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Abstract
In this paper, we introduce one composite implicit relaxed extragradient-like scheme
and another composite explicit relaxed extragradient-like scheme for finding a
common solution of a finite family of generalized mixed equilibrium problems
(GMEPs) with the constraints of a system of generalized equilibrium problems (SGEP)
and the hierarchical fixed point problem (HFPP) for a strictly pseudocontractive
mapping in a real Hilbert space. We establish the strong convergence of these two
composite relaxed extragradient-like schemes to the same common solution of
finitely many GMEPs and the SGEP, which is the unique solution of the HFPP for a
strictly pseudocontractive mapping. In particular, we make use of weaker control
conditions than previous ones for the sake of proving strong convergence. Utilizing
these results, we first propose the composite implicit and explicit relaxed
extragradient-like schemes for finding a common fixed point of a finite family of
strictly pseudocontractive mappings, and then we derive their strong convergence to
the unique common solution of the SGEP and some HFPP. Our results complement,
develop, improve, and extend the corresponding ones given by some authors
recently in this area.
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1 Introduction
Let H be a real Hilbert space with inner product 〈·, ·〉 and induced norm ‖ · ‖, C be a
nonempty, closed, and convex subset of H , and PC be the metric projection of H onto C.
Let T : C → C be a self-mapping on C. We denote by Fix(T) the set of fixed points of T
and by R the set of all real numbers. A mapping A : H → H is called γ̄ -strongly positive
on H if there exists a constant γ̄ >  such that

〈Ax, x〉 ≥ γ̄ ‖x‖, ∀x ∈ H .
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A mapping F : C → H is called L-Lipschitz-continuous if there exists a constant L ≥ 
such that

‖Fx – Fy‖ ≤ L‖x – y‖, ∀x, y ∈ C.

In particular, if L =  then F is called a nonexpansive mapping; if L ∈ [, ) then F is called
a contraction. A mapping T : C → C is called k-strictly pseudocontractive (or a k-strict
pseudocontraction) if there exists a constant k ∈ [, ) such that

‖Tx – Ty‖ ≤ ‖x – y‖ + k
∥
∥(I – T)x – (I – T)y

∥
∥

, ∀x, y ∈ C.

In particular, if k = , then T is a nonexpansive mapping. The mapping T is pseudocon-
tractive if and only if

〈Tx – Ty, x – y〉 ≤ ‖x – y‖, ∀x, y ∈ C.

T is strongly pseudocontractive if and only if there exists a constant λ ∈ (, ) such that

〈Tx – Ty, x – y〉 ≤ λ‖x – y‖, ∀x, y ∈ C.

Note that the class of strictly pseudocontractive mappings includes the class of nonex-
pansive mappings as a subclass. That is, T is nonexpansive if and only if T is -strictly
pseudocontractive. The mapping T is also said to be pseudocontractive if k =  and T is
said to be strongly pseudocontractive if there exists a positive constant λ ∈ (, ) such that
T + ( – λ)I is pseudocontractive. Clearly, the class of strictly pseudocontractive mappings
falls into the one between the classes of nonexpansive mappings and of pseudocontractive
mappings. Also it is clear that the class of strongly pseudocontractive mappings is inde-
pendent of the class of strictly pseudocontractive mappings (see []). The class of pseu-
docontractive mappings is one of the most important classes of mappings among non-
linear mappings. Recently, many authors have been devoting to the study of the problem
of finding fixed points of pseudocontractive mappings; see e.g., [–] and the references
therein.

Let A : C → H be a nonlinear mapping on C. The variational inequality problem (VIP)
associated with the set C and the mapping A is stated as follows: find x∗ ∈ C such that

〈

Ax∗, x – x∗〉≥ , ∀x ∈ C. (.)

The solution set of VIP (.) is denoted by VI(C,A).
The VIP (.) was first discussed by Lions []. There are many applications of VIP (.)

in various fields; see, e.g., [, , , ]. It is well known that, if A is a strongly monotone and
Lipschitz-continuous mapping on C, then VIP (.) has a unique solution. In , Kor-
pelevich [] proposed an iterative algorithm for solving VIP (.) in Euclidean space Rn:

{

yn = PC(xn – τAxn),
xn+ = PC(xn – τAyn), ∀n ≥ ,

(.)
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with τ >  a given number, which is known as the extragradient method. The literature on
the VIP is vast and Korpelevich’s extragradient method has received great attention given
by many authors, who improved it in various ways; see, e.g., [, , –] and references
therein, to name but a few.

In , Ceng et al. [] also introduced the following iterative method:

xn+ = PC
[

αnγ Vxn + (I – αnμF)Txn
]

, ∀n ≥ , (.)

where T : C → C is a nonexpansive mapping such that Fix(T) �= ∅, F : C → H is a κ-
Lipschitzian and η-strongly monotone operator with positive constants κ ,η > , V : C →
H is an l-Lipschitzian mapping with constant l ≥  and  < μ < η

κ . They proved that,
under mild conditions, the sequence {xn} generated by (.) converges strongly to a point
x̃ ∈ Fix(T) which is the unique solution to the VIP

〈

(μF – γ V )x̃, p – x̃
〉≥ , ∀p ∈ Fix(T). (.)

Their results also improve Tian’s results [] from the contractive mapping f to the Lips-
chitzian mapping V .

In , Ceng et al. [] introduced one general composite implicit scheme that gener-
ates a net {xt}t∈(,min{, –γ̄

τ–γα }) in an implicit way

xt = (I – θtA)Txt + θt
[

Txt – t
(

μFTxt – γ f (xt)
)]

, (.)

and also proposed another general composite explicit scheme that generates a sequence
{xn} in an explicit way

{

yn = (I – αnμF)Txn + αnγ f (xn),
xn+ = (I – βnA)Txn + βnyn, ∀n ≥ ,

(.)

where x ∈ H is an arbitrary initial guess, F : H → H is a κ-Lipschitzian and η-strongly
monotone operator with positive constants κ ,η > , T : H → H is a nonexpansive map-
ping, A : H → H is a γ̄ -strongly positive bounded linear operator, and f : H → H is an α-
contractive mapping with α ∈ (, ). They proved that, under appropriate conditions, the
net {xt} and the sequence {xn} generated by (.) and (.), respectively, converge strongly
to the same point x̃ ∈ Fix(T), which is the unique solution to the VIP

〈

(A – I)x̃, p – x̃
〉≥ , ∀p ∈ Fix(T). (.)

Their results supplement and develop the corresponding ones of Marino and Xu [],
Yamada [] and Tian [].

Very recently, inspired by Ceng et al. [], Jung [] introduced one general composite
implicit scheme that generates a net {xt}t∈(,min{, –γ̄

τ–γ l })
in an implicit way

xt = (I – θtA)Ttxt + θt
[

tγ Vxt + (I – tμF)Ttxt
]

, (.)
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and also proposed another general composite explicit scheme that generates a sequence
{xn} in an explicit way,

{

yn = αnγ Vxn + (I – αnμF)Tnxn,
xn+ = (I – βnA)Tnxn + βnyn, ∀n ≥ ,

(.)

where x ∈ H is an arbitrary initial guess and the following conditions are satisfied:
T : H → H is a k-strictly pseudocontractive mapping with Fix(T) �= ∅;
A is a γ̄ -strongly positive bounded linear operator on H with γ̄ ∈ (, );
F : H → H is a κ-Lipschitzian and η-strongly monotone operator with  < μ < η

κ ;
V : H → H is an l-Lipschitzian mapping with  ≤ γ l < τ and
τ =  –

√

 – μ(η – μκ);
Tt : H → H is a mapping defined by Ttx = λtx + ( – λt)Tx, t ∈ (, ), for
 ≤ k ≤ λt ≤ λ <  and limt→ λt = λ;
Tn : H → H is a mapping defined by Tnx = λnx + ( – λn)Tx for  ≤ k ≤ λn ≤ λ <  and
limn→∞ λn = λ;
{αn} ⊂ [, ], {βn} ⊂ (, ] and {θt}t∈(,min{, –γ̄

τ–γ l })
⊂ (, ).

The author of [] proved that, under weaker control conditions than the previous ones,
the net {xt} and the sequence {xn} generated by (.) and (.), respectively, converge
strongly to the same point x̃ ∈ Fix(T), which is the unique solution to the VIP

〈

(A – I)x̃, p – x̃
〉≥ , ∀p ∈ Fix(T). (.)

His results extend and improve Ceng et al.’s corresponding ones [] from the nonex-
pansive mapping T to the strictly pseudocontractive mapping T and from the contractive
mapping f to the Lipschitzian mapping V .

On the other hand, let ϕ : C → R be a real-valued function, A : C → H be a nonlinear
mapping and Θ : C × C → R be a bifunction. In , Peng and Yao [] introduced the
generalized mixed equilibrium problem (GMEP) of finding x ∈ C such that

Θ(x, y) + ϕ(y) – ϕ(x) + 〈Ax, y – x〉 ≥ , ∀y ∈ C. (.)

We denote the set of solutions of GMEP (.) by GMEP(Θ ,ϕ,A). The GMEP (.) is very
general in the sense that it includes, as special cases, optimization problems, variational in-
equalities, minimax problems, Nash equilibrium problems in noncooperative games and
others. Recently, many authors have been devoting to the study of the GMEP (.) and
its special cases, e.g., generalized equilibrium problem (GEP), mixed equilibrium problem
(MEP),equilibrium problem (EP), etc.; see, e.g., [, , –, , –] and the refer-
ences therein.

It was assumed in [] that Θ : C × C → R is a bifunction satisfying conditions (A)-
(A) and ϕ : C → R is a lower semicontinuous and convex function with restriction (B)
or (B), where

(A) Θ(x, x) =  for all x ∈ C;
(A) Θ is monotone, i.e., Θ(x, y) + Θ(y, x) ≤  for any x, y ∈ C;
(A) Θ is upper-hemicontinuous, i.e., for each x, y, z ∈ C,

lim sup
t→+

Θ
(

tz + ( – t)x, y
)≤ Θ(x, y);
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(A) Θ(x, ·) is convex and lower semicontinuous for each x ∈ C;
(B) for each x ∈ H and r > , there exists a bounded subset Dx ⊂ C and yx ∈ C such

that for any z ∈ C \ Dx,

Θ(z, yx) + ϕ(yx) – ϕ(z) +

r
〈yx – z, z – x〉 < ;

(B) C is a bounded set.
Given a positive number r > . Let T (Θ ,ϕ)

r : H → C be the solution set of the auxiliary
mixed equilibrium problem, that is, for each x ∈ H ,

T (Θ ,ϕ)
r (x) :=

{

y ∈ C : Θ(y, z) + ϕ(z) – ϕ(y) +

r
〈y – x, z – y〉 ≥ ,∀z ∈ C

}

.

In particular, if ϕ ≡  then T (Θ ,ϕ)
r is rewritten as TΘ

r : H → C, i.e.,

TΘ
r (x) :=

{

y ∈ C : Θ(y, z) +

r
〈y – x, z – y〉 ≥ ,∀z ∈ C

}

.

Let Φ,Φ : C × C → R be two bifunctions and F, F : C → H be two mappings. Con-
sider the problem of finding (x∗, y∗) ∈ C × C such that

{

Φ(x∗, x) + 〈Fy∗, x – x∗〉 + 
ν

〈x∗ – y∗, x – x∗〉 ≥ , ∀x ∈ C,
Φ(y∗, y) + 〈Fx∗, y – y∗〉 + 

ν
〈y∗ – x∗, y – y∗〉 ≥ , ∀y ∈ C,

(.)

which is called a system of generalized equilibrium problems (SGEP) where ν >  and
ν >  are two constants. In , Ceng and Yao [] transformed the SGEP (.) into
the fixed point problem of the mapping G = TΦ

ν (I – νF)TΦ
ν (I – νF), that is, Gx∗ = x∗,

where y∗ = TΦ
ν (I – νF)x∗. Throughout this paper, the fixed point set of the mapping G

is denoted by Ξ .
In particular, if Φ ≡ Φ ≡ , then problem (.) reduces to the system of variational

inequalities (SVI) of finding (x∗, y∗) ∈ C × C such that

{

〈νFy∗ + x∗ – y∗, x – x∗〉 ≥ , ∀x ∈ C,
〈νFx∗ + y∗ – x∗, y – y∗〉 ≥ , ∀y ∈ C,

(.)

where ν >  and ν >  are two constants. Recently, many authors have addressed
the study of the SVI (.); see, e.g., [, , , –, –] and the references
therein.

Let T : C → C be a k-strictly pseudocontractive mapping. In , Ceng and Yao []
proposed and analyzed the following relaxed extragradient-like iterative scheme for find-
ing a common solution x∗ ∈ Ω := Fix(T) ∩ GMEP(Θ ,ϕ,A) ∩ Ξ of the GMEP (.), the
SGEP (.), and the fixed point problem of T :

⎧

⎪⎨

⎪⎩

zn = T (Θ ,ϕ)
λn (I – λnA)xn,

yn = TΦ
ν (I – νF)TΦ

ν (I – νF)zn,
xn+ = αnu + βnxn + γnyn + δnTyn, ∀n ≥ ,

(.)
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where  < νj < ζj for j = , , and {λn} ⊂ [, η], {αn}, {βn}, {γn}, {δn} ⊂ [, ] such that αn +
βn + γn + δn =  and (γn + δn)k ≤ γn, ∀n ≥ . Under some mild assumptions, the authors
[] proved that {xn} converges strongly to x∗ = PΩu and (x∗, y∗) is a solution of the SGEP
(.), where y∗ = TΦ

ν (I – νF)x∗.
In this paper, we introduce one composite implicit relaxed extragradient-like scheme

and another composite explicit relaxed extragradient-like scheme for finding a common
solution of a finite family of generalized mixed equilibrium problems (GMEP) with the
constraints of the SGEP (.) and the hierarchical fixed point problem (HFPP) for a
strictly pseudocontractive mapping in a real Hilbert space. We establish the strong con-
vergence of these two composite relaxed extragradient-like schemes to the same common
solution of finitely many GMEPs and the SGEP (.), which is the unique solution of the
HFPP for a strictly pseudocontractive mapping. In particular, we make use of weaker con-
trol conditions than the previous ones for the sake of proving strong convergence. Utilizing
these results, we first propose the composite implicit and explicit relaxed extragradient-
like schemes for finding a common fixed point of a finite family of strictly pseudocontrac-
tive mappings, and then derive their strong convergence to the unique common solution
of the SGEP (.) and some HFPP. Our results complement, develop, improve, and ex-
tend the corresponding ones given by some authors recently in this area. See, e.g., Ceng et
al. [], Jung [], and Ceng and Yao [].

2 Preliminaries
Throughout this paper, we assume that H is a real Hilbert space whose inner product and
norm are denoted by 〈·, ·〉 and ‖ · ‖, respectively. Let C be a nonempty, closed, and convex
subset of H . We write xn ⇀ x to indicate that the sequence {xn} converges weakly to x
and xn → x to indicate that the sequence {xn} converges strongly to x. Moreover, we use
ωw(xn) to denote the weak ω-limit set of the sequence {xn}, i.e.,

ωw(xn) :=
{

x ∈ H : xni ⇀ x for some subsequence {xni} of {xn}
}

.

The metric (or nearest point) projection from H onto C is the mapping PC : H → C
which assigns to each point x ∈ H the unique point PCx ∈ C satisfying the property

‖x – PCx‖ = inf
y∈C

‖x – y‖ =: d(x, C).

The following properties of projections are useful and pertinent to our purpose.

Proposition . Given any x ∈ H and z ∈ C. One has
(i) z = PCx ⇔ 〈x – z, y – z〉 ≤ , ∀y ∈ C;

(ii) z = PCx ⇔ ‖x – z‖ ≤ ‖x – y‖ – ‖y – z‖, ∀y ∈ C;
(iii) 〈PCx – PCy, x – y〉 ≥ ‖PCx – PCy‖, ∀y ∈ H , which hence implies that PC is

nonexpansive and monotone.

Definition . A mapping T : H → H is said to be firmly nonexpansive if T – I is non-
expansive, or equivalently, if T is -inverse strongly monotone (-ism),

〈x – y, Tx – Ty〉 ≥ ‖Tx – Ty‖, ∀x, y ∈ H ;
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alternatively, T is firmly nonexpansive if and only if T can be expressed as

T =



(I + S),

where S : H → H is nonexpansive; projections are firmly nonexpansive.

