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Abstract
In this paper, the steady flow of an incompressible, co-rotational Maxwell fluid in a
helical screw rheometer is studied by ‘unwrapping or flattening’ the channel, lands,
and the outside rotating barrel. The geometry is approximated as a shallow infinite
channel, by assuming the width of the channel large as compared to the depth. The
developed second order nonlinear coupled differential equations are transformed to
a single differential equation. Using perturbation methods, analytical expressions are
obtained for the velocity components in the x- and z-directions and the resultant
velocity in the direction of the screw axis. Volume flow rates, shear and normal
stresses, shear at wall, and forces exerted on fluid and average velocity are also
calculated. The behavior of the velocity profiles are discussed with the help of graphs.
We observe that the velocity profiles are strongly dependent on the non-dimensional
parameter (Wi)2, the flight angle φ and the pressure gradients.

Keywords: helical screw rheometer; co-rotational Maxwell fluid; perturbation
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1 Introduction
The helical screw rheometer (HSR) is being used for rheological measurements of fluid
food suspensions. The geometry of an HSR is similar to a single screw extruder []. Ex-
trusion processes are widely used in multi-grade oils, liquid detergents, paints, polymer
solutions and polymer melts [], the injection molding process for polymeric materials,
the production of pharmaceutical products, food extrusion, and processing of plastics
[]. Various food items in daily life, such as cookie dough, sevai, pastas, breakfast cere-
als, French fries, baby food, ready to eat snacks and dry pet food are most commonly
manufactured using the extrusion process.

The study of rheological characteristics of different fluids is essential in the process of
processing to obtain the desired quality and shape of the products. Bird et al. [] presented
an asymptotic solution and arbitrary values of the flow behavior index for the power-law
fluid in a very thin annulus. A brief discussion is given by Mohr et al. [] for the same prob-
lem considering the Newtonian fluid in a screw extruder. Tamura et al. [] also investigated
the flow of a Newtonian fluid in HSR.

The classical Navier-Stokes equations have been proved inadequate to describe the com-
plete characteristics of the above mentioned complex rheological fluids, which are gener-
ally known as non-Newtonian fluids. These complex fluids have led to the development
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of different new theories to study non-Newtonian fluids. For this purpose different mod-
els have been proposed [, ]. In this paper we study the flow of a co-rotational Maxwell
fluid in HSR. The developed second order nonlinear coupled differential equations are
reduced to first order nonlinear differential equations by integrating and then combining
into a single first order differential equation with the help of a transformation. The solu-
tion is obtained by using a perturbation method (PM) as this method is extensively applied
for getting approximate solutions for the problems arising in engineering and science [].
The paper is organized as follows. Section  contains the governing equations of the fluid
model. In Section  the problem under consideration is formulated. Section  contains
the solution of the problem under consideration: analytical expressions for the velocity
components in the x- and z-directions, the resultant velocity in the direction of the screw
axis, volume flow rates, shear and normal stresses, shear at wall, and the forces exerted on
fluid and average velocity. In Section  the results are discussed with the help of graphs.
Section  contains our conclusion.

2 Basic equations
The basic equations, governing the motion of an isothermal, homogeneous, incompress-
ible co-rotational Maxwell fluid are

div V = , ()

ρ
DV
Dt

= ρf – grad P + div S, ()

where ρ is the constant fluid density, V is the velocity vector, and f is the body force per
unit mass, P denotes the dynamic pressure, D

Dt denotes the material time derivative defined
as

D(∗)
Dt

=
∂

∂t
(∗) + (V · ∇)(∗). ()

S is the extra stress tensor; for a co-rotational Maxwell fluid model it can be defined as []

S + λS∇ +


λ(AS + SA) = ηA, ()

where η and λ are zero shear viscosity and relaxation time, respectively. The upper con-
travariant convected derivative designated by ∇ over S is defined as

