the nonlinear alternative of Leray-Schauder type (Lemma ).

First, we show that N (x) is convex for each x ∈ Cβ ([–r, T], R). To do this, let h and h

belong to N (x) with v, v ∈ SF ,x such that

hi(t) = P(t) +
∫ t



(t – s)α+β–


(α + β)
vi(s) ds, i = , ,

then, for each t ∈ J , we have

[
dh(t) + ( – d)h(t)

]
= P(t) +

∫ t



(t – s)α+β–


(α + β)
[
dv(s) + ( – d)v(s)

]
ds,

where  ≤ d ≤ .
Since SF ,x is convex (i.e. dv(s) + ( – d)v(s) ∈ SF ,x for v, v ∈ SF ,x and  ≤ d ≤ ) then

dh(t) + ( – d)h(t) ∈N (x).
Next, we need to show that N is a compact multivalued map.
(i) (N maps bounded sets into bounded sets in Cβ ([–r, T], R).)
Actually, it is enough to show that there exists a constant l >  such that we have ‖N x‖ ≤

l for each x ∈ Br = {x(t) ∈ Cβ ([–r, T], R) : ‖x‖β ≤ r} for any r > . Let x ∈ Br and h ∈ N (x)
with v ∈ SF ,x, then for each t ∈ J we obtain

∣∣N (x)(t)
∣∣ ≤ ∣∣P(t)

∣∣ +
∫ t



(t – s)α+β–


(α + β)
∣∣v(s)

∣∣ds

≤ ‖φ‖D +
(|μ| + c‖φ‖D + c

) tβ


(β + )

+
(
c‖xt‖D + c

)∫ t



(t – s)β–


(β)
ds +

∫ t



(t – s)α+β–


(α + β)
m(s)ψ

(‖xs‖D
)

ds



Ergören Advances in Difference Equations  (2016) 2016:37 Page 7 of 13

≤ r +
(|μ| + cr + c

) tβ


(β + )
+ mψ(r)

Tα+β


(α + β + )
:= l,

∥
∥N (x)(t)

∥
∥

β
≤ l,

which implies that the operator N is uniformly bounded.
(ii) (N maps bounded sets into equicontinuous sets of Cβ ([–r, T], R).)
Assume that θ, θ ∈ J , θ < θ, and Br is a bounded set as in (i). Let x ∈ Br and h ∈ N (x)

with v ∈ SF ,x, then for each t ∈ J we have

∣
∣N (x)(θ) – N (x)(θ)

∣
∣ ≤ ∣

∣μ – g(,φ)
∣
∣ θ

β
 – θ

β



(β + )

+
∫ θ



[(θ – s)β– – (θ – s)β–]

(β)

∣
∣g(t, xs)

∣
∣ds

+
∫ θ

θ

(θ – s)β–


(β)
∣∣g(t, xs)

∣∣ds

+
∫ θ



[(θ – s)α+β– – (θ – s)α+β–]

(α + β)

m(s)ψ
(‖xs‖D

)
ds

+
∫ θ

θ

(θ – s)α+β–


(α + β)
m(s)ψ

(‖xs‖D
)

ds,

∥
∥N (x)(θ) – N (x)(θ)

∥
∥

β
≤ ∣

∣μ – g(,φ)
∣
∣ θ

β
 – θ

β



(β + )

+
cr + c


(β + )
∣
∣(θ – θ)α + θα

 – θα

∣
∣

+
mψ(r)


(α + β + )
∣
∣(θ – θ)α+β + θ

α+β
 – θ

α+β


∣
∣,

implying that N is equicontinuous on J since the right-hand side of the inequality tends
to zero as θ → θ. Thus, as a consequence of (i) and (ii) together with the Arzela-Ascoli
theorem, the operator N : Cβ ([–r, T], R) → P(Cβ ([–r, T], R)) is a compact multivalued
map.

Now, let us show that N has a closed graph. Let xn → x∗, hn → h∗, and hn ∈N (xn) with
vn ∈ SF ,xn such that, for each t ∈ J ,

hn(t) = Pn(t) +
∫ t



(t – s)α+β–


(α + β)
vn(s) ds.

Then we have to show that there exists v∗ ∈ SF ,x∗ in order to prove that h∗ ∈ N (x∗) such
that, for each t ∈ J ,

h∗(t) = Pn∗ (t) +
∫ t



(t – s)α+β–


(α + β)
v∗(s) ds. ()

Let us consider the continuous linear operator L : L(J , R+) → C(J , R),

v → (Lv)(t) =
∫ t



(t – s)α+β–


(α + β)
v(s) ds.
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Obviously, by the continuity of g , we have

∥
∥hn(t) – Pn(t) –

(
h∗(t) – Pn∗ (t)

)∥∥ → 

as n → ∞.
It results from Lemma  that L ◦ SF is a closed graph operator. What is more, since

(hn(t) – Pn(t)) ∈ L(SF ,xn ) and xn → x∗, Lemma  implies that equation () holds for some
v∗ ∈ SF ,x∗ .