Definition . A mapping F : C → H is said to be
(i) monotone if

〈Fx – Fy, x – y〉 ≥ , ∀x, y ∈ C;

(ii) η-strongly monotone if there exists a constant η >  such that

〈Fx – Fy, x – y〉 ≥ η‖x – y‖, ∀x, y ∈ C;

(iii) α-inverse strongly monotone if there exists a constant α >  such that

〈Fx – Fy, x – y〉 ≥ α‖Fx – Fy‖, ∀x, y ∈ C.

It can easily be seen that if T is nonexpansive, then I –T is monotone. It is also easy to see
that the projection PC is -ism. Inverse strongly monotone (also referred to as co-coercive)
operators have been applied widely in solving practical problems in various fields.

On the other hand, it is obvious that if F : C → H is α-inverse strongly monotone, then
F is monotone and 

α
-Lipschitz-continuous. Moreover, we also have, for all u, v ∈ C and

λ > ,

∥
∥(I – λF)u – (I – λF)v

∥
∥

 ≤ ‖u – v‖ + λ(λ – α)‖Fu – Fv‖. (.)

Consequently, if λ ≤ α, then I – λF is a nonexpansive mapping from C to H .
Next we list some elementary conclusions for the MEP.

Proposition . (see []) Assume that Θ : C ×C → R satisfies (A)-(A) and let ϕ : C →
R be a proper lower semicontinuous and convex function. Assume that either (B) or (B)
holds. For r >  and x ∈ H , define a mapping T (Θ ,ϕ)

r : H → C as follows:

T (Θ ,ϕ)
r (x) =

{

z ∈ C : Θ(z, y) + ϕ(y) – ϕ(z) +

r
〈y – z, z – x〉 ≥ ,∀y ∈ C

}

for all x ∈ H . Then the following hold:
(i) for each x ∈ H , T (Θ ,ϕ)

r (x) is nonempty and single-valued;
(ii) T (Θ ,ϕ)

r is firmly nonexpansive, that is, for any x, y ∈ H ,

∥
∥T (Θ ,ϕ)

r x – T (Θ ,ϕ)
r y

∥
∥

 ≤ 〈

T (Θ ,ϕ)
r x – T (Θ ,ϕ)

r y, x – y
〉

;

(iii) Fix(T (Θ ,ϕ)
r ) = MEP(Θ ,ϕ);

(iv) MEP(Θ ,ϕ) is closed and convex;
(v) ‖T (Θ ,ϕ)

s x – T (Θ ,ϕ)
t x‖ ≤ s–t

s 〈T (Θ ,ϕ)
s x – T (Θ ,ϕ)

t x, T (Θ ,ϕ)
s x – x〉 for all s, t >  and x ∈ H .
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In , Ceng and Yao [] transformed the SGEP (.) into a fixed point problem in
the following way:

Proposition . (see []) Let Φ,Φ : C ×C → R be two bifunctions satisfying conditions
(A)-(A). Then (x∗, y∗) ∈ C × C is a solution of the SGEP (.) if and only if x∗ is a fixed
point of the mapping G : C → C defined by

Gx = TΦ
ν (I – νF)TΦ

ν (I – νF)x, ∀x ∈ C,

where y∗ = TΦ
ν (I – νF)x∗.

In particular, if the mapping Fj : C → H is ζj-inverse strongly monotone for j = , , then
the mapping G is nonexpansive provided νj ∈ (, ζj] for j = , . We denote by Ξ the fixed
point set of the mapping G.

In Proposition ., putting Φ ≡ Φ ≡ , we get the following.

Corollary . (see [], Lemma .) For given x∗, y∗ ∈ C, (x∗, y∗) is a solution of the SVI
(.) if and only if x∗ is a fixed point of the mapping G : C → C defined by Gx = PC(I –
νF)PC(I – νF)x for all x ∈ C, where y∗ = PC(I – νF)x∗.

In particular, if the mapping Fj : C → H is ζj-inverse strongly monotone for j = , , then
the mapping G is nonexpansive provided νj ∈ (, ζj] for j = , . We denote by Ξ the fixed
point set of the mapping G.

We need some facts and tools in a real Hilbert space H ; these are listed as lemmas below.

Lemma . Let X be a real inner product space. Then we have the following inequality:

‖x + y‖ ≤ ‖x‖ + 〈y, x + y〉, ∀x, y ∈ X.

Lemma . Let H be a real Hilbert space. Then the following hold:
(a) ‖x – y‖ = ‖x‖ – ‖y‖ – 〈x – y, y〉 for all x, y ∈ H ;
(b) ‖λx + μy‖ = λ‖x‖ + μ‖y‖ – λμ‖x – y‖ for all x, y ∈ H and λ,μ ∈ [, ] with

λ + μ = ;
(c) if {xn} is a sequence in H such that xn ⇀ x, it follows that

lim sup
n→∞

‖xn – y‖ = lim sup
n→∞

‖xn – x‖ + ‖x – y‖, ∀y ∈ H .

It is clear that, in a real Hilbert space H , T : C → C is k-strictly pseudocontractive if and
only if the following inequality holds:

〈Tx – Ty, x – y〉 ≤ ‖x – y‖ –
 – k


∥
∥(I – T)x – (I – T)y

∥
∥

, ∀x, y ∈ C.

This immediately implies that if T is a k-strictly pseudocontractive mapping, then I – T
is –k

 -inverse strongly monotone; for further detail, we refer to [] and the references
therein. It is well known that the class of strict pseudocontractions strictly includes the
class of nonexpansive mappings and that the class of pseudocontractions strictly includes
the class of strict pseudocontractions.
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Lemma . (see [], Proposition .) Let C be a nonempty, closed, and convex subset of
a real Hilbert space H and T : C → C be a mapping.

(i) If T is a k-strictly pseudocontractive mapping, then T satisfies the Lipschitzian
condition

‖Tx – Ty‖ ≤  + k
 – k

‖x – y‖, ∀x, y ∈ C.

(ii) If T is a k-strictly pseudocontractive mapping, then the mapping I – T is semiclosed
at , that is, if {xn} is a sequence in C such that xn ⇀ x̃ and (I – T)xn → , then
(I – T)x̃ = .

(iii) If T is k-(quasi-)strict pseudocontraction, then the fixed point set Fix(T) of T is
closed and convex so that the projection PFix(T) is well defined.

Lemma . (see []) Let C be a nonempty, closed, and convex subset of a real Hilbert
space H . Let T : C → C be a k-strictly pseudocontractive mapping. Let γ and δ be two
nonnegative real numbers such that (γ + δ)k ≤ γ . Then

∥
∥γ (x – y) + δ(Tx – Ty)

∥
∥≤ (γ + δ)‖x – y‖, ∀x, y ∈ C.

Lemma . (see [], Demiclosedness principle) Let C be a nonempty, closed, and convex
subset of a real Hilbert space H . Let S be a nonexpansive self-mapping on C. Then I – S is
demiclosed. That is, whenever {xn} is a sequence in C weakly converging to some x ∈ C and
the sequence {(I – S)xn} strongly converges to some y, it follows that (I – S)x = y. Here I is
the identity operator of H .

Lemma . Let F : C → H be a monotone mapping. In the context of the variational in-
equality problem the characterization of the projection (see Proposition .(i)) implies

u ∈ VI(C, F) ⇔ u = PC(u – λFu), λ > .

Let C be a nonempty, closed, and convex subset of a real Hilbert space H . We introduce
some notations. Let λ be a number in (, ] and let μ > . Associating with a nonexpansive
mapping T : C → C, we define the mapping Tλ : C → H by

Tλx := Tx – λμF(Tx), ∀x ∈ C,

where F : C → H is an operator such that, for some positive constants κ ,η > , F is κ-
Lipschitzian and η-strongly monotone on C; that is, F satisfies the conditions:

‖Fx – Fy‖ ≤ κ‖x – y‖ and 〈Fx – Fy, x – y〉 ≥ η‖x – y‖

for all x, y ∈ C.

Lemma . (see [], Lemma .) Tλ is a contraction provided  < μ < η

κ ; that is,

∥
∥Tλx – Tλy

∥
∥≤ ( – λτ )‖x – y‖, ∀x, y ∈ C,

where τ =  –
√

 – μ(η – μκ) ∈ (, ].
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Lemma . (see [], Lemma .) Let {an} be a sequence of nonnegative real numbers
satisfying

an+ ≤ ( – ωn)an + ωnδn + rn, ∀n ≥ ,

where {ωn}, {δn}, and {rn} satisfy the following conditions:
(i) {ωn} ⊂ [, ] and

∑∞
n= ωn = ∞;

(ii) either lim supn→∞ δn ≤  or
∑∞

n= ωn|δn| < ∞;
(iii) rn ≥  for all n ≥ , and

∑∞
n= rn < ∞.

Then limn→∞ an = .

Lemma . (see []) Assume that A is a γ̄ -strongly positive bounded linear operator on
H with  < ρ ≤ ‖A‖–. Then ‖I – ρA‖ ≤  – ργ̄ .

Let LIM be a Banach limit. According to time and circumstances, we use LIMn an instead
of LIM a for every a = {an} ∈ l∞. The following properties are well known:

(i) for all n ≥ , an ≤ cn implies LIMn an ≤ LIMn cn;
(ii) LIMn an+N = LIMn an for any fixed positive integer N ;

(iii) lim infn→∞ an ≤ LIMn an ≤ lim supn→∞ an for all {an} ∈ l∞.
The following lemma was given in [], Proposition .

Lemma . Let a ∈ R be a real number and let a sequence {an} ∈ l∞ satisfy the
condition LIMn an ≤ a for all Banach limit LIM. If lim supn→∞(an+ – an) ≤ , then
lim supn→∞ an ≤ a.

Recall that a set-valued mapping T̃ : D(T̃) ⊂ H → H is called monotone if for all x, y ∈
D(T̃), f ∈ T̃x, and g ∈ T̃y imply

〈f – g, x – y〉 ≥ .

A set-valued mapping T̃ is called maximal monotone if T̃ is monotone and (I +λT̃)D(T̃) =
H for each λ > , where I is the identity mapping of H . We denote by G(T̃) the graph of T̃ .
It is well known that a monotone mapping T̃ is maximal if and only if, for (x, f ) ∈ H × H ,
〈f – g, x – y〉 ≥  for every (y, g) ∈ G(T̃) implies f ∈ T̃x. Next we provide an example to
illustrate the concept of a maximal monotone mapping.

Let Γ : C → H be a monotone and Lipschitz-continuous mapping and let NCv be the
normal cone to C at v ∈ C, i.e.,

NCv =
{

u ∈ H : 〈v – p, u〉 ≥ ,∀p ∈ C
}

.

Define

T̃v =

{

Γ v + NCv, if v ∈ C,
∅, if v /∈ C.

Then it is well known [] that T̃ is maximal monotone and  ∈ T̃v if and only if v ∈
VI(C,Γ ).
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3 Main results
Let C be a nonempty, closed, and convex subset of a real Hilbert space H . Throughout this
section, we always assume the following:

F : C → H is a κ-Lipschitzian and η-strongly monotone operator with positive
constants κ ,η > , and Fj : C → H is ζj-inverse strongly monotone for j = , ;
T : C → C is a k-strictly pseudocontractive mapping and Ai : C → H is ηi-inverse
strongly monotone for each i = , . . . , N ;
A is a γ̄ -strongly positive bounded linear operator on H with γ̄ ∈ (, ) and
V : C → H is an l-Lipschitzian mapping with l ≥ ;
Θi,Φj : C × C → R are the bifunctions satisfying conditions (A)-(A) and
ϕi : C → R ∪ {+∞} be a proper lower semicontinuous and convex function with
restrictions (B) or (B) for each i = , . . . , N and j = , ;
 < μ < η

κ and  ≤ γ l < τ with τ =  –
√

 – μ(η – μκ);
S : C → C is a mapping defined by Sx = λx + ( – λ)Tx for  ≤ k ≤ λ < ;
G : C → C is a mapping defined by Gx = TΦ

ν (I – νF)TΦ
ν (I – νF)x with  < νj < ζj

for j = , ;
ΔN

t : C → C is a mapping defined by
ΔN

t x = T (ΘN ,ϕN )
rN ,t (I – rN ,tAN ) · · ·T (Θ,ϕ)

r,t (I – r,tA)x, t ∈ (, ), for
{ri,t} ⊂ [ai, bi] ⊂ (, ηi), i = , . . . , N ;
ΔN

n : C → C is a mapping defined by
ΔN

n x = T (ΘN ,ϕN )
rN ,n (I – rN ,nAN ) · · ·T (Θ,ϕ)

r,n (I – r,nA)x with {ri,n} ⊂ [ai, bi] ⊂ (, ηi) and
limn→∞ ri,n = ri, for each i = , . . . , N ;
Ω := (

⋂N
i= GMEP(Θi,ϕi,Ai)) ∩ Fix(T) ∩ Ξ �= ∅ and PΩ is the metric projection of H

onto Ω ;
{αn} ⊂ [, ], {βn} ⊂ (, ] and {θt}t∈(,min{, –γ̄

τ–γ l })
⊂ (, ).

Next, put

Δi
t = T (Θi ,ϕi)

ri,t
(I – ri,tAi)T (Θi–,ϕi–)

ri–,t
(I – ri–,tAi–) · · ·T (Θ,ϕ)

r,t (I – r,tA), ∀t ∈ (, ),

and

Δi
n = T (Θi ,ϕi)

ri,n
(I – ri,nAi)T (Θi–,ϕi–)

ri–,n
(I – ri–,nAi–) · · ·T (Θ,ϕ)

r,n (I – r,nA), ∀n ≥ ,

for all i ∈ {, . . . , N}, and Δ
t = Δ

n = I , where I is the identity mapping on H .
By Lemma ., we know that S is nonexpansive. It is clear that Fix(S) = Fix(T). Since

{λi,t} ⊂ [ai, bi] ⊂ (, ηi), utilizing (.) and Proposition .(ii) we have for all x, y ∈ C
∥
∥ΔN

t x – ΔN
t y
∥
∥ =

∥
∥T (ΘN ,ϕN )

rN ,t
(I – rN ,tAN )ΔN–

t x – T (ΘN ,ϕN )
rN ,t

(I – rN ,tAN )ΔN–
t y

∥
∥

≤ ∥
∥(I – rN ,tAN )ΔN–

t x – (I – rN ,tAN )ΔN–
t y

∥
∥

≤ ∥
∥ΔN–

t x – ΔN–
t y

∥
∥

≤ · · ·
≤ ∥
∥Δi

tx – Δi
ty
∥
∥

≤ · · ·
≤ ∥
∥Δ

t x – Δ
t y
∥
∥

= ‖x – y‖,
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which implies that Δi
t : C → C is a nonexpansive mapping for all t ∈ (, ). Also, since

{ri,n} ⊂ [ai, bi] ⊂ (, ηi), utilizing (.) and Proposition .(ii) we have for all x, y ∈ C

∥
∥ΔN

n x – ΔN
n y
∥
∥ =

∥
∥T (ΘN ,ϕN )

rN ,n
(I – rN ,nAN )ΔN–

n x – T (ΘN ,ϕN )
rN ,n

(I – rN ,nAN )ΔN–
n y

∥
∥

≤ ∥
∥(I – rN ,nAN )ΔN–

n x – (I – rN ,nAN )ΔN–
n y

∥
∥

≤ ∥
∥ΔN–

n x – ΔN–
n y

∥
∥

≤ · · ·
≤ ∥
∥Δi

nx – Δi
ny
∥
∥

≤ · · ·
≤ ∥
∥Δ

nx – Δ
ny
∥
∥

= ‖x – y‖,

which implies that Δi
n : C → C is a nonexpansive mapping for all n ≥ .

In this section, we introduce the first composite relaxed extragradient-like scheme that
generates a net {xt}t∈(,min{, –γ̄

τ–γ l })
in an implicit manner:

xt = PC
[

(I – θtA)SΔN
t Gxt + θt

(

tγ Vxt + (I – tμF)SΔN
t Gxt

)]

. (.)

We prove the strong convergence of {xt} as t →  to a point x̃ ∈ Ω which is a unique
solution to the VIP

〈

(A – I)x̃, p – x̃
〉≥ , ∀p ∈ Ω . (.)

For arbitrarily given x ∈ C, we also propose the second composite relaxed extragra-
dient-like scheme, which generates a sequence {xn} in an explicit way:

{

yn = αnγ Vxn + (I – αnμF)SΔN
n Gxn,

xn+ = PC[(I – βnA)SΔN
n Gxn + βnyn], ∀n ≥ ,

(.)

and establish the strong convergence of {xn} as n → ∞ to the same point x̃ ∈ Ω , which is
also the unique solution to VIP (.).