S∇ =
DS
Dt

–
{

(grad V)T S + S(grad V)
}

, ()

and

A = (grad V) + (grad V)T ()

is the first Rivlin-Ericksen tensor.
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3 Problem formulation
Consider the steady flow of an isothermal, incompressible, and homogeneous co-
rotational Maxwell fluid in HSR. The geometry of HSR is simplified in such a way that the
curvature of the screw channel is ignored; it is unrolled and laid out on a flat surface. The
barrel surface is also flattened. Assume that the screw surface, the lower plate, is stationary
and the barrel surface, the upper plate, is moving across the top of the channel with veloc-
ity V at an angle φ to the direction of the channel; see Figure . The phenomenon is the
same as the barrel held stationary and the screw rotating. The geometry is approximated
by a shallow infinite channel, by assuming the width B of the channel large compared
with the depth h; edge effects in the fluid at the land are ignored. The coordinate axes
are positioned in such a way that the x-axis is perpendicular to the flight walls and the
y-axis is normal to the barrel surface and the z-axis is in the downward channel direction.
The liquid wets all the surfaces and moves by the shear stresses produced by the relative
movement of the barrel and channel. No leakage of the fluid occurs across the flights. For
simplicity, the velocity of the barrel relative to the channel is decomposed into two com-
ponents (see Figure ): U along the x-axis and W along the z-axis [, , ]. Under these

Figure 1 The geometry of the ‘unwrapped’ screw channel and barrel surface.
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assumptions the velocity profile and extra stress tensor can be considered as

V =
[
u(y), , w(y)

]
and S = S(y). ()

On substituting the velocity profile () in () we obtain the following components of the
extra stress tensor S:

Sxx = λSxy
du
dy

, ()

Sxy = Syx =
η

du
dy

 + λ
 {( du

dy ) + ( dw
dy )} , ()

Sxz = Szx =


λ

{
Syz

du
dy

+ Sxy
dw
dy

}
, ()

Syy = –λ

{
Syz

dw
dy

+ Sxy
du
dy

}
, ()

Syz = Szy =
η

dw
dy

 + λ
 {( du

dy ) + ( dw
dy )} , ()

Szz = λSyz
dw
dy

. ()

Equation () satisfies () identically and () in the absence of body forces reduces to

 = –
∂P
∂x

+
∂Sxy

∂y
, ()

 = –
∂P
∂y

+
∂Syy

∂y
, ()

 = –
∂P
∂z

+
∂Syz

∂y
. ()

On defining the modified pressure as P̂ = P – Syy ()-() become

∂P̂
∂x

=
d
dy

[
η

du
dy

 + λ
{( du

dy ) + ( dw
dy )}

]
, ()

∂P̂
∂y

= , ()

∂P̂
∂z

=
d
dy

[
η

dw
dy

 + λ
{( du

dy ) + ( dw
dy )}

]
. ()

The associated boundary conditions can be taken as in Figure . We have

u = , w = , at y = ,

u = U , w = W , at y = h.
()
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Eliminating the hat from P and introducing dimensionless parameters,

x∗ =
x
h

, y∗ =
y
h

, z∗ =
z
h

, u∗ =
u

W
, w∗ =

w
W

,

P∗ =
P

μ( W
h )

,

in (), (), and () results in

∂P∗

∂x∗ =
d

dy∗

[ du∗
dy∗

 + (Wi){( du∗
dy∗ ) + ( dw∗

dy∗ )}
]

, ()

∂P∗

∂z∗ =
d

dy∗

[ dw∗
dy∗

 + (Wi){( du∗
dy∗ ) + ( dw∗

dy∗ )}
]

, ()

and

u∗ = , w∗ = , at y∗ = ,

u∗ =
U
W

, w∗ = , at y∗ = .
()

Here Wi = λW
h denotes the Weissenberg number. Dropping ‘*’ from ()-() onward and

then integrating the ‘*’ free form of () and () with respect to y, we get

du
dy

= (P,xy + C)
[

 + (Wi)
{(

du
dy

)

+
(

dw
dy

)}]
, ()

dw
dy

= (P,zy + C)
[

 + (Wi)
{(

du
dy

)

+
(

dw
dy

)}]
, ()

where P,x = ∂P
∂x , P,z = ∂P

∂z ; C and C are arbitrary constants of integration, which can be
determined using the associated boundary conditions.

On defining

F = u + ιw, G = P,x + ιP,z, K = C + ιC and V =
U
W

+ ι, ()

in () and () yielding

dF
dy

= (Gy + K) + (Wi)(Gy + K)
dF
dy

dF̄
dy

, ()

the boundary conditions () become

F =  at y = ,

F = V at y = ,
()

where F̄ is the complex conjugate of F .
Equation () is a second order nonlinear, inhomogeneous ordinary differential equa-

tion, and its exact solution seems to be difficult. In the following section we use PM to



Zeb et al. Boundary Value Problems  (2015) 2015:146 Page 6 of 19

obtain the approximate solution. To obtain the expressions for the velocity components
in the x- and z-directions () together with the boundary conditions () is solved up
to the second order approximation by using the symbolic computation software Wolfram
Mathematica .