Thus, by Proposition ,N is an upper semi-continuous compact map with convex closed
values.

Finally, it remains to discuss a priori bounds on solutions. Let x be a possible solution
of the problem ()-(). Then there exists v ∈ L(J , R+) with v ∈ SF ,x such that, for each t ∈ J ,
we have

∣∣(x)(t)
∣∣ ≤ ∣∣P(t)

∣∣ +
∫ t



(t – s)α+β–


(α + β)
∣∣v(s)

∣∣ds

≤ ∣∣φ()
∣∣ +

(
μ + c‖φ‖D + c

) tβ


(β + )

+
(
c‖xt‖D + c

)∫ t



(t – s)β–


(β)
ds +

∫ t



(t – s)α+β–


(α + β)
m(s)ψ

(‖xs‖D
)

ds,

‖x‖β ≤ ∣
∣φ()

∣
∣ +

(|μ| + c‖x‖β + c
) Tβ


(β + )
+ mψ

(‖x‖β

) Tα+β


(α + β + )
. ()

Thus we get

( – cTβ


(β+) )‖x‖β

|φ()| + (|μ| + c) Tβ


(β+) + mTα+β


(α+β+)ψ(‖x‖β )
≤ . ()

In view of (A), there exists κ such that ‖x‖β �= κ . Then let us set

U =
{

x ∈ Cβ
(
[–r, T], R

)
: ‖x‖β < κ

}
.

We note that the operator N : U → P(Cβ ([–r, T], R)) is also an upper semi-continuous
and compact multivalued map. Accordingly, the choice of U shows that there is no x ∈ ∂U
such that x ∈ λN (x) for some λ ∈ (, ). Consequently, thanks to the nonlinear alternative
of Leray-Schauder type (Lemma ), we conclude that N has a fixed point x ∈ U which is
a solution of the problem ()-(). Denote this solution by x.

Now, we shall discuss at which discontinuity moment the solution x(t) beats. Let us
define the following function which is able to make the discussion easier:

rk,(t) = τk
(
x(t)

)
– t, t ≥ .

From (A) we have

rk,() = τk
(
x()

) �= , k = , , . . . , p.
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If rk,(t) �= , that is, τk(x(t)) �= t on J for k = , , . . . , p, then x(t) is a solution of both ()-()
and ()-().

Now, we consider the case when

r,(t) = , i.e. t = τ
(
x(t)

)
for some t ∈ J .

Since r, is continuous and r,() �=  by (A), there exists t >  such that

r,(t) =  and r,(t) �=  for all t ∈ [, t).

Thus by (A) we have

rk,(t) �=  for all t ∈ [, t) and k = , , . . . , p.

Hence, we have established the discontinuity point t where the solution x(t) beats.
Step : Consider the following problem:

CDα
[CDβx(t) – g(t, xt)

] ∈ F(t, xt), t ∈ [t, T], ()

x
(
t+

)

= I
(
x(t)

)
, ()

CDβx
(
t+

)

= I∗

(
x(t)

)
, ()

x(t) = x(t), t ∈ [t – r, t]. ()

Let us transform the problem ()-() into a fixed point problem by considering the oper-
ator N : Cβ ([t – r, T], R) →P(Cβ ([t – r, T], R)) defined by N(x) = {h ∈ Cβ ([t – r, T], R)}
where, for v(t) ∈ SF ,x,

h(t) =

{
x(t), t ∈ [t – r, t],
P()

t (t) +
∫ t

t
(t–s)α+β–


(α+β) v(s) ds, t ∈ [t, T].
()

In the sense of Step , N is an upper semi-continuous compact map with convex closed
values. Then, for the discussion of a priori bounds on solutions as in () and (), taking
into account () and assumptions (A)-(A) we have

( – cTβ


(β+) )‖x‖β

|I(x(t))| + (I∗
 (x(t)) + c) Tβ


(β+) + mTα+β


(α+β+)ψ(‖x‖β)
≤ .

As a consequence of Lemma  as in Step , the choice of

U =
{

x ∈ Cβ
(
[t – r, T], R

)
: ‖x‖β < κ

}

results in the operator N : U →P(Cβ ([t – r, T], R)) to have a fixed point x ∈ U , which is
a solution of the problem ()-() on [t, T]. Denote this solution by x.