Now, for t ∈ (, min{, –γ̄

τ–γ l }), and θt ∈ (,‖A‖–], consider a mapping Qt : C → C defined
by

Qtx = PC
[

(I – θtA)SΔN
t Gx + θt

(

tγ Vx + (I – tμF)SΔN
t Gx

)]

, ∀x ∈ C.

It is easy to see that Qt is a contractive mapping with constant  – θt(γ̄ –  + t(τ – γ l)).
Indeed, by Proposition . and Lemmas . and ., we have

∥
∥Qtx – Qty

∥
∥ ≤ ∥

∥(I – θtA)SΔN
t Gx + θt

(

tγ Vx + (I – tμF)SΔN
t Gx

)

– (I – θtA)SΔN
t Gy – θt

(

tγ Vx + (I – tμF)SΔN
t Gy

)∥
∥

≤ ∥
∥(I – θtA)SΔN

t Gx – (I – θtA)SΔN
t Gy

∥
∥
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+ θt
∥
∥
(

tγ Vx + (I – tμF)SΔN
t Gx

)

–
(

tγ Vy + (I – tμF)SΔN
t Gy

)∥
∥

≤ ( – θt γ̄ )
∥
∥SΔN

t Gx – SΔN
t Gy

∥
∥ + θt

[

tγ ‖Vx – Vy‖
+
∥
∥(I – tμF)SΔN

t Gx – (I – tμF)SΔN
t Gy

∥
∥
]

≤ ( – θt γ̄ )‖x – y‖ + θt
[

tγ l‖x – y‖ + ( – tτ )‖x – y‖]

=
[

 – θt
(

γ̄ –  + t(τ – γ l)
)]‖x – y‖.

Since γ̄ ∈ (, ), τ – γ l > , and

 < t < min

{

,
 – γ̄

τ – γ l

}

≤  – γ̄

τ – γ l
,

it follows that

 < γ̄ –  + t(τ – γ l) < ,

which together with  < θt ≤ ‖A‖– <  yields

 <  – θt
(

γ̄ –  + t(τ – γ l)
)

< .

Hence Qt : C → C is a contractive mapping. By the Banach contraction principle, Qt has
a unique fixed point, denoted by xt , which uniquely solves the fixed point equation (.).

We summarize the basic properties of {xt}. The argument techniques in [, , ] extend
to developing the new argument ones for these basic properties. We include the argument
process for the sake of completeness.

Proposition . Let {xt} be defined via (.). Then
(i) {xt} is bounded for t ∈ (, min{, –γ̄

τ–γ l });
(ii) limt→ ‖xt – Sxt‖ = , limt→ ‖xt – Gxt‖ =  and limt→ ‖xt – ΔN

t xt‖ =  provided
limt→ θt = ;

(iii) xt : (, min{, –γ̄

τ–γ l }) → H is locally Lipschitzian provided
θt : (, min{, –γ̄

τ–γ l }) → (,‖A‖–] is locally Lipschitzian, and
λi,t : (, min{, –γ̄

τ–γ l }) → [ai, bi] is locally Lipschitzian for each i = , . . . , N ;
(iv) xt defines a continuous path from (, min{, –γ̄

τ–γ l }) into H provided
θt : (, min{, –γ̄

τ–γ l }) → (,‖A‖–] is continuous, and λi,t : (, min{, –γ̄

τ–γ l }) → [ai, bi]
is continuous for each i = , . . . , N .

Proof (i) Let p ∈ Ω . Noting that Fix(S) = Fix(T), Sp = p, Gp = p, and Δi
tp = p for each

i = , . . . , N , by the nonexpansivity of S, G, and Δi
t , and Lemmas . and . we get

‖xt – p‖
≤ ∥
∥(I – θtA)SΔN

t Gxt + θt
(

tγ Vxt + (I – tμF)SΔN
t Gxt

)

– p
∥
∥

=
∥
∥(I – θtA)SΔN

t Gxt – (I – θtA)SΔN
t Gp

+ θt
(

tγ Vxt + (I – tμF)SΔN
t Gxt – p

)

+ θt(I – A)p
∥
∥

≤ ∥
∥(I – θtA)SΔN

t Gxt – (I – θtA)SΔN
t Gp

∥
∥
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+ θt
∥
∥tγ Vxt + (I – tμF)SΔN

t Gxt – p
∥
∥ + θt

∥
∥(I – A)p

∥
∥

=
∥
∥(I – θtA)SΔN

t Gxt – (I – θtA)SΔN
t Gp

∥
∥

+ θt
∥
∥(I – tμF)SΔN

t Gxt – (I – tμF)SΔN
t Gp

+ t(γ Vxt – μFp)
∥
∥ + θt

∥
∥(I – A)p

∥
∥

≤ ( – θt γ̄ )
∥
∥SΔN

t Gxt – SΔN
t Gp

∥
∥

+ θt
[∥
∥(I – tμF)SΔN

t Gxt – (I – tμF)SΔN
t Gp

∥
∥

+ t
(

γ ‖Vxt – Vp‖ + ‖γ Vp – μFp‖)] + θt
∥
∥(I – A)p

∥
∥

≤ ( – θt γ̄ )‖xt – p‖ + θt
[

( – tτ )‖xt – p‖
+ t
(

γ l‖xt – p‖ +
∥
∥(γ V – μF)p

∥
∥
)]

+ θt‖I – A‖‖p‖
=
[

 – θt
(

γ̄ –  + t(τ – γ l)
)]‖xt – p‖ + θt

[‖I – A‖‖p‖ + t
∥
∥(γ V – μF)p

∥
∥
]

.

So, it follows that

‖xt – p‖ ≤ ‖I – A‖‖p‖ + t‖(γ V – μF)p‖
γ̄ –  + t(τ – γ l)

≤ ‖I – A‖‖p‖ + t‖(γ V – μF)p‖
γ̄ – 

≤ ‖I – A‖‖p‖ + ‖(γ V – μF)p‖
γ̄ – 

.

Hence {xt} is bounded and so are {Vxt}, {ΔN
t xt}, {SΔN

t Gxt}, and {FSΔN
t Gxt}.

(ii) By the definition of {xt}, we have

∥
∥xt – SΔN

t Gxt
∥
∥

=
∥
∥PC

[

(I – θtA)SΔN
t Gxt + θt

(

tγ Vxt + (I – tμF)SΔN
t Gxt

)]

– PCSΔN
t Gxt

∥
∥

≤ ∥
∥(I – θtA)SΛN

t Gxt + θt
(

tγ Vxt + (I – tμF)SΛN
t Gxt

)

– SΛN
t Gxt

∥
∥

=
∥
∥θt
[

(I – A)SΔN
t Gxt + t

(

γ Vxt – μFSΔN
t Gxt

)]∥
∥

= θt
∥
∥(I – A)SΔN

t Gxt + t
(

γ Vxt – μFSΔN
t Gxt

)∥
∥

≤ θt‖I – A‖∥∥SΔN
t Gxt

∥
∥ + t

∥
∥γ Vxt – μFSΔN

t Gxt
∥
∥→  as t → ,

by the boundedness of {Vxt}, {SΔN
t Gxt}, and {FSΔN

t Gxt} in the assertion (i). That is,

lim
t→

∥
∥xt – SΔN

t Gxt
∥
∥ = . (.)

Since p = Gp = TΦ
ν (I – νF)TΦ

ν (I – νF)p and Fj is ζj-inverse strongly monotone with
 < νj < ζj for j = , , by Proposition .(ii) we deduce that

‖Gxt – p‖

=
∥
∥TΦ

ν (I – νF)TΦ
ν (I – νF)xt – TΦ

ν (I – νF)TΦ
ν (I – νF)p

∥
∥



≤ ∥
∥(I – νF)TΦ

ν (I – νF)xt – (I – νF)TΦ
ν (I – νF)p

∥
∥
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=
∥
∥
[

TΦ
ν (I – νF)xt – TΦ

ν (I – νF)p
]

– ν
[

FTΦ
ν (I – νF)xt – FTΦ

ν (I – νF)p
]∥
∥



≤ ∥
∥TΦ

ν (I – νF)xt – TΦ
ν (I – νF)p

∥
∥



+ ν(ν – ζ)
∥
∥FTΦ

ν (I – νF)xt – FTΦ
ν (I – νF)p

∥
∥



≤ ∥
∥TΦ

ν (I – νF)xt – TΦ
ν (I – νF)p

∥
∥



≤ ∥
∥(I – νF)xt – (I – νF)p

∥
∥



=
∥
∥(xt – p) – ν(Fxt – Fp)

∥
∥



≤ ‖xt – p‖ + ν(ν – ζ)‖Fxt – Fp‖

≤ ‖xt – p‖. (.)

In the meantime, utilizing the ηi-inverse strong monotonicity of Ai, we obtain

∥
∥Δi

tGxt – p
∥
∥

 =
∥
∥T (Θi ,ϕi)

ri,t
(I – ri,tAi)Δi–

t Gxt – T (Θi ,ϕi)
ri,t

(I – ri,tAi)p
∥
∥



≤ ∥
∥(I – ri,tAi)Δi–

t Gxt – (I – ri,tAi)p
∥
∥



=
∥
∥Δi–

t Gxt – p – ri,t
(

AiΔ
i–
t Gxt – Aip

)∥
∥



≤ ∥
∥Δi–

t Gxt – p
∥
∥

 + ri,t(ri,t – ηi)
∥
∥AiΔ

i–
t Gxt – Aip

∥
∥



≤ ‖Gxt – p‖ + ri,t(ri,t – ηi)
∥
∥AiΔ

i–
t Gxt – Aip

∥
∥

, (.)

for each i ∈ {, , . . . , N}. Simple calculations show that

xt – p

= xt – wt + wt – p

= xt – wt + (I – θtA)SΔN
t Gxt + θt

(

tγ Vxt + (I – tμF)SΔN
t Gxt

)

– p

= xt – wt + (I – θtA)SΔN
t Gxt – (I – θtA)SΔN

t Gp + θt
[

tγ Vxt

+ (I – tμF)SΔN
t Gxt – p

]

+ θt(I – A)p

= xt – wt + (I – θtA)
(

SΔN
t Gxt – SΔN

t Gp
)

+ θt
[

t(γ Vxt – μFp)

+ (I – tμF)SΔN
t Gxt – (I – tμF)p

]

+ θt(I – A)p, (.)

where wt = (I – θtA)SΔN
t Gxt + θt(tγ Vxt + (I – tμF)SΔN

t Gxt).
For simplicity, we write x̃t = TΦ

ν (I – νF)xt , p̃ = TΦ
ν (I – νF)p and yt = TΦ

ν (I – νF)x̃t .
Then we have yt = TΦ

ν (I – νF)TΦ
ν (I – νF)xt and p = Gp = TΦ

ν (I – νF)p̃. Then, by
Propositions .(i) and ., and Lemmas . and ., from (.)-(.) we obtain

‖xt – p‖

= 〈xt – wt , xt – p〉 +
〈

(I – θtA)
(

SΔN
t Gxt – SΔN

t Gp
)

, xt – p
〉

+ θt
[

t〈γ Vxt – μFp, xt – p〉 +
〈

(I – tμF)SΔN
t Gxt – (I – tμF)p, xt – p

〉]

+ θt
〈

(I – A)p, xt – p
〉
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≤ 〈

(I – θtA)
(

SΔN
t Gxt – SΔN

t Gp
)

, xt – p
〉

+ θt
[

t〈γ Vxt – μFp, xt – p〉
+
〈

(I – tμF)SΔN
t Gxt – (I – tμF)p, xt – p

〉]

+ θt
〈

(I – A)p, xt – p
〉

=
〈

(I – θtA)
(

SΔN
t Gxt – SΔN

t Gp
)

, xt – p
〉

+ θt
[〈

(I – tμF)SΔN
t Gxt – (I – tμF)p, xt – p

〉

+ t
(

γ 〈Vxt – Vp, xt – p〉 + 〈γ Vp – μFp, xt – p〉)]

+ θt
〈

(I – A)p, xt – p
〉

≤ ∥
∥(I – θtA)

(

SΔN
t Gxt – SΔN

t Gp
)∥
∥‖xt – p‖

+ θt
[∥
∥(I – tμF)SΔN

t Gxt – (I – tμF)p
∥
∥‖xt – p‖

+ t
(

γ ‖Vxt – Vp‖‖xt – p‖ + ‖γ Vp – μFp‖‖xt – p‖)] + θt
∥
∥(I – A)p

∥
∥‖xt – p‖

≤ ( – θt γ̄ )
∥
∥SΔN

t Gxt – SΔN
t Gp

∥
∥‖xt – p‖ + θt

[

( – tτ )
∥
∥ΔN

t Gxt – p
∥
∥‖xt – p‖

+ t
(

γ l‖xt – p‖ + ‖γ Vp – μFp‖‖xt – p‖)] + θt
∥
∥(I – A)p

∥
∥‖xt – p‖

≤ ( – θt γ̄ )
∥
∥ΔN

t Gxt – p
∥
∥‖xt – p‖ + θt

[

( – tτ )
∥
∥ΔN

t Gxt – p
∥
∥‖xt – p‖

+ t
(

γ l‖xt – p‖ + ‖γ Vp – μFp‖‖xt – p‖)] + θt
∥
∥(I – A)p

∥
∥‖xt – p‖

=
(

 – θt(γ̄ –  + tτ )
)∥
∥ΔN

t Gxt – p
∥
∥‖xt – p‖

+ θtt
(

γ l‖xt – p‖ + ‖γ Vp – μFp‖‖xt – p‖) + θt
∥
∥(I – A)p

∥
∥‖xt – p‖

≤ (

 – θt(γ̄ –  + tτ )
) 


(∥
∥ΔN

t Gxt – p
∥
∥

 + ‖xt – p‖)

+ θtt
(

γ l‖xt – p‖ + ‖γ Vp – μFp‖‖xt – p‖) + θt
∥
∥(I – A)p

∥
∥‖xt – p‖

≤ (

 – θt(γ̄ –  + tτ )
) 


(∥
∥Δi

tGxt – p
∥
∥

 + ‖xt – p‖)

+ θtt
(

γ l‖xt – p‖ + ‖γ Vp – μFp‖‖xt – p‖) + θt
∥
∥(I – A)p

∥
∥‖xt – p‖

≤ (

 – θt(γ̄ –  + tτ )
) 


(‖Gxt – p‖

+ ri,t(ri,t – ηi)
∥
∥AiΔ

i–
t Gxt – Aip

∥
∥

 + ‖xt – p‖)

+ θtt
(

γ l‖xt – p‖ + ‖γ Vp – μFp‖‖xt – p‖) + θt
∥
∥(I – A)p

∥
∥‖xt – p‖

≤ (

 – θt(γ̄ –  + tτ )
) 


(‖xt – p‖ + ν(ν – ζ)‖Fxt – Fp‖

+ ν(ν – ζ)‖Fx̃t – Fp̃‖

+ ri,t(ri,t – ηi)
∥
∥AiΔ

i–
t Gxt – Aip

∥
∥

 + ‖xt – p‖)

+ θtt
(

γ l‖xt – p‖ + ‖γ Vp – μFp‖‖xt – p‖) + θt
∥
∥(I – A)p

∥
∥‖xt – p‖

=
[

 – θt(γ̄ –  + t(τ – γ l)
]‖xt – p‖ –

 – θt(γ̄ –  + tτ )


[

ν(ζ – ν)‖Fxt – Fp‖

+ ν(ζ – ν)‖Fx̃t – Fp̃‖ + ri,t(ηi – ri,t)
∥
∥AiΔ

i–
t Gxt – Aip

∥
∥

]

+ θt
(

t‖γ Vp – μFp‖‖xt – p‖ +
∥
∥(I – A)p

∥
∥‖xt – p‖)

≤ ‖xt – p‖ –
 – θt(γ̄ –  + tτ )


[

ν(ζ – ν)‖Fxt – Fp‖
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+ ν(ζ – ν)‖Fx̃t – Fp̃‖ + ri,t(ηi – ri,t)
∥
∥AiΔ

i–
t Gxt – Aip

∥
∥

]

+ θt
(

t‖γ Vp – μFp‖‖xt – p‖ +
∥
∥(I – A)p

∥
∥‖xt – p‖), (.)

which together with νj ∈ (, ζj), j = , , and {ri,t} ⊂ [ai, bi] ⊂ (, ηi), i = , . . . , N , implies
that

 – θt(γ̄ –  + tτ )


[

ν(ζ – ν)‖Fxt – Fp‖

+ ν(ζ – ν)‖Fx̃t – Fp̃‖ + ai(ηi – bi)
∥
∥AiΔ

i–
t Gxt – Aip

∥
∥

]

≤  – θt(γ̄ –  + tτ )


[

ν(ζ – ν)‖Fxt – Fp‖

+ ν(ζ – ν)‖Fx̃t – Fp̃‖ + ri,t(ηi – ri,t)
∥
∥AiΔ

i–
t Gxt – Aip

∥
∥

]

≤ θt
(

t‖γ Vp – μFp‖‖xt – p‖ +
∥
∥(I – A)p

∥
∥‖xt – p‖).