4 Solution of the problem
Assume ξ = (Wi) to be a small parameter (perturbation parameter) in () and expand
F(y) and K in a series of the form

F(y) = F(y) + ξF(y) + ξ F(y) + · · · , ()

K = K + ξK + ξ K + · · · , ()

where K, K, K, . . . , are arbitrary constants to be determined using boundary conditions.
Substituting the series () and () into ()-() and equating the coefficients of like

powers of ξ , we get the following problems of different orders.

4.1 Zeroth order problem
We have

ξ :
dF

dy
= (Gy + K), ()

where K is an arbitrary constant. The boundary conditions associated to () are

F =  at y = ,

F = V at y = ,
()

having the solution

F = Vy +



G
(
y – y

)
, ()

and separating real and imaginary parts we get

u =
U
W

y +



P,x
(
y – y

)
, ()

w = y +



P,z
(
y – y

)
, ()

thus () and () are the solution of the Newtonian case.

4.2 First order problem
We have

ξ  :
dF

dy
= K + (Gy + K)

dF

dy
dF̄

dy
, ()

with the boundary conditions

F =  at y = ,

F =  at y = ,
()
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where K is a constant to be determined, giving a solution of the form

F = (L + ιT)
(
y – y

)
+ (L + ιT)

(
y – y

)
+ (L + ιT)

(
y – y

)
, ()

which has real and imaginary parts as follows:

u = L
(
y – y

)
+ L

(
y – y

)
+ L

(
y – y

)
, ()

w = T
(
y – y

)
+ T

(
y – y

)
+ T

(
y – y

)
, ()

where Li, Tj, i = , . . . , , j = , . . . , , are constant coefficients given in the Appendix.

4.3 Second order problem
We have

ξ  :
dF

dy
= K + (Gy + K)

{
dF

dy
dF̄

dy
+

dF̄

dy
dF

dy

}
+ K

dF

dy
dF̄

dy
, ()

using the boundary conditions

F =  at y = ,

F =  at y = h,
()

where K is a constant. Solving () under the boundary conditions () results in

F = (L + ιT)
(
y – y

)
+ (L + ιT)

(
y – y

)
+ (L + ιT)

(
y – y

)

+ (L + ιT)
(
y – y

)
+ (L + ιT)

(
y – y

)
. ()

Separation of real and imaginary parts gives

u = L
(
y – y

)
+ L

(
y – y

)
+ L

(
y – y

)

+ L
(
y – y

)
+ L

(
y – y

)
, ()

w = T
(
y – y

)
+ T

(
y – y

)
+ T

(
y – y

)

+ T
(
y – y

)
+ T

(
y – y

)
, ()

where Li, Tj, i = , . . . , , j = , . . . , , are constant coefficients given in the Appendix.

4.4 Velocity profiles
.. Velocity profile in x-direction
Combining (), (), and () gives the approximate solution for the velocity profile in
the x-direction as

u =
U
W

y +
(




P,x + ξL + ξ L

)(
y – y

)
+

(
ξL + ξ L

)(
y – y

)

+
(
ξL + ξ L

)(
y – y

)
+ ξ L

(
y – y

)
+ ξ L

(
y – y

)
, ()
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and () gives

u =
U
W

y +
(




P,x + (Wi)L + (Wi)L

)(
y – y

)
+

(
(Wi)L + (Wi)L

)(
y – y

)

+
(
(Wi)L + (Wi)L

)(
y – y

)
+ (Wi)L

(
y – y

)
+ (Wi)L

(
y – y

)
. ()

.. Velocity profile in z-direction
Combining (), (), and () we obtain the solution for the velocity profile in the z-
direction as

w = y +
(




P,z + ξT + ξ T

)(
y – y

)
+

(
ξT + ξ T

)(
y – y

)

+
(
ξT + ξ T

)(
y – y

)
+ ξ T

(
y – y

)
+ ξ T

(
y – y

)
, ()

and () gives

w = y +
(




P,z + (Wi)T + (Wi)T

)(
y – y

)
+

(
(Wi)T + (Wi)T

)(
y – y

)

