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1 Introduction

In recent years, the wavelet transform has been shown to be a successful tool in signal pro-
cessing applications such as data compression and fast computations. The wavelet trans-
form of f € L*(R) with respect to the analyzed wavelet v € L?(R) satisfying the admissible
condition Cy, := [ [ (8)]%/|&| dE < oo is defined by

1 .
Wif @b = / F V) d,
where

Vap(x) = %Iﬁc%b) (@a>0,beR)

(see [1, 2] for example). The inverse wavelet transform of F € L2(R, x R) with respect to
the analyzed wavelet ¥ € L2(R) is defined by

1
= 7b a
M) = fR + /R Fla, b)as )

For the time-frequency analysis, we are concerned with better localization in both time

dda g
a

and frequency spaces from a point of view of the uncertainty principle. For the well-
balanced localization, it would be suitable to consider the Schwartz space S regarded as
the space of functions which have arbitrary polynomial decay and whose Fourier trans-
forms also have arbitrary polynomial decay (see [3]). For instance, the typical Mexican hat
wavelet belongs to spaces of more rapidly decreasing and more regular functions in S. In
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this article we focus on Gelfand-Shilov spaces of functions which have sub-exponential de-
cay and whose Fourier transforms also have sub-exponential decay. For positive constants
w, v and # such that p + v > 1, we define the Banach Gelfand-Shilov space

SR ={f € S; |0l f (x

)HLOO(R) < ChOH-ﬂa!U,B!M for all a,/3 S N}

with the norm

B
[l 0 f (%) [| Lo Ry
|lf||s(,fh(R) = aS;lePN el B

and the (non-Banach) Gelfand-Shilov space S*(R)
S*(R) =ind 1;1101 S]‘f,h (R)

with the inductive limit topology. The Gelfand-Shilov spaces were originally introduced in
[4] and [5]. As well explained in [6] and [7], the Gelfand-Shilov spaces are better adapted
to the study of the problems of partial differential equations for which the solutions sub-
exponentially decay at infinity.

Remark 1.1 Restricting functions with Fourier transforms supported in the right half-
plane, we may also define the Banach progressive Gelfand-Shilov space

Sy R) = {f € )., (R);suppf C [0,00)},
and the (non-Banach) progressive Gelfand-Shilov space
S (R) = {f € Sl(R);suppf C [0,00)}.

Such spaces can be considered in dealing with analytic signals as the Hardy space H*(R)
(see [8]). If the analyzed wavelet ¥ belongs to the progressive Gelfand-Shilov space, lﬁ
smoothly tends to zero and also has vanishing moments. For example, the Bessel wavelet
¥ (x) defined by ¥/ (£) = e 55 for £>0and /(&) = 0 for & < 0 belongs to Sy*(R). Actually,
we know that ¥ (x) = Nﬁ[ﬁ@ﬂ), where Kj is the first modified Bessel function of

the second kind (see [9]).

For the discrete wavelet case requiring strong additional conditions, the Meyer wavelets
or the Gevrey wavelets constructed as in [10] belong to the Gelfand-Shilov spaces. As for
the continuous wavelet transform requiring only the admissible condition, there are many
possibilities to choose the analyzed wavelet. Boundedness results in a generalized Sobolev
space, Besov space and Lizorkin-Triebel space are given in [3]. As for ¥ € S*(R) and ¢ €
S'*(R), [7] and [11] show the continuity properties of wavelet transforms by preparing
spaces of functions in a and b, respectively. In this paper, we shall pay careful attention
also to the parameter % as the radius of convergence in the analytic class and attempt to
find a further detailed estimate with /. So, our purpose is to show the continuity properties
in (strong) topologies of Banach Gelfand-Shilov spaces with the use of a vanishing moment
condition and to give concrete examples which can indicate the optimality in Section 4.
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2 Results
To state our results, we also introduce the following lemma.

Lemma 2.1 There exist C > 0 and hg > 0 such that

e ol ¢ +| el

oy <€

S
if and only iff € S}/, (R).

For the proof refer to [6, 12], etc. Taking Lemma 2.1 into account, we denote another
Banach Gelfand-Shilov space combining with the infinite vanishing moment condition

[f(£)] < Cehle™,

‘llv

S = {f € 55|y

Pl + [ <oo).