Since limt→ θt =  and {xt} is bounded, we have

lim
t→

‖Fxt – Fp‖ = , lim
t→

‖Fx̃t – Fp̃‖ =  and

lim
t→

∥
∥AiΔ

i–
t Gxt – Aip

∥
∥ = 

(.)

for each i = , . . . , N .
On the other hand, in terms of the firm nonexpansivity of TΦj

νj and the ζj-inverse strong
monotonicity of Fj for j = , , we obtain from νj ∈ (, ζj), j = , , and (.)

‖x̃t – p̃‖ =
∥
∥TΦ

ν (I – νF)xt – TΦ
ν (I – νF)p

∥
∥



≤ 〈

(I – νF)xt – (I – νF)p, x̃t – p̃
〉

=


[∥
∥(I – νF)xt – (I – νF)p

∥
∥

 + ‖x̃t – p̃‖

–
∥
∥(I – νF)xt – (I – νF)p – (x̃t – p̃)

∥
∥

]

≤ 

[‖xt – p‖ + ‖x̃t – p̃‖ –

∥
∥(xt – x̃t) – ν(Fxt – Fp) – (p – p̃)

∥
∥

]

=


[‖xt – p‖ + ‖x̃t – p̃‖ –

∥
∥(xt – x̃t) – (p – p̃)

∥
∥



+ ν
〈

(xt – x̃t) – (p – p̃), Fxt – Fp
〉

– ν
‖Fxt – Fp‖]

and

‖yt – p‖ =
∥
∥TΦ

ν (I – νF)x̃t – TΦ
ν (I – νF)(I – νF)p̃

∥
∥



≤ 〈

(I – νF)x̃t – (I – νF)p̃, yt – p
〉

=


[∥
∥(I – νF)x̃t – (I – νF)p̃

∥
∥

 + ‖yt – p‖

–
∥
∥(I – νF)x̃t – (I – νF)p̃ – (yt – p)

∥
∥

]

≤ 

[‖x̃t – p̃‖ + ‖yt – p‖ –

∥
∥(x̃t – yt) + (p – p̃)

∥
∥
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+ ν
〈

Fx̃t – Fp̃, (x̃t – yt) + (p – p̃)
〉

– ν
 ‖Fx̃t – Fp̃‖]

≤ 

[‖xt – p‖ + ‖yt – p‖ –

∥
∥(x̃t – yt) + (p – p̃)

∥
∥



+ ν
〈

Fx̃t – Fp̃, (x̃t – yt) + (p – p̃)
〉]

.

Thus, we have

‖x̃t – p̃‖

≤ ‖xt – p‖ –
∥
∥(xt – x̃t) – (p – p̃)

∥
∥

 + ν
〈

(xt – x̃t) – (p – p̃), Fxt – Fp
〉

– ν
‖Fxt – Fp‖ (.)

and

‖yt – p‖ ≤ ‖xt – p‖ –
∥
∥(x̃t – yt) + (p – p̃)

∥
∥

 + ν‖Fx̃t – Fp̃‖∥∥(x̃t – yt) + (p – p̃)
∥
∥. (.)

Consequently, from (.), (.), and (.) it follows that

‖xt – p‖

≤ (

 – θt(γ̄ –  + tτ )
) 


(‖Gxt – p‖

+ ri,t(ri,t – ηi)
∥
∥AiΔ

i–
t Gxt – Aip

∥
∥

 + ‖xt – p‖)

+ θtt
(

γ l‖xt – p‖ + ‖γ Vp – μFp‖‖xt – p‖) + θt
∥
∥(I – A)p

∥
∥‖xt – p‖

≤ (

 – θt(γ̄ –  + tτ )
) 


(‖Gxt – p‖ + ‖xt – p‖)

+ θtt
(

γ l‖xt – p‖ + ‖γ Vp – μFp‖‖xt – p‖) + θt
∥
∥(I – A)p

∥
∥‖xt – p‖

≤ (

 – θt(γ̄ –  + tτ )
) 


[‖x̃t – p̃‖ + ν(ν – ζ)‖Fx̃t – Fp̃‖ + ‖xt – p‖]

+ θtt
(

γ l‖xt – p‖ + ‖γ Vp – μFp‖‖xt – p‖) + θt
∥
∥(I – A)p

∥
∥‖xt – p‖

≤ (

 – θt(γ̄ –  + tτ )
) 


[‖x̃t – p̃‖ + ‖xt – p‖]

+ θtt
(

γ l‖xt – p‖ + ‖γ Vp – μFp‖‖xt – p‖) + θt
∥
∥(I – A)p

∥
∥‖xt – p‖

≤ (

 – θt(γ̄ –  + tτ )
) 


[‖xt – p‖ –

∥
∥(xt – x̃t) – (p – p̃)

∥
∥



+ ν
〈

(xt – x̃t) – (p – p̃), Fxt – Fp
〉

– ν
‖Fxt – Fp‖ + ‖xt – p‖]

+ θtt
(

γ l‖xt – p‖ + ‖γ Vp – μFp‖‖xt – p‖) + θt
∥
∥(I – A)p

∥
∥‖xt – p‖

≤ [

 – θt
(

γ̄ –  + t(τ – γ l)
)]‖xt – p‖

–
(

 – θt(γ̄ –  + tτ )
) 


∥
∥(xt – x̃t) – (p – p̃)

∥
∥



+ ν
∥
∥(xt – x̃t) – (p – p̃)

∥
∥‖Fxt – Fp‖

+ θt
(

t‖γ Vp – μFp‖‖xt – p‖ +
∥
∥(I – A)p

∥
∥‖xt – p‖)
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≤ ‖xt – p‖ –
(

 – θt(γ̄ –  + tτ )
) 


∥
∥(xt – x̃t) – (p – p̃)

∥
∥



+ ν
∥
∥(xt – x̃t) – (p – p̃)

∥
∥‖Fxt – Fp‖

+ θt
(

t‖γ Vp – μFp‖‖xt – p‖ +
∥
∥(I – A)p

∥
∥‖xt – p‖),

which hence leads to

(

 – θt(γ̄ –  + tτ )
) 


∥
∥(xt – x̃t) – (p – p̃)

∥
∥



≤ ν
∥
∥(xt – x̃t) – (p – p̃)

∥
∥‖Fxt – Fp‖

+ θt
(

t‖γ Vp – μFp‖‖xt – p‖ +
∥
∥(I – A)p

∥
∥‖xt – p‖).

Since limt→ θt =  and limt→ ‖Fxt – Fp‖ =  (due to (.)), we deduce from the bound-
edness of {xt} and {x̃t} that

lim
t→

∥
∥(xt – x̃t) – (p – p̃)

∥
∥ = . (.)

Furthermore, from (.), (.), and (.) it follows that

‖xt – p‖

≤ (

 – θt(γ̄ –  + tτ )
) 


(‖Gxt – p‖

+ ri,t(ri,t – ηi)
∥
∥AiΔ

i–
t Gxt – Aip

∥
∥

 + ‖xt – p‖)

+ θtt
(

γ l‖xt – p‖ + ‖γ Vp – μFp‖‖xt – p‖) + θt
∥
∥(I – A)p

∥
∥‖xt – p‖

≤ (

 – θt(γ̄ –  + tτ )
) 


(‖Gxt – p‖ + ‖xt – p‖)

+ θtt
(

γ l‖xt – p‖ + ‖γ Vp – μFp‖‖xt – p‖) + θt
∥
∥(I – A)p

∥
∥‖xt – p‖

=
(

 – θt(γ̄ –  + tτ )
) 


(‖yt – p‖ + ‖xt – p‖)

+ θtt
(

γ l‖xt – p‖ + ‖γ Vp – μFp‖‖xt – p‖) + θt
∥
∥(I – A)p

∥
∥‖xt – p‖

≤ (

 – θt(γ̄ –  + tτ )
) 


[‖xt – p‖ –

∥
∥(x̃t – yt) + (p – p̃)

∥
∥



+ ν‖Fx̃t – Fp̃‖∥∥(x̃t – yt) + (p – p̃)
∥
∥ + ‖xt – p‖]

+ θtt
(

γ l‖xt – p‖ + ‖γ Vp – μFp‖‖xt – p‖) + θt
∥
∥(I – A)p

∥
∥‖xt – p‖

≤ [

 – θt
(

γ̄ –  + t(τ – γ l)
)]‖xt – p‖

–
(

 – θt(γ̄ –  + tτ )
) 


∥
∥(x̃t – yt) + (p – p̃)

∥
∥

 + ν‖Fx̃t – Fp̃‖∥∥(x̃t – yt) + (p – p̃)
∥
∥

+ θt
(

t‖γ Vp – μFp‖‖xt – p‖ +
∥
∥(I – A)p

∥
∥‖xt – p‖)

≤ ‖xt – p‖ –
(

 – θt(γ̄ –  + tτ )
) 


∥
∥(x̃t – yt) + (p – p̃)

∥
∥



+ ν‖Fx̃t – Fp̃‖∥∥(x̃t – yt) + (p – p̃)
∥
∥

+ θt
(

t‖γ Vp – μFp‖‖xt – p‖ +
∥
∥(I – A)p

∥
∥‖xt – p‖),
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which hence yields

(

 – θt(γ̄ –  + tτ )
) 


∥
∥(x̃t – yt) + (p – p̃)

∥
∥



≤ ν‖Fx̃t – Fp̃‖∥∥(x̃t – yt) + (p – p̃)
∥
∥

+ θt
(

t‖γ Vp – μFp‖‖xt – p‖ +
∥
∥(I – A)p

∥
∥‖xt – p‖).

Since limt→ θt =  and limt→ ‖Fx̃t – Fp̃‖ =  (due to (.)), we deduce from the bound-
edness of {xt}, {yt}, and {x̃t} that

lim
t→

∥
∥(x̃t – yt) + (p – p̃)

∥
∥ = . (.)

Note that

‖xt – yt‖ ≤ ∥
∥(xt – x̃t) – (p – p̃)

∥
∥ +

∥
∥(x̃t – yt) + (p – p̃)

∥
∥.

Hence from (.) and (.) we get

lim
t→

‖xt – Gxt‖ = lim
t→

‖xt – yt‖ = . (.)

Utilizing Proposition .(ii) and Lemma .(a), we obtain for each i ∈ {, . . . , N}
∥
∥Δi

tGxt – p
∥
∥



=
∥
∥T (Θi ,ϕi)

ri,t
(I – ri,tAi)Δi–

t Gxt – T (Θi ,ϕi)
ri,t

(I – ri,tAi)p
∥
∥



≤ 〈

(I – ri,tAi)Δi–
t Gxt – (I – ri,tAi)p,Δi

tGxt – p
〉

=


(∥
∥(I – ri,tAi)Δi–

t Gxt – (I – ri,tAi)p
∥
∥

 +
∥
∥Δi

tGxt – p
∥
∥



–
∥
∥(I – ri,tAi)Δi–

t Gxt – (I – ri,tAi)p –
(

Δi
tGxt – p

)∥
∥

)

≤ 

(∥
∥Δi–

t Gxt – p
∥
∥

 +
∥
∥Δi

tGxt – p
∥
∥

 –
∥
∥Δi–

t Gxt – Δi
tGxt

– ri,t
(

AiΔ
i–
t Gxt – Aip

)∥
∥

)

≤ 

(‖xt – p‖ +

∥
∥Δi

tGxt – p
∥
∥

 –
∥
∥Δi–

t Gxt – Δi
tGxt – ri,t

(

AiΔ
i–
t Gxt – Aip

)∥
∥

),

which immediately leads to

∥
∥Δi

tGxt – p
∥
∥



≤ ‖xt – p‖ –
∥
∥Δi–

t Gxt – Δi
tGxt – ri,t

(

AiΔ
i–
t Gxt – Aip

)∥
∥



= ‖xt – p‖ –
∥
∥Δi–

t Gxt – Δi
tGxt

∥
∥

 – r
i,t
∥
∥AiΔ

i–
t Gxt – Aip

∥
∥



+ ri,t
〈

Δi–
t Gxt – Δi

tGxt ,AiΔ
i–
t Gxt – Aip

〉

≤ ‖xt – p‖ –
∥
∥Δi–

t Gxt – Δi
tGxt

∥
∥



+ ri,t
∥
∥Δi–

t Gxt – Δi
tGxt

∥
∥
∥
∥AiΔ

i–
t Gxt – Aip

∥
∥. (.)
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Combining (.) and (.) we conclude that

‖xt – p‖

≤ (

 – θt(γ̄ –  + tτ )
) 


(∥
∥Δi

tGxt – p
∥
∥

 + ‖xt – p‖)

+ θtt
(

γ l‖xt – p‖ + ‖γ Vp – μFp‖‖xt – p‖) + θt
∥
∥(I – A)p

∥
∥‖xt – p‖

≤ (

 – θt(γ̄ –  + tτ )
) 


[‖xt – p‖ –

∥
∥Δi–

t Gxt – Δi
tGxt

∥
∥



+ ri,t
∥
∥Δi–

t Gxt – Δi
tGxt

∥
∥
∥
∥AiΔ

i–
t Gxt – Aip

∥
∥ + ‖xt – p‖]

+ θtt
(

γ l‖xt – p‖ + ‖γ Vp – μFp‖‖xt – p‖) + θt
∥
∥(I – A)p

∥
∥‖xt – p‖

≤ [

 – θt
(

γ̄ –  + t(τ – γ l)
)]‖xt – p‖

–
(

 – θt(γ̄ –  + tτ )
) 


∥
∥Δi–

t Gxt – Δi
tGxt

∥
∥



+ ri,t
∥
∥Δi–

t Gxt – Δi
tGxt

∥
∥
∥
∥AiΔ

i–
t Gxt – Aip

∥
∥

+ θt
(

t‖γ Vp – μFp‖‖xt – p‖ +
∥
∥(I – A)p

∥
∥‖xt – p‖)

≤ ‖xt – p‖ –
 – θt(γ̄ –  + tτ )


∥
∥Δi–

t Gxt – Δi
tGxt

∥
∥



+ ri,t
∥
∥Δi–

t Gxt – Δi
tGxt

∥
∥
∥
∥AiΔ

i–
t Gxt – Aip

∥
∥

+ θt
(

t‖γ Vp – μFp‖‖xt – p‖ +
∥
∥(I – A)p

∥
∥‖xt – p‖),

which hence yields

 – θt(γ̄ –  + tτ )


∥
∥Δi–

t Gxt – Δi
tGxt

∥
∥



≤ ri,t
∥
∥Δi–

t Gxt – Δi
tGxt

∥
∥
∥
∥AiΔ

i–
t Gxt – Aip

∥
∥

+ θt
(

t‖γ Vp – μFp‖‖xt – p‖ +
∥
∥(I – A)p

∥
∥‖xt – p‖).

Since {ri,t} ⊂ [ai, bi] ⊂ (, ηi), limt→ θt =  and limt→ ‖AiΔ
i–
t Gxt – Aip‖ =  (due to

(.)), we deduce from the boundedness of {xt} and {Δi
tGxt} that

lim
t→

∥
∥Δi–

t Gxt – Δi
tGxt

∥
∥ = , ∀i ∈ {, . . . , N}. (.)

Note that

∥
∥Gxt – ΔN

t Gxt
∥
∥ =

∥
∥Δ

t Gxt – ΔN
t Gxt

∥
∥

≤ ∥
∥Δ

t Gxt – Δ
t Gxt

∥
∥ +

∥
∥Δ

t Gxt – Δ
t Gxt

∥
∥ + · · ·

+
∥
∥ΔN–

t Gxt – ΔN
t Gxt

∥
∥.

Hence, from (.) we get

lim
t→

∥
∥Gxt – ΔN

t Gxt
∥
∥ = . (.)
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Also, observe that

∥
∥xt – ΔN

t xt
∥
∥≤ ‖xt – Gxt‖ +

∥
∥Gxt – ΔN

t Gxt
∥
∥ +

∥
∥ΔN

t Gxt – ΔN
t xt

∥
∥

≤ ‖xt – Gxt‖ +
∥
∥Gxt – ΔN

t Gxt
∥
∥.