+
(
(Wi)T + (Wi)T

)(
y – y

)
+ (Wi)T

(
y – y

)

+ (Wi)T
(
y – y

)
. ()

.. Velocity in the direction of the axis of screw
The velocity along the axis of the screw at any depth in the channel can be calculated using
() and () as

s = w sinφ + u cosφ, ()

s =
{(




P,z + (Wi)T + (Wi)T

)(
y – y

)
+

(
(Wi)T + (Wi)T

)(
y – y

)

+
(
(Wi)T + (Wi)T

)(
y – y

)
+ (Wi)T

(
y – y

)

+ (Wi)T
(
y – y

)}
sinφ

+
{(




P,x + (Wi)L + (Wi)L

)(
y – y

)
+

(
(Wi)L + (Wi)L

)(
y – y

)

+
(
(Wi)L + (Wi)L

)(
y – y

)
+ (Wi)L

(
y – y

)

+ (Wi)L
(
y – y

)}
cosφ, ()

() has no drag term, which shows that the net velocity at any point in the channel de-
pends on the pressure gradients P,x and P,z .
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4.5 Stresses

Substituting the derivatives of the velocity components () and () in (), (), and ()

we obtain the shear stresses as

S∗
xy = S∗

yx =


 + Wi	

{
U
W

+
(

WiL + WiL +
P,x



)
(– + y)

+
(
WiL + WiL

)(
– + y)

+
(
WiL + WiL

)(
– + y) + WiL

(
– + y)

+ WiL
(
– + y)

}
, ()

S∗
yz = S∗

zy =


 + Wi	

{
 +

(
WiT + WiT +

P,z



)
(– + y)

+
(
WiT + WiT

)(
– + y)

+
(
WiT + WiT

)(
– + y) + WiT

(
– + y)

+ WiT
(
– + y)

}
, ()

S∗
xz = S∗

zx =
Wi


[
S∗

yz

{
U
W

+
(

WiL + WiL +
P,x



)
(– + y)

+
(
WiL + WiL

)(
– + y)

+
(
WiL + WiL

)(
– + y) + WiL

(
– + y)

+ WiL
(
– + y)

}
+ S∗

xy

{
 +

(
WiT + WiT +

P,z



)
(– + y)

+
(
WiT + WiT

)(
– + y) +

(
WiT + WiT

)(
– + y)

+ WiT
(
– + y) + WiT

(
– + y)

}]
, ()

where

	 =
[{

U
W

+
(

WiL + WiL +
P,x



)
(– + y) +

(
WiL + WiL

)(
– + y)

+
(
WiL + WiL

)(
– + y) + WiL

(
– + y) + WiL

(
– + y)

}

+
{

 +
(

WiT + WiT +
P,z



)
(– + y) +

(
WiT + WiT

)(
– + y)

+
(
WiT + WiT

)(
– + y) + WiT

(
– + y)

+ WiT
(
– + y)

}]
. ()
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Then the shears exerted by the fluid on the wall at y =  are

S∗
wxy = S∗

wxy =


 + Wi	

{
U
W

+
(

WiL + WiL +
P,x



)

+ 
(
WiL + WiL

)
+ 

(
WiL + WiL

)
+ WiL

+ WiL

}
, ()

S∗
wyz = S∗

wzy =


 + Wi	

{
 +

(
WiT + WiT +

P,z



)

+ 
(
WiT + WiT

)
+ 

(
WiT + WiT

)
+ WiT

+ WiT

}
, ()

S∗
wxz = S∗

wzx =
Wi


[
S∗

yz

{
U
W

+
(

WiL + WiL +
P,x



)

+ 
(
WiL + WiL

)
+ 

(
WiL + WiL

)
+ WiL

+ WiL

}
+ S∗

xy

{
 +

(
WiT + WiT +

P,z



)

+ 
(
WiT + WiT

)
+ 

(
WiT + WiT

)

+ WiT + WiT

}]
, ()

where

	 =
[{

U
W

+
(

WiL + WiL +
P,x



)
+ 

(
WiL + WiL

)

+ 
(
WiL + WiL

)
+ WiL + WiL

}

+
{

 +
(

WiT + WiT +
P,z



)