We remark that S* ,,u(R) corresponds to St Vi ’(R) with § = 00, i.e.,

SR = {f € 5 | f | gy + [ F

|L o (R) ||L°°(R)<OO}'

Remark 2.2 In particular, when f (£) is just equal to e"§ T belongs to the Gevrey
space of order § + 1. So, v can be taken as v > § + 1.

Remark 2.3 We easily obtain ehmax(lEl ey < ghlE 467 | On the other hand, the
weight can be estimated from below as

hmaxlEMIIEITR) o (Mg o g g7 a)
Therefore, we find that ||eh(‘5|l/”+|5‘_1/a)f||Loo(R) ~ ||ehma"[‘5|1/”"5|_1/8]fA||Loo(R)

Then we prove the following.

Theorem 2.4 Let ju, v, h, W and § be positive constants such that p +v >1, 1 < h. Deﬁne
that d()) = X(A = 1)"V*V* Then, for the wavelet transform W, with the wavelet yr € S“ (R),
the following estimates hold:

for f € S, (R)
0 bl@rD? <c| h\xl”‘f” ifvs1
al? +1 L®(R, xR) PR ’
||eh’21‘1/"lb/(u+1)|1/" WS | oo, < Clle Y flliow #0<v=1

for f € S5 (R)

a2 ehd(ﬁ/u+1)1//‘a‘1/ (u+3)

(i) <Cl " oy >

L (R xR)

(11)/ || a71/2eh/21—1/ud((g/ﬂﬂ)l/uu—l/(uﬁ) W¢f||Loc (R, xR) < C“ ehlf

W,
+1 ¢/f

/
" Pl

fo<p <1,
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forf € $4°,(R)

a2 ehd(ﬁluﬂ)”/‘ (max{a,a~1})V/(n+d)

(iii) Wyf

a+l L®(R, xR)

< C”ehmax{ml/ﬂ,\srw}f”Lw(R) ifu>1,

ceaN/ -1/2 h’21_1/"'d(8/u+1)1/"(max{a,a_l})1/(‘”5)
(ii) H“ € W*ﬁﬂ’m(mm)

<C| ehmaxus\“w\sr“ﬁlf||LOC(R fOo<p=1

)
Remark 2.5 We find that d(}) is strictly greater than 1 for A > 1 since d'(A) = —(A —
1)~V log(x — 1), and d(1) has the maximum at the point A = 2 and lim;_,1, d(A) =
limy 00 d(X) = 1.

Remark 2.6 This work is motivated by [7] where f and v are allowed to take each dif-
ferent value of parameters v, ; and have infinite vanishing moments, more precisely
vanishing moments of arbitrary polynomial order. Therefore, we have restricted our-
selves to the case of f and ¥ under the common parameters v, u, and have derived
the above estimates with § (concerning vanishing moments of sub-exponential order).
For instance, ||eh(‘bll/(szil)+(ma"{“’“71})WHH))Wx//f [[zoo is estimated by [7] with p; =5 = u,
P2=Vv, T1=T=v+u—1and t=2v + u —1 (in the case of f and ¥ under the com-
mon parameters v and u). If one considers small 2 > 0 and takes v = § + 1 (see Re-
mark 2.2), a similar estimate as (ii) holds since (max{a,a})V"*#=D(max{a, a~1})/ 1+ ~
a V) Thanks to the additional condition of sub-exponential order, (i) for small
a > 0 can become better since u + v > 1 and |b|Y@ =D = |p|Vrv-1) < |p v ~ |p/
(a+1)"7.

Considering the study of the continuity properties in [3, 7] and [11], we introduce spaces
of functions in a and b which correspond to the Gelfand-Shilov spaces of functions in x
and & since a ~ 1/|&| and b ~ x after wavelet transforms. Therefore, we shall define the
following weighted L>®(R, x R) space which is a subspace of L?(R, x R) as far as % is
positive:

Vlff;f(R+ x R) = {F € L*(R, x R); ||eh““‘”‘{‘b/(‘”l)‘”u"’w‘“—l/rS

}F”LOO(mxn) < 0o}.

We remark that if u = oo,

Vii,’s(RJr X R) = {F cI*(R, x R); H ehmax{lb/(ml)l”“,a*l”}F”Loo(mXR) < oo}.