So, it follows from (.) and (.) that

lim
t→

∥
∥xt – ΔN

t xt
∥
∥ = . (.)

In addition, it is not hard to find that

‖xt – Sxt‖ ≤ ∥
∥xt – SΔN

t Gxt
∥
∥ +

∥
∥SΔN

t Gxt – SΔN
t xt

∥
∥ +

∥
∥SΔN

t xt – Sxt
∥
∥

≤ ∥
∥xt – SΔN

t Gxt
∥
∥ + ‖Gxt – xt‖ +

∥
∥ΔN

t xt – xt
∥
∥.

Consequently, from (.), (.), and (.) we deduce that

lim
t→

‖xt – Sxt‖ = . (.)

(iii) Let t, t ∈ (, min{, –γ̄

τ–γ l }). Utilizing Proposition .(ii), (v), we deduce that

∥
∥ΔN

t Gxt – ΔN
t Gxt

∥
∥

=
∥
∥T (ΘN ,ϕN )

rN ,t
(I – rN ,tAN )ΔN–

t Gxt – T (ΘN ,ϕN )
rN ,t

(I – rN ,tAN )ΔN–
t Gxt

∥
∥

≤ ∥
∥T (ΘN ,ϕN )

rN ,t
(I – rN ,tAN )ΔN–

t Gxt – T (ΘN ,ϕN )
rN ,t

(I – rN ,tAN )ΔN–
t Gxt

∥
∥

+
∥
∥T (ΘN ,ϕN )

rN ,t
(I – rN ,tAN )ΔN–

t Gxt – T (ΘN ,ϕN )
rN ,t

(I – rN ,tAN )ΔN–
t Gxt

∥
∥

≤ ∥
∥T (ΘN ,ϕN )

rN ,t
(I – rN ,tAN )ΔN–

t Gxt – T (ΘN ,ϕN )
rN ,t

(I – rN ,tAN )ΔN–
t Gxt

∥
∥

+
∥
∥T (ΘN ,ϕN )

rN ,t
(I – rN ,tAN )ΔN–

t Gxt – T (ΘN ,ϕN )
rN ,t

(I – rN ,tAN )ΔN–
t Gxt

∥
∥

+
∥
∥(I – rN ,tAN )ΔN–

t Gxt – (I – rN ,tAN )ΔN–
t Gxt

∥
∥

≤ |rN ,t – rN ,t |
rN ,t

∥
∥T (ΘN ,ϕN )

rN ,t
(I – rN ,tAN )ΔN–

t Gxt – (I – rN ,tAN )ΔN–
t Gxt

∥
∥

+ |rN ,t – rN ,t |
∥
∥ANΔN–

t Gxt
∥
∥ +

∥
∥ΔN–

t Gxt – ΔN–
t Gxt

∥
∥

= |rN ,t – rN ,t |
[
∥
∥ANΔN–

t Gxt
∥
∥ +


rN ,t

∥
∥T (ΘN ,ϕN )

rN ,t
(I – rN ,tAN )ΔN–

t Gxt

– (I – rN ,tAN )ΔN–
t Gxt

∥
∥

]

+
∥
∥ΔN–

t Gxt – ΔN–
t Gxt

∥
∥

≤ · · ·

≤ |rN ,t – rN ,t |
[
∥
∥ANΔN–

t Gxt
∥
∥ +


rN ,t

∥
∥T (ΘN ,ϕN )

rN ,t
(I – rN ,tAN )ΔN–

t Gxt

– (I – rN ,tAN )ΔN–
t Gxt

∥
∥

]

+ · · · + |r,t – r,t |
[
∥
∥AΔ


t Gxt

∥
∥
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+


r,t

∥
∥T (Θ,ϕ)

r,t (I – r,tA)Δ
t Gxt – (I – r,tA)Δ

t Gxt
∥
∥

]

+
∥
∥Δ

t Gxt – Δ
t Gxt

∥
∥

≤ M̃

N
∑

i=

|ri,t – ri,t | + ‖xt – xt‖, (.)

where M̃ >  is a constant such that for each t ∈ (, min{, –γ̄

τ–γ l })

N
∑

i=

[
∥
∥AiΔ

i–
t Gxt

∥
∥ +


ri,t

∥
∥T (Θi ,ϕi)

ri,t
(I – ri,tAi)Δi–

t Gxt – (I – ri,tAi)Δi–
t Gxt

∥
∥

]

≤ M̃.

In terms of (.) we calculate

‖xt – xt‖
≤ ∥
∥(I – θtA)SΔN

t Gxt + θt
(

tγ Vxt + (I – tμF)SΔN
t Gxt

)

– (I – θt A)SΔN
t Gxt – θt

(

tγ Vxt + (I – tμF)SΔN
t Gxt

)∥
∥

≤ ∥
∥(I – θtA)SΔN

t Gxt – (I – θt A)SΔN
t Gxt

∥
∥

+
∥
∥(I – θt A)SΔN

t Gxt – (I – θt A)SΔN
t Gxt

∥
∥

+ |θt – θt |
∥
∥tγ Vxt + (I – tμF)SΔN

t Gxt
∥
∥

+ θt

∥
∥
[

tγ Vxt + (I – tμF)SΔN
t Gxt

]

–
[

tγ Vxt + (I – tμF)SΔN
t Gxt

]∥
∥

≤ |θt – θt |‖A‖∥∥SΔN
t Gxt

∥
∥ + ( – θt γ̄ )

∥
∥SΔN

t Gxt – SΔN
t Gxt

∥
∥

+ |θt – θt |
∥
∥tγ Vxt + (I – tμF)SΔN

t Gxt
∥
∥ + θt

∥
∥(t – t)γ Vxt

+ tγ (Vxt – Vxt ) – (t – t)μFSΔN
t Gxt + (I – tμF)SΔN

t Gxt

– (I – tμF)SΔN
t Gxt

∥
∥

≤ |θt – θt |‖A‖∥∥SΔN
t Gxt

∥
∥ + ( – θt γ̄ )

∥
∥ΔN

t Gxt – ΔN
t Gxt

∥
∥

+ |θt – θt |
∥
∥tγ Vxt + (I – tμF)SΔN

t Gxt
∥
∥ + θt

∥
∥(t – t)γ Vxt

+ tγ (Vxt – Vxt ) – (t – t)μFSΔN
t Gxt + (I – tμF)SΔN

t Gxt

– (I – tμF)SΔN
t Gxt

∥
∥

≤ |θt – θt |‖A‖∥∥SΔN
t Gxt

∥
∥ + ( – θt γ̄ )

[

‖xt – xt‖ + M̃

N
∑

i=

|ri,t – ri,t |
]

+ |θt – θt |
[∥
∥SΔN

t Gxt
∥
∥ + t

(

γ ‖Vxt‖ + μ
∥
∥FSΔN

t Gxt
∥
∥
)]

+ θt

[(

γ ‖Vxt‖ + μ
∥
∥FSΔN

t Gxt
∥
∥
)|t – t| + tγ l‖xt – xt‖

+ ( – tτ )
∥
∥ΔN

t Gxt – ΔN
t Gxt

∥
∥
]

≤ |θt – θt |‖A‖∥∥SΔN
t Gxt

∥
∥ + ( – θt γ̄ )

(

‖xt – xt‖ + M̃

N
∑

i=

|ri,t – ri,t |
)

+ |θt – θt |
(∥
∥SΔN

t Gxt
∥
∥ + γ ‖Vxt‖ + μ

∥
∥FSΔN

t Gxt
∥
∥
)
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+ θt

(

γ ‖Vxt‖ + μ
∥
∥FSΔN

t Gxt
∥
∥
)|t – t| + θt tγ l‖xt – xt‖

+ θt ( – tτ )

(

‖xt – xt‖ + M̃

N
∑

i=

|ri,t – ri,t |
)

.

This immediately implies that

‖xt – xt‖ ≤ ‖A‖‖SΔN
t Gxt‖ + ‖SΔN

t Gxt‖ + γ ‖Vxt‖ + μ‖FSΔN
t Gxt‖

θt (γ̄ –  + t(τ – γ l))
|θt – θt |

+
γ ‖Vxt‖ + μ‖FSΔN

t Gxt‖
γ̄ –  + t(τ – γ l)

|t – t|

+
[ – θt (γ̄ –  + tτ )]M̃

θt (γ̄ –  + t(τ – γ l))

N
∑

i=

|ri,t – ri,t |.

Since θt : (, min{, –γ̄

τ–γ l }) → (,‖A‖–] is locally Lipschitzian, and ri,t : (, min{, –γ̄

τ–γ l }) →
[ai, bi] is locally Lipschitzian for each i = , . . . , N , we conclude that xt : (, min{, –γ̄

τ–γ l }) →
C is locally Lipschitzian.

(iv) From the last inequality in (iii), the result follows immediately. �

We prove the following theorem for strong convergence of the net {xt} as t → , which
guarantees the existence of solutions of the variational inequality (.).

Theorem . Let the net {xt} be defined via (.). If limt→ θt = , then xt converges strongly
to a point x̃ ∈ Ω as t → , which solves the VIP (.). Equivalently, we have PΩ (I – A)x̃ = x̃.

Proof We first show the uniqueness of solutions of the VIP (.), which is indeed a conse-
quence of the strong monotonicity of A–I . In fact, since A is a γ̄ -strongly positive bounded
linear operator with γ̄ ∈ (, ), we know that A – I is (γ̄ – )-strongly monotone with con-
stant γ̄ –  ∈ (, ). Suppose that x̃ ∈ Ω and x̂ ∈ Ω both are solutions to the VIP (.). Then
we have

〈

(A – I)x̃, x̃ – x̂
〉≤  (.)

and

〈

(A – I)x̂, x̂ – x̃
〉≤ . (.)

Adding (.) and (.) yields

〈

(A – I)x̃ – (A – I)x̂, x̃ – x̂
〉≤ .

The strong monotonicity of A – I implies that x̃ = x̂ and the uniqueness is proved.
Next, we prove that xt → x̃ as t → . Observing Fix(T) = Fix(S), from (.), we write,

for given p ∈ Ω ,

xt – p

= xt – wt + wt – p
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= xt – wt + (I – θtA)SΔN
t Gxt + θt

(

tγ Vxt + (I – tμF)SΔN
t Gxt

)

– p

= xt – wt + (I – θtA)
(

SΔN
t Gxt – SΔN

t Gp
)

+ θt
[

tγ Vxt + (I – tμF)SΔN
t Gxt – p

]

+ θt(I – A)p

= xt – wt + (I – θtA)
(

SΔN
t Gxt – SΔN

t Gp
)

+ θt
[

t(γ Vxt – μFp) + (I – tμF)SΔN
t Gxt – (I – tμF)p

]

+ θt(I – A)p,

where wt = (I – θtA)SΔN
t Gxt + θt(tγ Vxt + (I – tμF)SΔN

t Gxt). Then, by Proposition .(i),
we have

‖xt – p‖

= 〈xt – wt , xt – p〉 +
〈

(I – θtA)(SΔN
t Gxt – SΔN

t Gp, xt – p
〉

+ θt
[

t〈γ Vxt – μFp, xt – p〉 +
〈

(I – tμF)SΔN
t Gxt – (I – tμF)p, xt – p

〉]

+ θt
〈

(I – A)p, xt – p
〉

≤ ( – θt γ̄ )‖xt – p‖ + θt
[

( – tτ )‖xt – p‖ + tγ l‖xt – p‖

+ t
〈

(γ V – μF)p, xt – p
〉]

+ θt
〈

(I – A)p, xt – p
〉

=
[

 – θt
(

γ̄ –  + t(τ – γ l)
)]‖xt – p‖ + θt

(

t
〈

(γ V – μF)p, xt – p
〉

+
〈

(I – A)p, xt – p
〉)

.

Therefore,

‖xt – p‖ ≤ 
γ̄ –  + t(τ – γ l)

(

t
〈

(γ V – μF)p, xt – p
〉

+
〈

(I – A)p, xt – p
〉)

. (.)

Since the net {xt}t∈(,min{, –γ̄
τ–γ l })

is bounded (due to Proposition .(i)), we know that if {tn}
is a subsequence in (, min{, –γ̄

τ–γ l }) such that tn →  and xtn ⇀ x∗, then from (.), we
obtain xtn → x∗. Let us show that x∗ ∈ Ω . Indeed, by Proposition .(ii), we know that
limn→∞ ‖xtn – Sxtn‖ =  and limn→∞ ‖xtn – Gxtn‖ = . Hence, according to Lemma .,
we get x∗ ∈ Fix(S) ∩ Ξ . It is clear from the definition of S that x∗ ∈ Fix(T) ∩ Ξ . Next we
prove that x∗ ∈⋂N

m= GMEP(Θm,ϕm,Am). As a matter of fact, utilizing (.) and (.),
we obtain from xtn → x∗, ytn = Gxtn → x∗ and Δm

tn ytn → x∗ for each m = , . . . , N . Since
Δm

tn ytn = T (Θm ,ϕm)
rm,tn (I – rm,tnAm)Δm–

tn ytn , n ≥ , m ∈ {, . . . , N}, we have

 ≤ Θm
(

Δm
tn ytn , y

)

+ ϕm(y) – ϕm
(

Δm
tn ytn

)

+
〈

AmΔm–
tn ytn , y – Δm

tn ytn

〉

+


rm,tn

〈

y – Δm
tn ytn ,Δm

tn ytn – Δm–
tn ytn

〉

.

By (A), we have

Θm
(

y,Δm
tn ytn

) ≤ ϕm(y) – ϕm
(

Δm
tn ytn

)

+
〈

AmΔm–
tn ytn , y – Δm

tn ytn

〉

+


rm,tn

〈

y – Δm
tn ytn ,Δm

tn ytn – Δm–
tn ytn

〉

.
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Let zt = ty + ( – t)x∗ for all t ∈ (, ] and y ∈ C. This implies that zt ∈ C. Then we have

〈

zt – Δm
tn ytn ,Amzt

〉

≥ ϕm
(

Δm
tn ytn

)

– ϕm(zt) +
〈

zt – Δm
tn ytn ,Amzt

〉

–
〈

zt – Δm
tn ytn ,AmΔm–

tn ytn

〉

–
〈

zt – Δm
tn ytn ,

Δm
tn ytn – Δm–

tn ytn

rm,tn

〉

+ Θm
(

zt ,Δm
tn ytn

)

= ϕm
(

Δm
tn ytn

)

– ϕm(zt) +
〈

zt – Δm
tn ytn ,Amzt – AmΔm

tn ytn

〉

+
〈

zt – Δm
tn ytn ,AmΔm

tn ytn – AmΔm–
tn ytn

〉

–
〈

zt – Δm
tn ytn ,

Δm
tn ytn – Δm–

tn ytn

rm,tn

〉

+ Θm
(

zt ,Δm
tn ytn

)

.

By (.), we have ‖AmΔm
tn ytn – AmΔm–

tn ytn‖ →  as n → ∞. Furthermore, by the mono-
tonicity of Am, we obtain 〈zt – Δm

tn ytn ,Amzt – AmΔm
tn ytn〉 ≥ . Then, by (A), we obtain

〈

zt – x∗,Amzt
〉≥ ϕm

(

x∗) – ϕm(zt) + Θm
(

zt , x∗).

Utilizing (A), (A), and the last inequality, we obtain

 = Θm(zt , zt) + ϕm(zt) – ϕm(zt)

≤ tΘm(zt , y) + ( – t)Θm
(

zt , x∗) + tϕm(y) + ( – t)ϕm
(

x∗) – ϕm(zt)

≤ t
[

Θm(zt , y) + ϕm(y) – ϕm(zt)
]

+ ( – t)
〈

zt – x∗,Amzt
〉

= t
[

Θm(zt , y) + ϕm(y) – ϕm(zt)
]

+ ( – t)t
〈

y – x∗,Amzt
〉

,

and hence

 ≤ Θm(zt , y) + ϕm(y) – ϕm(zt) + ( – t)
〈

y – x∗,Amzt
〉

.

Letting t → , we have, for each y ∈ C,

 ≤ Θm
(

x∗, y
)

+ ϕm(y) – ϕm
(

x∗) +
〈

y – x∗,Amx∗〉.

This implies that x∗ ∈ GMEP(Θm,ϕm,Am) and hence x∗ ∈ ⋂N
m= GMEP(Θm,ϕm,Am).

Thus, x∗ ∈⋂N
m= GMEP(Θm,ϕm,Am) ∩ Fix(T) ∩ Ξ .