+ 
(
WiT + WiT

)
+ 

(
WiT + WiT

)
+ WiT + WiT

}]
. ()

Similarly, we can calculate the normal stresses (), (), and () as

S∗
xx = Wi

[
S∗

xy

{
U
W

+
(

WiL + WiL +
P,x



)
(– + y)

+
(
WiL + WiL

)(
– + y)

+
(
WiL + WiL

)(
– + y) + WiL

(
– + y)

+ WiL
(
– + y)

}]
, ()
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S∗
yy = – Wi

[
S∗

xy

{
U
W

+
(

WiL + WiL +
P,x



)
(– + y)

+
(
WiL + WiL

)(
– + y)

+
(
WiL + WiL

)(
– + y) + WiL

(
– + y)

+ WiL
(
– + y)

}
+ S∗

yz

{
 +

(
WiT + WiT +

P,z



)
(– + y)

+
(
WiT + WiT

)(
– + y) +

(
WiT + WiT

)(
– + y)

+ WiT
(
– + y) + WiT

(
– + y)

}]
, ()

S∗
zz = Wi

[
S∗

yz

{
 +

(
WiT + WiT +

P,z



)
(– + y)

+
(
WiT + WiT

)(
– + y) +

(
WiT + WiT

)(
– + y)

+ WiT
(
– + y) + WiT

(
– + y)

}]
. ()

Here S∗
ij = Sij

μW
h

, i, j = x, y, z, i �= j, are the non-dimensional stresses.
The shear forces per unit width required to move the barrel in the x- and z-directions

are

Fx

B
= –

∫ Lx


Swxy dx, ()

or

F∗
x = –S∗

wxyδ, ()

Fz

B
= –

∫ Lz


Swyz dz, ()

or

F∗
z = –S∗

wyzδ, ()

where F∗
i = Fi

μWB , i = x, y are dimensionless shear forces, δ = Lx
h and δ = Lz

h are the dimen-
sionless lengths of the channel in the x- and z-directions, respectively, and Lx and Lz are
the dimensional lengths of the channel in the x- and z-directions, respectively. Therefore

F∗ = F∗
z sinφ + F∗

x cosφ ()

is the net shear force per unit width in the direction of the axis of the screw.

4.6 Volume flow rate
The volume flow rate in the x-direction per unit width is

Q∗
x =

∫ 


u dy, ()
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where Q∗
x = Qx

WhB , and () gives

Q∗
x =

U
W

–



(



P,x + (Wi)L + (Wi)L

)
–




(
(Wi)L + (Wi)L

)

–



(
(Wi)L + (Wi)L

)
–




(Wi)L –



(Wi)L. ()

The volume flow rate in the z-direction per unit width is

Q∗
z =

∫ 


w dy, ()

where Q∗
z = Qz

WhB , and () gives

Q∗
z =




–



(



P,z + (Wi)T + (Wi)T

)
–




(
(Wi)T + (Wi)T

)

–



(
(Wi)T + (Wi)T

)
–




(Wi)T –



(Wi)T. ()

The resultant volume flow rate forward in the screw channel, which is the product of the
velocity and cross-sectional area integrated from the root of the screw to the barrel surface,
is calculated from (),

Q∗ =
n

sinφ

∫ 


s dy, ()

where Q∗ = Q
WhB and n is the number of parallel flights in a multiflight screw.

Equation () gives

Q∗ =
n

sinφ

[{



–



(



P,z + (Wi)T + (Wi)T

)
–




(
(Wi)T + (Wi)T

)

–



(
(Wi)T + (Wi)T

)
–




(Wi)T –



(Wi)T

}
sinφ

+
{

U
W

–



(



P,x + (Wi)L + (Wi)L

)
–




(
(Wi)L + (Wi)L

)

–



(
(Wi)L + (Wi)L

)
–




(Wi)L –



(Wi)L

}
cosφ

]
. ()

Equation () can be written as

Q∗ =
n

sinφ

{
Q∗

z sinφ + Q∗
x cosφ

}
. ()

4.7 Average velocity
The average velocity in the direction of the axis of the screw is

s̄∗ = n
∫ 


s dy, ()
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where s̄∗ = s̄
W is the non-dimensional average velocity. Using () gives

s̄∗ = n
[{




–



(



P,z + (Wi)T + (Wi)T

)
–




(
(Wi)T + (Wi)T

)