Now, we shall discuss at which discontinuity moment after t the solution x(t) beats. Let
us define the following function:

rk,(t) = τk
(
x(t)

)
– t, t ≥ t. ()
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If rk,(t) �= , that is, τk(x(t)) �= t on (t, T] for k = , , . . . , p, then x(t) is a solution of ()-
(). That is,

x(t) =

{
x(t), t ∈ [t, t],
x(t), t ∈ (t, T],

is a solution of ()-().
Now, we consider the case when

r,(t) = , i.e. t = τ
(
x(t)

)
for some t ∈ (t, T].

From (A) we have

r,
(
t+

)

= τ
(
x

(
t+

))

– t

= τ
(
I

(
x(t)

))
– t

> τ
(
x(t)

)
– t

= r,(t) = .

Since r, is continuous, there exists t > t such that

r,(t) =  and r,(t) �=  for all t ∈ (t, t).

Thus by (A) we have

rk,(t) �=  for all t ∈ (t, t) and k = , , . . . , p.

Also, let us show that there does not exist any ξ ∈ (t, t) such that r,(ξ ) = . Suppose now
that there exists ξ ∈ (t, t) such that r,(ξ ) = . By (A) it follows that

r,
(
t+

)

= τ
(
x

(
t+

))

– t

= τ
(
I

(
x(t)

))
– t

≤ τ
(
x(t)

)
– t

= r,(t) = .

And from (A) we have

r,(t) = τ
(
x(t)

)
– t

< τ
(
x(t)

)
– t

= r,(t) = .

Since r,(t+
 ) ≤ , r,(t) < , and r,(ξ ) =  for some ξ ∈ (t, t), the function r, gets a

nonnegative maximum at some point η ∈ (t, t). On the other hand, in view of equation
(), since the function x(t) holds for

CDα
[CDβx(t) – g(t, xt)

] ∈ F(t, xt), a.e. t ∈ (t, T) ()
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subject to conditions ()-(), there exists v(·) ∈ L((t, T)) with v(t) ∈ F(t, xt), a.e. t ∈
(t, T) such that

CDα
[CDβx(t) – g(t, xt)

]
= v(t).

Subsequently, from () and Lemma  the equalities

x(t) = I
(
x(t)

)
+

(
I∗


(
x(t)

)
– g(t, xt )

) (t – t)β


(β + )

+
∫ t

t

(t – s)β–


(β)
g(s, xs) ds +

∫ t

t

(t – s)α+β–


(α + β)
v(s) ds

and

x′
(t) =

(
I∗


(
x(t)

)
– g(t, xt )

) (t – t)β–


(β)

+
∫ t

t

(t – s)β–


(β – )
g(s, xs) ds +

∫ t

t

(t – s)α+β–


(α + β – )
v(s) ds

=
d
dt

P(k)
t (t) + Iα+β–

t v(t) ()

are derived. Thus, in view of () and (), and for some point η ∈ (t, t], we obtain

r′
,(η) = τ ′


(
x(η)

)
x′

(η) –  = ,

that is,

〈
τ ′


(
x(η)

)
,

d
dt

P(k)
t (t) + Iα+β–

t v(t)
〉

= .

But this contradicts (A).
Hence, we have established a second discontinuity point t > t where the solution x(t)

beats in such a way that r,(t) =  and rk,(t) �=  for all t ∈ (t, t) and k = , , , . . . , p.
Step : Let us continue the process as in Steps  and  by taking into account that xp :=

x|(tp–,T] is a solution of the following problem:

CDα
[CDβx(t) – g(t, xt)

] ∈ F(t, xt), t ∈ [tp–, T],

x
(
t+
p–

)
= Ip–

(
xp–(tp–)

)
,

CDβx
(
t+
p–

)
= I∗

p–
(
xp–(tp–)

)
,

x(t) = xp–(t), t ∈ [tp– – r, tp–],

by considering the operator Np– : Cβ ([tp– – r, T], R) →P(Cβ ([tp– – r, T], R)) defined by
Np–(x) = {h ∈ Cβ ([tp– – r, T], R)} where, for v(t) ∈ SF ,x,

h(t) =

{
xp–(t), t ∈ [tp– – r, tp–],
P(p–)

tp– (t) +
∫ t

tp–
(t–s)α+β–


(α+β) v(s) ds, t ∈ [tp–, T].
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At the end, as in the previous steps, we establish a pth discontinuity point tp > tp– > · · · >
t > t where the solution x(t) beats in such a way that rp,p(tp) =  and rp,p(t) �=  for all
t ∈ (tp–, tp). Then the solution x of the problem ()-() is defined by

x(t) =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

x(t), if t ∈ [t, t],
x(t), if t ∈ (t, t],
. . . ,
xp(t), if t ∈ (tp–, tp],
xp+(t), if t ∈ (tp, T]. �
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