Next, we prove that xt → x̃ as t → . First, let us assert that x∗ is a solution of the VIP
(.). As a matter of fact, since

xt = xt – wt + (I – θtA)SΔN
t Gxt + θt

(

tγ Vxt + (I – tμF)SΔN
t Gxt

)

,

we have

xt – SΔN
t Gxt = xt – wt + θt(I – A)SΔN

t Gxt + θtt
(

γ Vxt – μFSΔN
t Gxt

)

.

Since ΔN
t is nonexpansive (due to (.) and Proposition .(ii)), G is nonexpansive (due to

Proposition .) and S is nonexpansive (due to Lemma .), I – SΔN
t G is monotone. So,
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from the monotonicity of I – SΔN
t G, it follows that, for p ∈ Ω ,

 ≤ 〈(

I – SΔN
t G

)

xt –
(

I – SΔN
t G

)

p, xt – p
〉

=
〈(

I – SΔN
t G

)

xt , xt – p
〉

= 〈xt – wt , xt – p〉 + θt
〈

(I – A)SΔN
t Gxt , xt – p

〉

+ θtt
〈

γ Vxt – μFSΔN
t Gxt , xt – p

〉

≤ θt
〈

(I – A)SΔN
t Gxt , xt – p

〉

+ θtt
〈

γ Vxt – μFSΔN
t Gxt , xt – p

〉

= θt
〈

(I – A)xt , xt – p
〉

+ θt
〈

(I – A)
(

SΔN
t G – I

)

xt , xt – p
〉

+ θtt
〈

γ Vxt – μFSΔN
t Gxt , xt – p

〉

.

This implies that

〈

(A – I)xt , xt – p
〉≤ 〈

(I – A)
(

SΔN
t G – I

)

xt , xt – p
〉

+ t
〈

γ Vxt – μFSΔN
t Gxt , xt – p

〉

. (.)

Now, replacing t in (.) with tn and letting n → ∞, noticing the boundedness of {γ Vxtn –
μFSΔN

tn Gxtn} and the fact that (I –A)(SΔN
tn G–I)xtn →  as n → ∞ (due to (.)), we obtain

〈

(A – I)x∗, x∗ – p
〉≤ .

That is, x∗ ∈ Ω is a solution of the VIP (.); hence x∗ = x̃ by uniqueness. In summary, we
have proven that each cluster point of {xt} (as t → ) equals x̃. Consequently, xt → x̃ as
t → .

The VIP (.) can be rewritten as

〈

(I – A)x̃ – x̃, x̃ – p
〉≥ , ∀p ∈ Ω .

Recalling Proposition .(i), the last inequality is equivalent to the fixed point equation

PΩ (I – A)x̃ = x̃. �

Taking F = 
 I , μ = , and γ =  in Theorem ., we get

Corollary . Let {xt} be defined by

xt = PC
[

(I – θtA)SΔN
t Gxt + θt

(

tVxt + ( – t)SΔN
t Gxt

)]

.

If limt→ θt = , then {xt} converges strongly as t →  to a point x̃ ∈ Ω , which is the unique
solution of the VIP (.).

First, we prove the following result in order to establish the strong convergence of the
sequence {xn} generated by the composite explicit relaxed extragradient-like scheme (.).

Theorem . Let {xn} be the sequence generated by the explicit scheme (.), where {αn}
and {βn} satisfy the following condition:

(C) {αn} ⊂ [, ], {βn} ⊂ (, ] and αn → , βn →  as n → ∞.
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Let LIM be a Banach limit. Then

LIMn
〈

(A – I)x̃, x̃ – xn
〉≤ ,

where x̃ = limt→+ xt with xt being defined by

xt = PC
[

(I – θtA)SΔN Gxt + θt
(

tγ Vxt + (I – tμF)SΔN Gxt
)]

, (.)

where S, G,ΔN : C → C are defined by Sx = λx + ( –λ)Tx, Gx = TΦ
ν (I –νF)TΦ

ν (I –νF)x
and ΔN x = T (ΘN ,ϕN )

rN (I – rNAN ) · · ·T (Θ,ϕ)
r (I – rA)x with  ≤ k ≤ λ <  and ri ∈ [ai, bi] ⊂

(, ηi) for each i = , . . . , N .

Proof First, note that from the condition (C), without loss of generality, we may assume
that  < βn ≤ ‖A‖– for all n ≥ .

Let {xt} be the net generated by (.). Since ΔN is a nonexpansive self-mapping on C,
by Theorem . with ΔN

t = ΔN , there exists limt→ xt ∈ Ω . Denote it by x̃. Moreover, x̃ is
the unique solution of the VIP (.). From Proposition .(i) with ΔN

t = ΔN , we know that
{xt} is bounded and so are the nets {Vxt}, {ΔN Gxt}, and {FSΔN Gxt}.

First of all, let us show that {xn} is bounded. To this end, take p ∈ Ω . Then we get

‖yn – p‖ =
∥
∥αnγ Vxn + (I – αnμF)SΔN

n Gxn – p
∥
∥

=
∥
∥αn(γ Vxn – μFp) + (I – αnμF)SΔN

n Gxn – (I – αnμF)SΔN
n Gp

∥
∥

≤ αnγ l‖xn – p‖ + αn
∥
∥(γ V – μF)p

∥
∥ + ( – αnτ )‖xn – p‖

=
(

 – αn(τ – γ l)
)‖xn – p‖ + αn

∥
∥(γ V – μF)p

∥
∥,

together with Lemma ., implies that

‖xn+ – p‖ =
∥
∥PC

[

(I – βnA)SΔN
n Gxn + βnyn

]

– p
∥
∥

≤ ∥
∥(I – βnA)SΔN

n Gxn + βnyn – p
∥
∥

=
∥
∥(I – βnA)SΔN

n Gxn – (I – βnA)SΔN
n Gp

+ βn(yn – p) + βn(I – A)p
∥
∥

≤ ∥
∥(I – βnA)SΔN

n Gxn – (I – βnA)SΔN
n Gp

∥
∥

+ βn‖yn – p‖ + βn‖I – A‖‖p‖
≤ ( – βnγ̄ )‖xn – p‖ + βn

[(

 – αn(τ – γ l)
)‖xn – p‖

+ αn
∥
∥(γ V – μF)p

∥
∥
]

+ βn‖I – A‖‖p‖
≤ (

 – βn(γ̄ – )
)‖xn – p‖ + βn

(∥
∥(γ V – μF)p

∥
∥ + ‖I – A‖‖p‖)

=
(

 – βn(γ̄ – )
)‖xn – p‖ + βn(γ̄ – )

‖(γ V – μF)p‖ + ‖I – A‖‖p‖
γ̄ – 

≤ max

{

‖xn – p‖,
‖(γ V – μF)p‖ + ‖I – A‖‖p‖

γ̄ – 

}

.
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By induction

‖xn – p‖ ≤ max

{

‖x – p‖,
‖(γ V – μF)p‖ + ‖I – A‖‖p‖

γ̄ – 

}

, ∀n ≥ .

This implies that {xn} is bounded and so are {Vxn}, {ΔN
n Gxn}, {FSΔN

n Gxn}, and {yn}. Thus,
utilizing the control condition (C), we get

∥
∥xn+ – SΔN

n Gxn
∥
∥ =

∥
∥PC

[

(I – βnA)SΔN
n Gxn + βnyn

]

– SΔN
n Gxn

∥
∥

≤ ∥
∥(I – βnA)SΔN

n Gxn + βnyn – SΔN
n Gxn

∥
∥

= βn
∥
∥yn – ASΔN

n Gxn
∥
∥→  as n → ∞.

Utilizing similar arguments to those of (.), we have

∥
∥ΔN

n Gxn – ΔN Gxn
∥
∥≤ M̃

N
∑

i=

|ri,n – ri|,

where supn≥{
∑N

i=[‖AiΔ
i–
n Gxn‖+ 

ri,n
‖T (Θi ,ϕi)

ri,n (I –ri,nAi)Δi–
n Gxn –(I –ri,nAi)Δi–

n Gxn‖]} ≤
M̃ for some M̃ > . Consequently, it is not hard to find that

∥
∥SΔN Gxt – xn+

∥
∥

≤ ∥
∥SΔN Gxt – SΔN Gxn

∥
∥ +

∥
∥SΔN Gxn – SΔN

n Gxn
∥
∥ +

∥
∥SΔN

n Gxn – xn+
∥
∥

≤ ‖xt – xn‖ +
∥
∥ΔN Gxn – ΔN

n Gxn
∥
∥ +

∥
∥SΔN

n Gxn – xn+
∥
∥

≤ ‖xt – xn‖ + M̃

N
∑

i=

|ri,n – ri| +
∥
∥SΔN

n Gxn – xn+
∥
∥

= ‖xt – xn‖ + εn, (.)

where εn = M̃
∑N

i= |ri,n – ri| + ‖xn+ – SΔN
n Gxn‖ →  as n → ∞. Also, by observing that

A is strongly positive, we have

〈Axt – Axn, xt – xn〉 =
〈

A(xt – xn), xt – xn
〉≥ γ̄ ‖xt – xn‖. (.)

For simplicity, we write wt = (I – θtA)SΔN Gxt + θt(tγ Vxt + (I – tμF)SΔN Gxt). Then we
obtain xt = PCwt and

xt – xn+ = xt – wt + (I – θtA)SΔN Gxt + θt
(

tγ Vxt + (I – tμF)SΔN Gxt
)

– xn+

= (I – θtA)SΔN Gxt – (I – θtA)xn+ + θt
(

tγ Vxt

+ (I – tμF)SΔN Gxt – Axn+
)

+ xt – wt .

Applying Lemma ., we have

‖xt – xn+‖

≤ ∥
∥(I – θtA)SΔN Gxt – (I – θtA)xn+

∥
∥
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+ θt
〈

SΔN Gxt – t
(

μFSΔN Gxt – γ Vxt
)

– Axn+, xt – xn+
〉

+ 〈xt – wt , xt – xn+〉
≤ ∥
∥(I – θtA)SΔN Gxt – (I – θtA)xn+

∥
∥



+ θt
〈

SΔN Gxt – t
(

μFSΔN Gxt – γ Vxt
)

– Axn+, xt – xn+
〉

≤ ( – θt γ̄ )∥∥SΔN Gxt – xn+
∥
∥

 + θt
〈

SΔN Gxt – xt , xt – xn+
〉

– θtt
〈

μFSΔN Gxt – γ Vxt , xt – xn+
〉

+ θt〈xt – Axn+, xt – xn+〉. (.)

Using (.) and (.) in (.), we obtain

‖xt – xn+‖

≤ ( – θt γ̄ )∥∥SΔN Gxt – xn+
∥
∥

 + θt
〈

SΔN Gxt – xt , xt – xn+
〉

+ θtt
〈

γ Vxt – μFSΔN Gxt , xt – xn+
〉

+ θt〈xt – Axn+, xt – xn+〉
≤ ( – θt γ̄ )(‖xt – xn‖ + εn

) + θt
∥
∥SΔN Gxt – xt

∥
∥‖xt – xn+‖

+ θtt
∥
∥γ Vxt – μFSΔN Gxt

∥
∥‖xt – xn+‖ + θt〈xt – Axn+, xt – xn+〉

=
(

θ
t γ̄ – θt

)

γ̄ ‖xt – xn‖ + ‖xt – xn‖ + ( – θt γ̄ )(‖xt – xn‖εn + ε
n
)

+ θt
∥
∥SΔN Gxt – xt

∥
∥‖xt – xn+‖ + θtt

∥
∥γ Vxt – μFSΔN Gxt

∥
∥‖xt – xn+‖

+ θt〈xt – Axn+, xt – xn+〉
≤ (

θ
t γ̄ – θt

)〈Axt – Axn, xt – xn〉 + ‖xt – xn‖ + ( – θt γ̄ )(‖xt – xn‖εn + ε
n
)

+ θt
∥
∥SΔN Gxt – xt

∥
∥‖xt – xn+‖ + θtt

∥
∥γ Vxt – μFSΔN Gxt

∥
∥‖xt – xn+‖

+ θt〈xt – Axn+, xt – xn+〉
= θ

t γ̄ 〈Axt – Axn, xt – xn〉 + ‖xt – xn‖ + ( – θt γ̄ )(‖xt – xn‖εn + ε
n
)

+ θt
∥
∥SΔN Gxt – xt

∥
∥‖xt – xn+‖ + θtt

∥
∥γ Vxt – μFSΔN Gxt

∥
∥‖xt – xn+‖

+ θt
[〈xt – Axn+, xt – xn+〉 – 〈Axt – Axn, xt – xn〉

]

= θ
t γ̄
〈

A(xt – xn), xt – xn
〉

+ ‖xt – xn‖ + ( – θt γ̄ )(‖xt – xn‖εn + ε
n
)

+ θt
∥
∥SΔN Gxt – xt

∥
∥‖xt – xn+‖ + θtt

∥
∥γ Vxt – μFSΔN Gxt

∥
∥‖xt – xn+‖

+ θt
[〈

(I – A)xt , xt – xn+
〉

+
〈

A(xt – xn+), xt – xn+
〉

–
〈

A(xt – xn), xt – xn
〉]

. (.)

Applying the Banach limit LIM to (.), from εn →  we have

LIMn ‖xt – xn+‖

≤ θ
t γ̄ LIMn

〈

A(xt – xn), xt – xn
〉

+ LIMn ‖xt – xn‖

+ θt
∥
∥SΔN Gxt – xt

∥
∥LIMn ‖xt – xn+‖

+ θtt
∥
∥γ Vxt – μFSΔN Gxt

∥
∥LIMn ‖xt – xn+‖

+ θt
[

LIMn
〈

(I – A)xt , xt – xn+
〉

+ LIMn
〈

A(xt – xn+), xt – xn+
〉

– LIMn
〈

A(xt – xn), xt – xn
〉]

. (.)
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Utilizing the property LIMn an = LIMn an+ of the Banach limit in (.), we obtain

LIMn
〈

(A – I)xt , xt – xn
〉

= LIMn
〈

(A – I)xt , xt – xn+
〉

≤ θt γ̄


LIMn

〈

A(xt – xn), xt – xn
〉

+


θt

[

LIMn ‖xt – xn‖ – LIMn ‖xt – xn+‖]

+
∥
∥SΔN Gxt – xt

∥
∥LIMn ‖xt – xn‖ + t

∥
∥γ Vxt – μFSΔN Gxt

∥
∥LIMn ‖xt – xn‖

+ LIMn
〈

A(xt – xn+), xt – xn+
〉

– LIMn
〈

A(xt – xn), xt – xn
〉

≤ θt γ̄


LIMn

〈

A(xt – xn), xt – xn
〉

+
∥
∥SΔN Gxt – xt

∥
∥LIMn ‖xt – xn‖

+ t
∥
∥γ Vxt – μFSΔN Gxt

∥
∥LIMn ‖xt – xn‖. (.)

Since as t → ,

θt
〈

A(xt – xn), xt – xn
〉≤ θt‖A‖‖xt – xn‖ ≤ θtK → , (.)

where ‖A‖‖xt – xn‖ ≤ K ,

∥
∥SΔN Gxt – xt

∥
∥→ 

(

see (.)
)

and

t
∥
∥γ Vxt – μFSΔN Gxt

∥
∥→  as t → ,

(.)

we conclude from (.)-(.) that

LIMn
〈

(A – I)x̃, x̃ – xn
〉

≤ lim sup
t→

LIMn
〈

(A – I)xt , xt – xn
〉

≤ lim sup
t→

θt γ̄


LIMn

〈

A(xt – xn), xt – xn
〉

+ lim sup
t→

∥
∥SΔN Gxt – xt

∥
∥LIMn ‖xt – xn‖

+ lim sup
t→

t
∥
∥γ Vxt – μFSΔN Gxt

∥
∥LIMn ‖xt – xn‖

= .

This completes the proof. �

Now, using Theorem ., we establish the strong convergence of the sequence {xn} gen-
erated by the composite explicit relaxed extragradient-like scheme (.) to a point x̃ ∈ Ω ,
which is also the unique solution of the VIP (.).

Theorem . Let {xn} be the sequence generated by the explicit scheme (.), where {αn}
and {βn} satisfy the following conditions:

(C) {αn} ⊂ [, ], {βn} ⊂ (, ], and αn → , βn →  as n → ∞;
(C)

∑∞
n= βn = ∞.

If {xn} is weakly asymptotically regular (i.e., xn+ – xn ⇀ ), then xn converges strongly to a
point x̃ ∈ Ω , which is the unique solution of the VIP (.).
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Proof First, note that from the condition (C), without loss of generality, we may assume
that αnτ <  and βn(γ̄ –)

–βn
<  for all n ≥ .