–



(
(Wi)T + (Wi)T

)
–




(Wi)T –



(Wi)T

}
sinφ

+
{

U
W

–



(



P,x + (Wi)L + (Wi)L

)
–




(
(Wi)L + (Wi)L

)

–



(
(Wi)L + (Wi)L

)
–




(Wi)L –



(Wi)L

}
cosφ

]
. ()

5 Results and discussion
In the present work we have considered the steady flow of an incompressible, isothermal,
and homogeneous co-rotational Maxwell fluid in HSR. The geometry is given in Figure .
Second order nonlinear coupled differential equations are transformed to a single differ-
ential equation. Using perturbation methods analytical expressions are obtained for the
velocities u and w in the x- and z-directions, respectively, and also in the direction of the
axis of the screw, s. Expressions for the shear stresses in the flow field and at barrel sur-
face, forces exerted on fluid, volume flow rates, and the average velocity are also derived.
We discussed the behavior of co-rotational Maxwell fluid in HSR in terms of the non-
Newtonian parameter Wi, the flight angle φ, and the pressure gradients P,x and P,z on the
velocities given by (), (), and (). From Figures - it is seen that the velocity profiles
are strongly dependent on the non-Newtonian parameter Wi. Figure  is sketched for u,
the back flow is seen toward the barrel surface after some points in the channel height,
which suggests that the fluid circulates inside the confined channel, thus the velocity in
the x-direction helps in the process of mixing during processing. In Figure  we observe
that with the increase in the value of Wi the velocity w increases and helps to move the
fluid in the forward direction in the channel. The resultant velocity s is shown in Figure ,
which resembles Poiseuille flow in the channel. Due to s the fluid moves toward the die. It
is worthwhile to note that the shear thinning occurs with the increase in the value of Wi,

Figure 2 Velocity profile u(y) for different values of Wi2, keeping P,x = –1.5, P,z = –1.5, and φ = 45◦ .
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Figure 3 Velocity profile w(y) for different values of Wi2, keeping P,x = –1.5, P,z = –1.5, and φ = 45◦ .

Figure 4 Velocity profile s(y) for different values of Wi2, keeping P,x = –1.5, P,z = –1.5, and φ = 45◦ .

which increases the extrusion process. The velocity profiles for the Newtonian case are
retrieved for β̃ =  [].

Moreover, Figures , , and  are sketched for the velocity profiles u, w, and s for different
values of P,x. Figures  and  show that the rise in pressure gradient increases the speed of
the flow. However, Figure  depicts that P,x resists the flow in the z-direction. Figures , ,
and  are plotted for the velocity profiles u, w, and s for different values of P,z. Figures 
and  show that the increase in the value of P,z increases the speed of the flow. However,
Figure  shows that P,z resists the flow in the x-direction and is responsible for the forward
flow.

Figure  is plotted for different values of φ. It is observed that the resultant velocity
attains its maximum value at φ = ◦, which conforms the results given in []. From the
resultant velocity () we conclude that the φ = ◦ velocity has only a component in the
x-direction and φ = ◦ gives the velocity in the z-direction only.

6 Conclusion
The steady flow of an isothermal, homogeneous, and incompressible co-rotational
Maxwell fluid is investigated in HSR. The geometry of the problem under consideration
gives second order nonlinear coupled differential equations, which are reduced to a single
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Figure 5 Velocity profile u(y) for different values of P,x , keeping Wi2 = 0.25, P,z = –1.5, and φ = 45◦ .

Figure 6 Velocity profile u(y) for different values of P,z , keeping Wi2 = 0.25, P,x = –1.5, and φ = 45◦ .

Figure 7 Velocity profile w(y) for different values of P,x , keeping Wi2 = 0.25, P,z = –1.5, and φ = 45◦ .

differential equation by using a transformation. A perturbation method is used to obtain
analytical expressions for the flow profiles, volume flow rate, shear and normal stresses,
shear at wall, forces exerted on the fluid, and the average velocity. The calculations of these
values are of great importance during the production process and very useful to obtain
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Figure 8 Velocity profile w(y) for different values of P,z , keeping Wi2 = 0.25, P,x = –1.5, and φ = 45◦ .

Figure 9 Velocity profile s(y) for different values of P,x , keeping Wi2 = 0.25, P,z = –1.5, and φ = 45◦ .