Let xt be defined by (.), that is,

xt = PC
[

(I – θtA)SΔN Gxt + θt(SΔN Gxt – t
(

μFSΔN Gxt – γ Vxt
)]

,

for t ∈ (, min{, –γ̄

τ–γ l }), where Sx = λx + ( – λ)Tx for  ≤ k ≤ λ < , Gx = TΦ
ν (I –

νF)TΦ
ν (I –νF)x for νj ∈ (, ζj), j = , , ΔN x = T (ΘN ,ϕN )

rN (I – rNAN ) · · ·T (Θ,ϕ)
r (I – rA)x

for ri ∈ [ai, bi] ⊂ (, ηi), i = , . . . , N , and limt→ xt := x̃ ∈ Ω (due to Theorem .). Then x̃
is the unique solution of the VIP (.).

We divide the rest of the proof into several steps.
Step . We see that

‖xn – p‖ ≤ max

{

‖x – p‖,
‖(γ V – μF)p‖ + ‖I – A‖‖p‖

γ̄ – 

}

, ∀n ≥ ,

for all p ∈ Ω as in the proof of Theorem .. Hence {xn} is bounded and so are {Vxn},
{ΔN Gxn}, {ΔN

n Gxn}, {FSΔN
n Gxn}, and {yn}.

Step . We show that lim supn→∞〈(I – A)x̃, xn – x̃〉 ≤ . To this end, put

an :=
〈

(A – I)x̃, x̃ – xn
〉

, ∀n ≥ .

Then, by Theorem ., we get LIMn an ≤  for any Banach limit LIM. Since {xn} is
bounded, there exists a subsequence {xnj} of {xn} such that

lim sup
n→∞

(an+ – an) = lim sup
j→∞

(anj+ – anj )

and xnj ⇀ v ∈ H . This implies that xnj+ ⇀ v since {xn} is weakly asymptotically regular.
Therefore, we have

w – lim
j→∞(x̃ – xnj+) = w – lim

j→∞(x̃ – xnj ) = (x̃ – v),

and so

lim sup
n→∞

(an+ – an) = lim
j→∞

〈

(A – I)x̃, (x̃ – xnj+) – (x̃ – xnj )
〉

= .

Then, by Lemma ., we obtain lim supn→∞ an ≤ , that is,

lim sup
n→∞

〈

(I – A)x̃, xn – x̃
〉

= lim sup
n→∞

〈

(A – I)x̃, x̃ – xn
〉≤ .

Step . We show that limn→∞ ‖xn – x̃‖ = . Indeed, for simplicity, we write wn = (I –
βnA)SΔN

n Gxn + βnyn for all n ≥ . Then xn+ = PCwn. Utilizing (.) and SΔN
n Gx̃ = x̃, we

have

yn – x̃ = (I – αnμF)SΔN
n Gxn – (I – αnμF)SΔN

n Gx̃ + αn(γ Vxn – μFx̃)
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and

xn+ – x̃ = xn+ – wn + (I – βnA)
(

SΔN
n Gxn – SΔN

n Gx̃
)

+ βn(yn – x̃) + βn(I – A)x̃.

Applying Lemmas ., ., and ., we obtain

‖yn – x̃‖ =
∥
∥(I – αnμF)SΔN

n Gxn – (I – αnμF)SΔN
n Gx̃ + αn(γ Vxn – μFx̃)

∥
∥



≤ ∥
∥(I – αnμF)SΔN

n Gxn – (I – αnμF)SΔN
n Gx̃

∥
∥



+ αn〈γ Vxn – μFx̃, yn – x̃〉
≤ ( – αnτ )‖xn – x̃‖ + αn‖γ Vxn – μFx̃‖‖yn – x̃‖
≤ ‖xn – x̃‖ + αn‖γ Vxn – μFx̃‖‖yn – x̃‖,

and hence

‖xn+ – x̃‖

=
∥
∥(I – βnA)

(

SΔN
n Gxn – SΔN

n Gx̃
)

+ βn(yn – x̃) + βn(I – A)x̃ + xn+ – wn
∥
∥



≤ ∥
∥(I – βnA)

(

SΔN
n Gxn – SΔN

n Gx̃
)∥
∥

 + βn〈yn – x̃, xn+ – x̃〉
+ βn

〈

(I – A)x̃, xn+ – x̃
〉

+ 〈xn+ – wn, xn+ – x̃〉
≤ ∥
∥(I – βnA)

(

SΔN
n Gxn – SΔN

n Gx̃
)∥
∥

 + βn〈yn – x̃, xn+ – x̃〉
+ βn

〈

(I – A)x̃, xn+ – x̃
〉

≤ ( – βnγ̄ )‖xn – x̃‖ + βn‖yn – x̃‖‖xn+ – x̃‖ + βn
〈

(I – A)x̃, xn+ – x̃
〉

≤ ( – βnγ̄ )‖xn – x̃‖ + βn
(‖yn – x̃‖ + ‖xn+ – x̃‖) + βn

〈

(I – A)x̃, xn+ – x̃
〉

≤ ( – βnγ̄ )‖xn – x̃‖ + βn
[‖xn – x̃‖ + αn‖γ Vxn – μFx̃‖‖yn – x̃‖]

+ βn‖xn+ – x̃‖ + βn
〈

(I – A)x̃, xn+ – x̃
〉

=
[

( – βnγ̄ ) + βn
]‖xn – x̃‖ + αnβn‖γ Vxn – μFx̃‖‖yn – x̃‖

+ βn‖xn+ – x̃‖ + βn
〈

(I – A)x̃, xn+ – x̃
〉

. (.)

It then follows from (.) that

‖xn+ – x̃‖ ≤ ( – βnγ̄ ) + βn

 – βn
‖xn – x̃‖ +

βn

 – βn

[

αn‖γ Vxn – μFx̃‖‖yn – x̃‖

+ 
〈

(I – A)x̃, xn+ – x̃
〉]

=
(

 –
βn(γ̄ – )

 – βn

)

‖xn – x̃‖

+
βn(γ̄ – )

 – βn
· 

(γ̄ – )
[

αn‖γ Vxn – μFx̃‖‖yn – x̃‖

+ βnγ̄
‖xn – x̃‖ + 

〈

(I – A)x̃, xn+ – x̃
〉]

= ( – ωn)‖xn – x̃‖ + ωnδn,
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where ωn = βn(γ̄ –)
–βn

and

δn =


(γ̄ – )
[

αn‖γ Vxn – μFx̃‖‖yn – x̃‖ + βnγ̄
‖xn – x̃‖ + 

〈

(I – A)x̃, xn+ – x̃
〉]

.

It can be readily seen from Step  and conditions (C) and (C) that ωn → ,
∑∞

n= ωn = ∞
and lim supn→∞ δn ≤ . By Lemma . with rn = , we conclude that limn→∞ ‖xn – x̃‖ = .
This completes the proof. �

Corollary . Let {xn} be the sequence generated by the explicit scheme (.). Assume that
the sequences {αn} and {βn} satisfy the conditions (C) and (C) in Theorem .. If {xn} is
asymptotically regular (i.e., xn+ – xn → ), then {xn} converges strongly to a point x̃ ∈ Ω ,
which is the unique solution of the VIP (.).

Putting μ = , F = 
 I , and γ =  in Theorem ., we obtain the following.

Corollary . Let {xn} be generated by the following iterative scheme:

{

yn = αnVxn + ( – αn)SΔN
n Gxn,

xn+ = PC[(I – βnA)SΔN
n Gxn + βnyn], ∀n ≥ .

Assume that the sequences {αn} and {βn} satisfy the conditions (C) and (C) in Theo-
rem .. If {xn} is weakly asymptotically regular (i.e., xn+ – xn ⇀ ), then {xn} converges
strongly to a point x̃ ∈ Ω , which is the unique solution of the VIP (.).

Putting αn = , ∀n ≥  in Corollary ., we get the following.

Corollary . Let {xn} be generated by the following iterative scheme:

xn+ = PC
[(

I – βn(A – I)
)

SΔN
n Gxn

]

, ∀n ≥ .

Assume that the sequence {βn} satisfies the conditions (C) and (C) in Theorem . with
αn = , ∀n ≥ . If {xn} is weakly asymptotically regular (i.e., xn+ – xn ⇀ ), then {xn} con-
verges strongly to a point x̃ ∈ Ω , which is the unique solution of the VIP (.).

Remark . If {αn}, {βn} in Corollary . and {ri,n}N
i= in ΔN

n satisfy conditions (C) and
(C)

∑∞
n= |αn+ – αn| < ∞ and

∑∞
n= |βn+ – βn| < ∞; or

(C)
∑∞

n= |αn+ – αn| < ∞ and limn→∞ βn
βn+

=  or, equivalently, limn→∞ αn–αn+
αn+

=  and
limn→∞ βn–βn+

βn+
= ; or,

(C)
∑∞

n= |αn+ – αn| < ∞ and |βn+ – βn| ≤ o(βn+) + σn,
∑∞

n= σn < ∞ (the perturbed
control condition);

(C)
∑∞

n= |ri,n+ – ri,n| < ∞ for each i = , . . . , N ,
then the sequence {xn} generated by (.) is asymptotically regular. Now we give only the
proof in the case when {αn}, {βn}, and {ri,n}N

i= satisfy the conditions (C), (C), and (C).
By Step  in the proof of Theorem ., there exists a constant M̃ >  such that for all n ≥ ,
μ‖FSΔN

n Gxn‖ + γ ‖Vxn‖ ≤ M̃, ‖A‖‖SΔN
n Gxn‖ + ‖yn‖ ≤ M̃, and

N
∑

i=

[
∥
∥AiΔ

i–
n Gxn

∥
∥ +


ri,n

∥
∥T (Θi ,ϕi)

ri,n
(I – ri,nAi)Δi–

n Gxn – (I – ri,nAi)Δi–
n Gxn

∥
∥

]

≤ M̃.
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Utilizing similar arguments to those of (.), we obtain

∥
∥ΔN

n Gxn – ΔN
n–Gxn–

∥
∥≤ M̃

N
∑

i=

|ri,n – ri,n–| + ‖xn – xn–‖.

So, we obtain, for all n ≥ ,

‖yn – yn–‖
=
∥
∥αnγ (Vxn – Vxn–) + γ (αn – αn–)Vxn–

+ (I – αnμF)SΔN
n Gxn – (I – αnμF)SΔN

n–Gxn–

+ μ(αn – αn–)FSΔN
n–Gxn–

∥
∥

≤ αnγ l‖xn – xn–‖ + ( – αnτ )
∥
∥ΔN

n Gxn – ΔN
n–Gxn–

∥
∥

+ |αn – αn–|
(

γ ‖Vxn–‖ + μ
∥
∥FSΔN

n–Gxn–
∥
∥
)

≤ αnγ l‖xn – xn–‖ + ( – αnτ )

[

‖xn – xn–‖ + M̃

N
∑

i=

|ri,n – ri,n–|
]

+ |αn – αn–|
(

γ ‖Vxn–‖ + μ
∥
∥FSΔN

n–Gxn–
∥
∥
)

≤ (

 – αn(τ – γ l)
)‖xn – xn–‖ +

( N
∑

i=

|ri,n – ri,n–| + |αn – αn–|
)

M̃,

and hence

‖xn+ – xn‖
≤ ∥
∥(I – βnA)SΔN

n Gxn + βnyn – (I – βn–A)SΔN
n–Gxn– – βn–yn–

∥
∥

≤ ∥
∥(I – βnA)

(

SΔN
n Gxn – SΔN

n–Gxn–
)∥
∥

+ |βn – βn–|‖A‖∥∥SΔN
n–Gxn–

∥
∥ + βn‖yn – yn–‖ + |βn – βn–|‖yn–‖

≤ ( – βnγ̄ )
∥
∥SΔN

n Gxn – SΔN
n–Gxn–

∥
∥

+ βn

[

(

 – αn(τ – γ l)
)‖xn – xn–‖ +

( N
∑

i=

|ri,n – ri,n–| + |αn – αn–|
)

M̃

]

+ |βn – βn–|
(‖A‖∥∥SΔN

n–Gxn–
∥
∥ + ‖yn–‖

)

≤ ( – βnγ̄ )

[

‖xn – xn–‖ + M̃

N
∑

i=

|ri,n – ri,n–|
]

+ βn

[

(

 – αn(τ – γ l)
)‖xn – xn–‖

+

( N
∑

i=

|ri,n – ri,n–| + |αn – αn–|
)

M̃

]

+ |βn – βn–|M̃

≤ ( – βnγ̄ )

[

‖xn – xn–‖ +

( N
∑

i=

|ri,n – ri,n–| + |αn – αn–|
)

M̃

]
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+ βn

[

‖xn – xn–‖ +

( N
∑

i=

|ri,n – ri,n–| + |αn – αn–|
)

M̃

]

+ |βn – βn–|M̃

=
(

 – βn(γ̄ – )
)

[

‖xn – xn–‖ +

( N
∑

i=

|ri,n – ri,n–| + |αn – αn–|
)

M̃

]

+ |βn – βn–|M̃

≤ (

 – βn(γ̄ – )
)‖xn – xn–‖ +

( N
∑

i=

|ri,n – ri,n–| + |αn – αn–|
)

M̃

+
(

o(βn) + σn–
)

M̃. (.)

By taking an+ = ‖xn+ – xn‖, ωn = βn(γ̄ – ), ωnδn = M̃o(βn) and rn = (
∑N

i=|ri,n – ri,n–| +
|αn – αn–| + σn–)M̃, from (.) we have

an+ ≤ ( – ωn)an + ωnδn + rn.

Consequently, utilizing the conditions (C), (C), (C), and Lemma ., we obtain

lim
n→∞‖xn+ – xn‖ = .

In view of this observation, we have the following.

Corollary . Let {xn} be the sequence generated by the explicit scheme (.), where the
sequences {αn}, {βn}, and {ri,n}N

i= satisfy the conditions (C), (C), (C), and (C) (or the
conditions (C), (C), (C), and (C), or the conditions (C), (C), (C), and (C)). Then
{xn} converges strongly to a point x̃ ∈ Ω , which is the unique solution of the VIP (.).

4 Applications
Let C be a nonempty, closed, and convex subset of a real Hilbert space H . For a given
nonlinear mapping A : C → H , we consider the variational inequality problem (VIP) of
finding x∗ ∈ C such that

〈

Ax∗, y – x∗〉≥ , ∀y ∈ C. (.)

We will denote by VI(C,A) the set of solutions of the VIP (.).
Recall that if u is a point in C, then the following relation holds:

u ∈ VI(C,A) ⇔ u = PC(I – λA)u, λ > .

In the meantime, it is easy to see that the following relation holds:

SVI (.) with F =  ⇔ VIP (.) with A = F. (.)

An operator A : C → H is said to be an α-inverse strongly monotone operator if there
exists a constant α >  such that

〈Ax – Ay, x – y〉 ≥ α‖Ax – Ay‖, ∀x, y ∈ C.
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As an example, we recall that the α-inverse strongly monotone operators are firmly non-
expansive mappings if α ≥  and that every α-inverse strongly monotone operator is also

α

-Lipschitz-continuous (see []).
Let us observe also that, if A is α-inverse strongly monotone, the mappings PC(I – λA)

are nonexpansive for all λ ∈ (, α] since they are compositions of nonexpansive map-
pings.

Throughout the rest of this paper, we always assume the following:
F : C → H is a κ-Lipschitzian and η-strongly monotone operator with positive
constants κ ,η > ;
Fj : C → H is ζj-inverse strongly monotone for j = ,  and Ti : C → C is a ki-strictly
pseudocontractive mapping for each i = , . . . , N ;
A is a γ̄ -strongly positive bounded linear operator on H with γ̄ ∈ (, ) and
V : C → H is an l-Lipschitzian mapping with l ≥ ;
 < μ < η

κ and  ≤ γ l < τ with τ =  –
√

 – μ(η – μκ);
G : C → C is a mapping defined by Gx = PC(I – νF)PC(I – νF)x with  < νj < ζj for
j = , , and the fixed point set of G is denoted by Ξ ;
ΔN

t : C → C is a mapping defined by ΔN
t x = (I – rN ,tAN ) · · · (I – r,tA)x, t ∈ (, ) with

Ai = I – Ti and {ri,t} ⊂ [ai, bi] ⊂ (,  – ki) for each i = , . . . , N ;
ΔN

n : C → C is a mapping defined by ΔN
n x = (I – rN ,nAN ) · · · (I – r,nA)x with

{ri,n} ⊂ [ai, bi] ⊂ (,  – ki) and limn→∞ ri,n = ri, for each i = , . . . , N ;
Ω =

⋂N
i= Fix(Ti) ∩ Ξ �= ∅ and PΩ is the metric projection of H onto Ω ;

{αn} ⊂ [, ], {βn} ⊂ (, ] and {θt}t∈(,min{, –γ̄
τ–γ l })

⊂ (, ).
We now introduce the following composite implicit relaxed extragradient-like scheme

that generates a net {xt}t∈(,min{, –γ̄
τ–γ l })

in one implicit manner:

xt = PC
[

(I – θtA)ΔN
t Gxt + θt

(

tγ Vxt + (I – tμF)ΔN
t Gxt

)]

. (.)