Figure 10 Velocity profile s(y) for different values of P,z , keeping Wi2 = 0.25, P,x = –1.5, and φ = 45◦ .

the desired quality and shape of the products. It is noticed that the zeroth component
solution matches with the solution of the linearly viscous fluid in HSR and we also found
that the net velocity of the fluid is due to the pressure gradient as the expression for the
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Figure 11 Velocity profile s(y) for different values of φ, keeping Wi2 = 0.25, P,x = –1.5, and P,z = –1.5.

net velocity is free from the drag term. A graphical representation shows that the velocity
profiles are strongly dependent on the non-Newtonian parameter and pressure gradients
in the x- and z-direction. Thus the extrusion process strongly depends on the parameters
involved.

Appendix
We have

L =



(
P,x +

UP,x

W  –
UP

,x

W
+

P
,x


+

UP,z

W
– P,xP,xP,z –

UP
,z

W
+




P,xP
,z

)
,

L =



(UP
,x

W
–

P
,x


+ P,xP,z +

UP
,z

W
–




P,xP
,z

)
,

L =



(
P

,x + P,xP
,z
)
,

L =



(
UP,x

W  +
UP,x

W  –
UP

,x

W  –
UP

,x

W
+

P
,x


+

UP
,x

W  –
UP

,x

W

+
P

,x


+

UP,z

W  +
UP,z

W
– P,xP,z –

UP,xP,z

W  +
UP

,xP,z

W
–




P
,xP,z

–
UP

,z

W  –
UP

,z

W
+




P,xP
,z +

UP,xP
,z

W  –
UP

,xP
,z

W
+




P
,xP

,z

+
UP

,z

W
–




P,xP
,z –

UP
,z

W
+




P,xP
,z

)
,

L =



(UP
,x

W  +
UP

,x

W
– P

,x –
UP

,x

W  +
UP

,x

W
–

P
,x


+ P,xP,z

+
UP,xP,z

W  –
UP

,xP,z

W
+




P
,xP,z +

UP
,z

W  +
UP

,z

W
– P,xP

,z

–
UP,xP

,z

W  +
UP

,xP
,z

W
– P

,xP
,z –

UP
,z

W

+



P,xP
,z +

UP
,z

W
–




P,xP
,z

)
,



Zeb et al. Boundary Value Problems  (2015) 2015:146 Page 18 of 19

L =



(
P

,x +
UP

,x

W  –
UP

,x

W
+ P

,x +
UP

,xP,z

W
– P

,xP,z + P,xP
,z

+
UP,xP

,z

W  –
UP

,xP
,z

W
+ P

,xP
,z +

UP
,z

W
– P,xP

,z –
UP

,z

W
+ P,xP

,z

)
,

L =



(UP
,x

W
– P

,x + P
,xP,z +

UP
,xP

,z

W
– P

,xP
,z

+ P,xP
,z +

UP
,z

W
– P,xP

,z

)
,

L =



(
P

,x + P
,xP

,z + P,xP
,z
)
,

T =



(


UP,x

W
– P

,x + P,z +
UP,z

W  – 
UP,xP,z

W
+




P
,xP,z – P

,z +



P
,z

)
,

T =



(
P

,x + 
UP,xP,z

W
–




P
,xP,z + P

,z –



P
,z

)
,

T = P
,xP,z + P

,z,

T =



(
UP,x

W  +
UP,x

W
– P

,x –
UP

,x

W  +
UP

,x

W
–

P
,x


+ P,z +

UP,z

W 

–
UP,xP,z

W  –
UP,xP,z

W
+




P
,xP,z +

UP
,xP,z

W  –
UP

,xP,z

W
+




P
,xP,z

– P
,z –

UP
,z

W  +
UP,xP

,z

W
–




P
,xP

,z +
P

,z


+

UP
,z

W 

–
UP,xP

,z

W
+




P
,xP

,z –
P

,z


+

P
,z



)
,

T =



(
P

,x +
UP

,x

W  –
UP

,x

W
+

P
,x


+

UP,xP,z

W  +
UP,xP,z

W
– P

,xP,z

–
UP

,xP,z

W  +
UP

,xP,z

W
–




P
,xP,z + P

,z +
UP

,z

W  –
UP,xP

,z

W

+



P
,xP

,z – P
,z –

UP
,z

W  +
UP,xP

,z

W
– P

,xP
,z +

P
,z


–

P
,z



)
,

T =



(UP
,x

W
– P

,x + P
,xP,z +

UP
,xP,z

W  –
UP

,xP,z

W
+ P

,xP,z

+
UP,xP

,z

W
– P

,xP
,z + P

,z +
UP

,z

W  –
UP,xP

,z

W

+ P
,xP

,z – P
,z + P

,z

)
,

T =



(
P

,x +
UP

,xP,z

W
– P

,xP,z + P
,xP

,z +
UP,xP

,z

W

– P
,xP

,z + P
,z – P

,z

)
,

T =



(
P

,xP,z + P
,xP

,z + P
,z
)
.



Zeb et al. Boundary Value Problems  (2015) 2015:146 Page 19 of 19

Competing interests
The authors declare that they have no competing interests.

Authors’ contributions
All authors contributed equally to the manuscript and read and approved the final draft.

Author details
1Department of Mathematics, COMSATS Institute of Information Technology, Kamra Road, Attock, 43600, Pakistan.
2Department of Mathematics, COMSATS Institute of Information Technology, Park Road, Islamabad, 44000, Pakistan.
3Department of Mathematics, Pennsylvania State University, York campus, 1031 Edgecomb Avenue, York, PA 17403-3398,
USA.

Acknowledgements
The authors are thankful to the anonymous reviewers for their valuable suggestions on the earlier draft of this paper.

Received: 17 December 2014 Accepted: 10 August 2015

References
1. Tamura, MS, Henderson, JM, Powell, RL, Shoemaker, CF: Analysis of the helical screw rheometer for fluid food. J. Food

Process Eng. 16(2), 93-126 (1993)
2. Siddiqui, AM, Haroon, T, Irum, S: Torsional flow of third-grade fluid using modified homotopy perturbation method.

Comput. Math. Appl. 58(11-12), 2274-2285 (2009)
3. Chiruvella, RV, Jaluria, Y, Sernas, V: Extrusion of non-Newtonian fluids in a single-screw extruder with pressure back

flow. Polym. Eng. Sci. 36(3), 358-367 (1996)
4. Bird, RB, Armstrong, RC, Hassager, O: Enhancement of axial annular flow by rotating inner cylinder, dynamics of

polymeric liquids. In: Fluid Mechanics, vol. 1, pp. 184-187. Wiley, New York (1987)
5. Mohr, WD, Mallouk, RS: Flow, power requirement and pressure distribution of fluid in a screw extruder. J. Ind. Eng.

Chem. 51(6), 765-770 (1959)
6. Siddiqui, AM, Hammed, M, Siddiqui, BM, Ghori, QK: Use of Adomian decomposition method in the study of parallel

plate flow of a third-grade fluid. Commun. Nonlinear Sci. Numer. Simul. 15(9), 2388-2399 (2010)
7. Nayfeh, AH: Problem in Perturbation. Wiley, New York (1985)
8. Siddiqui, AM, Ahmed, M, Islam, S, Ghori, QK: Homotopy analysis of Couette and Poiseuille flows for fourth- grade

fluids. Acta Mech. 180(1-4), 117-132 (2005)
9. Siddiqui, AM, Haroon, T, Zeb, M: Analysis of Eyring-Powell fluid in helical screw rheometer. Sci. World J. 2014, 1-14

(2014)
10. Zeb, M, Islam, S, Siddiqui, AM, Haroon, T: Analysis of third grade fluid in helical screw rheometer. J. Appl. Math. 2013,

1-11 (2013)
11. Tadmor, Z, Gogos, CD: Principles of Polymer Processing. Wiley, New York (1979)


	Study of co-rotational Maxwell ﬂuid in helical screw rheometer
	Abstract
	Keywords

	Introduction
	Basic equations
	Problem formulation
	Solution of the problem
	Zeroth order problem
	First order problem
	Second order problem
	Velocity proﬁles
	Velocity proﬁle in x-direction
	Velocity proﬁle in z-direction
	Velocity in the direction of the axis of screw

	Stresses
	Volume ﬂow rate
	Average velocity

	Results and discussion
	Conclusion
	Appendix
	Competing interests
	Authors' contributions
	Author details
	Acknowledgements
	References