Moreover, we also propose the following composite explicit relaxed extragradient-like
scheme, which generates a sequence in another explicit way:

{

yn = αnγ Vxn + (I – αnμF)ΔN
n Gxn,

xn+ = PC[(I – βnA)ΔN
n Gxn + βnyn], ∀n ≥ ,

(.)

where x ∈ C is an arbitrary initial guess.

Theorem . Let the net {xt} be defined via (.). If limt→ θt = , then xt converges strongly
to a point x̃ ∈ Ω as t → , which solves the VIP

〈

(A – I)x̃, x̃ – p
〉≤ , ∀p ∈ Ω . (.)

Equivalently, we have PΩ (I – A)x̃ = x̃.

Proof First of all, it is easy to see that Ti : C → C is ki-strictly pseudocontractive if and
only if

〈Tix – Tiy, x – y〉 ≤ ‖x – y‖ –
 – ki


∥
∥(I – Ti)x – (I – Ti)y

∥
∥

, ∀x, y ∈ C.
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It is clear that in this case the mapping I – Ti is –ki
 -inverse strongly monotone. Moreover,

by Lemma .(i) we know that if Ti : C → C is ki-strictly pseudocontractive, then Ti is
Lipschitz-continuous with constant +ki

–ki
, i.e., ‖Tix – Tiy‖ ≤ +ki

–ki
‖x – y‖ for all x, y ∈ C.

In Theorem ., we put Θi = , ϕi = , Φ = Φ = , T = I , λ = , Ai = I – Ti and ηi = –ki


for each i = , . . . , N . Then T : C → C is a k-strictly pseudocontractive mapping with k = 
andAi is ηi-inverse strongly monotone with ηi = –ki

 for each i = , . . . , N . In this case, S = I
and GMEP(Θi,ϕi,Ai) = VI(C,Ai) for each i = , . . . , N . Next let us show VI(C,Ai) = Fix(Ti)
for each i = , . . . , N . Indeed, we have, for ν > ,

u ∈ VI(C,Ai) ⇔ 〈Aiu, y – u〉 ≥ , ∀y ∈ C

⇔ 〈u – νAiu – u, u – y〉 ≥ , ∀y ∈ C

⇔ u = PC(u – νAiu)

⇔ u = PC(u – νu + νTiu)

⇔ 〈u – νu + νTiu – u, u – y〉 ≥ , ∀y ∈ C

⇔ 〈u – Tiu, u – y〉 ≤ , ∀y ∈ C

⇔ u = Tiu

⇔ u ∈ Fix(Ti).

Hence, we conclude that

Ω =
N
⋂

i=

GMEP(Θi,ϕi,Ai) ∩ Fix(T) ∩Ξ =
N
⋂

i=

VI(C,Ai) ∩ Fix(I) ∩Ξ =
N
⋂

i=

Fix(Ti) ∩Ξ .

Also, observe that

SΔN
t Gxt = ST (ΘN ,ϕN )

rN ,t
(I – rN ,tAN ) · · ·T (Θ,ϕ)

r,t (I – r,tA)Gxt

= T (ΘN ,ϕN )
rN ,t

(I – rN ,tAN ) · · ·T (Θ,ϕ)
r,t (I – r,tA)Gxt

= PC(I – rN ,tAN ) · · ·PC(I – r,tA)PC
[

( – r,t)Gxt + r,tTGxt
]

= PC(I – rN ,tAN ) · · ·PC(I – r,tA)(I – r,tA)Gxt

= · · ·
= (I – rN ,tAN ) · · · (I – r,tA)(I – r,tA)Gxt .

In this case, the implicit scheme (.) reduces to (.). Consequently, utilizing Theorem .
we obtain the desired result. �

Remark . Theorem . extends and improves Ceng et al.’s hierarchical fixed point
problem (.) for a nonexpansive mapping (see [], Theorem .) and Jung’s hierarchi-
cal fixed point problem (.) for a strict pseudocontraction (see [], Theorem .) to the
hierarchical fixed point problem (.) with the constraint of SVI (.).

Taking F = 
 I , μ = , and γ =  in Theorem ., we get
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Corollary . Let {xt} be defined by

xt = PC
[

(I – θtA)ΔN
t Gxt + θt

(

tVxt + ( – t)ΔN
t Gxt

)]

.

If limt→ θt = , then {xt} converges strongly as t →  to a point x̃ ∈ Ω , which is the unique
solution of the VIP (.).

Next, by utilizing Theorem ., we prove the following result in order to establish
the strong convergence of the sequence {xn} generated by the composite explicit relaxed
extragradient-like scheme (.).

Theorem . Let {xn} be the sequence generated by the explicit scheme (.), where {αn}
and {βn} satisfy the following condition:

(C) {αn} ⊂ [, ], {βn} ⊂ (, ], and αn → , βn →  as n → ∞.
Let LIM be a Banach limit. Then

LIMn
〈

(A – I)x̃, x̃ – xn
〉≤ ,

where x̃ = limt→+ xt with xt being defined by

xt = PC
[

(I – θtA)ΔN Gxt + θt
(

tγ Vxt + (I – tμF)ΔN Gxt
)]

, (.)

where G,ΔN : C → C are defined by Gx = PC(I – νF)PC(I – νF)x and ΔN x = (I –
rNAN ) · · · (I – rA)x with νj ∈ (, ζj), j = ,  and ri ∈ [ai, bi] ⊂ (,  – ki) for each i =
, . . . , N .

Proof In Theorem ., we put Θi = , ϕi = , Φ = Φ = , T = I , λ = , Ai = I – Ti and
ηi = –ki

 for each i = , . . . , N . Then Ai is ηi-inverse strongly monotone with ηi = –ki
 for

each i = , . . . , N . Utilizing similar arguments to those in the proof of Theorem ., we
get GMEP(Θi,ϕi,Ai) = VI(C,Ai) = Fix(Ti), ΔN

n Gxn = (I – rN ,nAN ) · · · (I – r,nA)Gxn and
ΔN Gxt = (I – rNAN ) · · · (I – rA)Gxt . Thus, it is easy to see that the schemes (.) and
(.) reduce to the ones (.) and (.), respectively. Consequently, by utilizing Theo-
rem ., we derive the desired result. �

Remark . Theorem . extends and improves Jung’s hierarchical fixed point problem
(.) for a strict pseudocontraction (see [], Theorem .) to the hierarchical fixed point
problem (.) with the constraint of SVI (.).

Now, using Theorem ., we establish the strong convergence of the sequence {xn} gen-
erated by the composite explicit relaxed extragradient-like scheme (.) to a point x̃ ∈ Ω ,
which is also the unique solution of the VIP (.).

Theorem . Let {xn} be the sequence generated by the explicit scheme (.), where {αn}
and {βn} satisfy the following conditions:

(C) {αn} ⊂ [, ], {βn} ⊂ (, ], and αn → , βn →  as n → ∞;
(C)

∑∞
n= βn = ∞.
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If {xn} is weakly asymptotically regular (i.e., xn+ – xn ⇀ ), then xn converges strongly to a
point x̃ ∈ Ω , which is the unique solution of the VIP (.).

Proof In Theorem ., we put Θi = , ϕi = , Φ = Φ = , T = I , λ = , Ai = I – Ti, and
ηi = –ki

 for each i = , . . . , N . Then Ai is ηi-inverse strongly monotone with ηi = –ki
 for

each i = , . . . , N . Utilizing similar arguments to those in the proof of Theorem ., we get
Ω =

⋂N
i= Fix(Ti) ∩Ξ and ΔN

n Gxn = (I – rN ,nAN ) · · · (I – r,nA)Gxn. So, it is easy to see that
the scheme (.) reduces to the ones (.). Thus, in terms of Theorem . we derive the
desired result. �

Remark . Theorem . extends and improves Ceng et al.’s hierarchical fixed point
problem (.) for a nonexpansive mapping (see [], Theorem .) and Jung’s hierarchi-
cal fixed point problem (.) for a strict pseudocontraction (see [], Theorem .) to the
hierarchical fixed point problem (.) with the constraint of SVI (.).

Corollary . Let {xn} be the sequence generated by the explicit scheme (.). Assume that
the sequences {αn} and {βn} satisfy the conditions (C) and (C) in Theorem .. If {xn} is
asymptotically regular (i.e., xn+ – xn → ), then {xn} converges strongly to a point x̃ ∈ Ω ,
which is the unique solution of the VIP (.).

Putting μ = , F = 
 I , and γ =  in Theorem ., we obtain the following.

Corollary . Let {xn} be generated by the following iterative scheme:

{

yn = αnVxn + ( – αn)ΔN
n Gxn,

xn+ = PC[(I – βnA)ΔN
n Gxn + βnyn], ∀n ≥ .

Assume that the sequences {αn} and {βn} satisfy the conditions (C) and (C) in Theo-
rem .. If {xn} is weakly asymptotically regular (i.e., xn+ – xn ⇀ ), then {xn} converges
strongly to a point x̃ ∈ Ω , which is the unique solution of the VIP (.).

Putting αn = , ∀n ≥  in Corollary ., we get the following.

Corollary . Let {xn} be generated by the following iterative scheme:

xn+ = PC
[(

I – βn(A – I)
)

ΔN
n Gxn

]

, ∀n ≥ .

Assume that the sequence {βn} satisfies the conditions (C) and (C) in Theorem . with
αn = , ∀n ≥ . If {xn} is weakly asymptotically regular (i.e., xn+ – xn ⇀ ), then {xn} con-
verges strongly to a point x̃ ∈ Ω , which is the unique solution of the VIP (.).

Remark . If {αn}, {βn} in Corollary . and {ri,n}N
i= in ΔN

n satisfy conditions (C) and
(C)

∑∞
n= |αn+ – αn| < ∞ and

∑∞
n= |βn+ – βn| < ∞; or

(C)
∑∞

n= |αn+ – αn| < ∞ and limn→∞ βn
βn+

= ; or, equivalently, limn→∞ αn–αn+
αn+

= 
and limn→∞ βn–βn+

βn+
= ; or,

(C)
∑∞

n= |αn+ – αn| < ∞ and |βn+ – βn| ≤ o(βn+) + σn,
∑∞

n= σn < ∞ (the perturbed
control condition);



Ceng et al. Journal of Inequalities and Applications  (2015) 2015:280 Page 41 of 44

(C)
∑∞

n= |ri,n+ – ri,n| < ∞ for each i = , . . . , N ,
then the sequence {xn} generated by (.) is asymptotically regular. Now we give only the
proof in the case when {αn}, {βn}, and {ri,n}N

i= satisfy the conditions (C), (C), and (C).
Indeed, in Remark ., we put Θi = , ϕi = , Φ = Φ = , T = I , λ = , Ai = I – Ti, and
ηi = –ki

 for each i = , . . . , N . Utilizing Remark ., we derive the claim.

In view of Remark ., we have the following.

Corollary . Let {xn} be the sequence generated by the explicit scheme (.), where the
sequences {αn}, {βn}, and {ri,n}N

i= satisfy Remark .(C), (C), (C), and (C) (or Re-
mark .(C), (C), (C), and (C), or Remark .(C), (C), (C), and (C)). Then {xn}
converges strongly to a point x̃ ∈ Ω , which is the unique solution of the VIP (.).

Remark . Corollary . extends and improves Jung’s hierarchical fixed point problem
(.) for a strict pseudocontraction (see [], Corollary .) to the hierarchical fixed point
problem (.) with the constraint of SVI (.).

5 Concluding remarks
We introduced and analyzed one composite implicit relaxed extragradient-like scheme
and another composite explicit relaxed extragradient-like scheme for finding a common
solution of a finite family of generalized mixed equilibrium problems (GMEPs) with the
constraints of a system of generalized equilibrium problems (SGEP) and the hierarchical
fixed point problem (HFPP) for a strictly pseudocontractive mapping by virtue of the gen-
eral composite implicit and explicit schemes for a nonexpansive mapping T : H → H (see
[]) and the general composite implicit and explicit ones for a strict pseudocontraction
T : H → H (see []). Our Theorems .-. and Corollary . improve, extend, supple-
ment, and develop Theorems . and . of [], Theorems .-. and Corollary . of []
and Theorem . of [] in the following aspects.

(i) Ceng et al.’s general composite implicit scheme for a nonexpansive mapping T : H →
H (see (.) in []) and Jung’s general composite implicit one for a strict pseudocon-
traction T : H → H (see (.) in []) extends to developing the composite implicit relaxed
extragradient-like scheme (.) for a finite family of GMEPs with constraints of SGEP (.)
and the HFPP for a strict pseudocontraction. Moreover, Ceng et al.’s general composite ex-
plicit scheme for a nonexpansive mapping T : H → H (see (.) in []) and Jung’s general
composite explicit one for a strict pseudocontraction (see (.) in []) extends to develop-
ing the composite explicit relaxed extragradient-like one (.) for a finite family of GMEPs
with constraints of SGEP (.) and the HFPP for a strict pseudocontraction.

(ii) The argument techniques in our Theorems .-. and Corollary . are very differ-
ent from those techniques in [] Theorems .-. and [] Theorems .-. and Corol-
lary . because we make use of the properties of the resolvent T (Θ ,ϕ)

r (see, e.g., Proposi-
tion . and the argument of (.), (.), (.), and (.)), the ones of the strong pos-
itive bounded linear operators (see Lemma .), the ones of the Banach limit LIM (see
Lemma .), the equivalence of the fixed point equation x∗ = TΦ

ν (I –νF)TΦ
ν (I –νF)x∗

to the SGEP (.) for ζj-inverse strongly monotone mappings Fj : C → H , j = ,  (see
Proposition .) and the contractive coefficient estimates for the contractions Tλ associ-
ating with nonexpansive mappings (see Lemma .).
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(iii) The problem of finding a common solution x̃ ∈⋂N
i= GMEP(Θi,ϕi,Ai) ∩ Fix(T) ∩ Ξ

of SGEP (.), the fixed point problem of a k-strict pseudocontraction T and a finite
family of GMEPs in our Theorems .-. and Corollary . is more general and more
flexible than the one of finding a fixed point of a nonexpansive mapping T : H → H in
[] Theorems . and ., the one of finding a fixed point of a strictly pseudocontractive
mapping T : H → H in [] Theorems .-. and Corollary ., and the one of finding a
common solution of GMEP (.), SGEP (.), and the fixed point problem of a k-strict
pseudocontraction T in [] Theorem .. It is worth pointing out that the problem of
finding x̃ ∈ (

⋂N
i= GMEP(Θi,ϕi,Ai)) ∩ Fix(T) ∩ Ξ extends the fixed point problems in [,

] from the domain H of the mapping T to the domain C for the one of finding x̃ ∈
(
⋂N

i= GMEP(Θi,ϕi,Ai)) ∩ Fix(T) ∩ Ξ and generalizes the fixed point problems in [, ]
to the setting of SGEP (.) and a finite family of GMEPs. In the meantime, the problem
of finding x̃ ∈ (

⋂N
i= GMEP(Θi,ϕi,Ai)) ∩ Fix(T) ∩ Ξ extends the problem of finding x̃ ∈

GMEP(Θ ,ϕ,A) ∩ Fix(T) ∩ Ξ in [] from one GMEP to a finite family of GMEPs.
(iv) Our Theorems .-. and Corollary . generalize [] Theorems . and . from

a nonexpansive mapping T : H → H to a k-strict pseudocontraction T : C → C and ex-
tend [] Theorems . and . to the setting of SGEP (.) and a finite family of GMEPs.
Moreover, Theorems .-. and Corollary . generalize Theorems .-. and Corol-
lary . of [] from a strict pseudocontraction T : H → H to the setting of SGEP (.) and
a finite family of GMEPs. In the meantime, the operators Tt in the implicit scheme (.)
of Jung [] are replaced by the composite ones SΔN

t G in our implicit scheme (.) and the
operators Tn in the explicit scheme (.) of Jung [] are replaced by the composite ones
SΔN

n G in our explicit scheme (.).
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