By (i) and (ii), we have

” { b/ DIV 12 ghd(§/ ) a1 )

+ W,
a2 +1 a+1l } wf 159(R, xR)

S C( || ehlxll/vf

Vp
|y * 1€ ey
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The weight function can be estimated from below as

b/ (a+1)1Y 1/2 phd(8/ p+1)M 1 g~/ (1 +8)
€ a-e >Cehmax{lb/(a+1)|1/",a_”(‘“‘5>}

sl ’

+
a? +1 a+1

here we used Remark 2.5 also to eliminate the term 4'/2. Therefore, by Theorem 2.4, we

can also get the following continuity properties.

Corollary 2.7 Let w, v, h and 8 be constants such that ;v >1,v>1,h >0 and § > 0. Then,
for the wavelet v € S’;”;IS(R), the wavelet transform S, °(R) 3 f > W, f € Vvojl”“'S(R+ x R)
is continuous. In particular, when f also satisfies the infinite vanishing moment condition,
the wavelet transform Sg‘?h(R) 5f> Wyf e V;T;’“+B(R+ x R) is continuous.

In Section 4 we shall discuss the optimality of our boundedness results in Gelfand-Shilov

spaces.

3 Proof of Theorem 2.4
At first, we introduce the following lemma.

Lemma 3.1 It holds that for a, 8 > 0

21116 (g 4 BV if0<6 <1,

1o, glo >
(a+ BV + (2 -2V min{a?, BY9} ifH > 1.

Remark 3.2 The latter inequality is given in [13] and [14], which also shows multiplication
algebras for the Gevrey-modulation spaces.

Proof of Lemma 3.1 We shall suppose that @ > 8 > 0 since the proof is trivial when o = 0
or B = 0. Putting y := /B ( > 1), we may show

2110 (5, 4 1)V0 if0<6 <1,
(y +D)Y9 12 -2 ifg>1.

o 1>

This follows from

1/6
+1

min{yi} =21 ifo<p <1,
y=1

(y + )V
and
r;lzirll{yl/9+l—(y+1)l/9}=2—2l/9 ifo >1. O
In the proofs of theorems, || - || denotes the L* norm on R or R, x R. We shall consider

the following cases.
e Case of v >1 and a > 1) From the definition of the wavelet transform we get

v

hlxll/
CHe f” /e*h{|x|1/v+\(x*b)/ﬂ|1/uf|b/maX[l,ﬂHI/v}dx
R

1/v
|eh\b/max{1,a}\ Wl//f(('lr b)| < —n
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Lemma 3.1 with « = |b/a — x/a|, B = |x/a| gives
1/ 1/
|x|1/v _b V_ b '
max{l,a}
b x 1/v x 1/v b 1/v 1 1/v
o
a a a a
b x x 1/v x 1/v x 1/v b 1/v
2(———+—) +(2—21/”)mm{——— = }——
a a a a a a a

1
+ |x|1/\){ ‘

1/v
a }

>(2- 21/") min{

1
/vx

1/v
1
} + |x|1/v{ ’_
a a

X

a a

’

1/v
I

here we used (|b/a —x/a| + |x/a|)"'’ > |b/a|'"". Therefore, putting D := {x € R; |b/a —x/a| <

|x/a|}, we have

71 1/v
C” el f”/ 21/1) Vbla— x/a‘l/u dx

1/
erormstal vy g, ) < VE
I 1/v
CI™ FU [ h2ystat g
all2 R\D
1/v 1/ 1/v
<2Cu”2|| hilx| ”/ -2 g
/
< Cal? ”ehlxll "f ’

e Caseof v>1and 0 <a<1) Lemma 3.1 with o = |b—x|, B = |x| gives

|x|1/U . ‘x;b 1/v ~ ‘ b 1/v
a max{l,a}
1 1/v
— b=V + Y = B + |b_x|1/v{ - _1}
Y 1 1/v
> (16—l +1xl) " + (2= 2"")minf{|b - x"", [2""} B + |b—x|“"{ " —1}

1 1/v
)
a

here we used (|6 — x| + |x|)"/” > |b|"*. Therefore, putting

> (2 _ 21/\1) H’lll’l{|b _x|1/v’ |x|1/v} + |b _xll/v{

I:= {xeR;|b—x| <1},

we find that

b+l
AT Y 1/v_ _ _ 1/vg_1/v
/6 h|b—x|"V{|1/al| 1} dx zf e h|(b—x)lal""’ {1-a }dx
1 b-1

1/a
_ 1/vg_ /v
=a/ g Ml 1-a Vdx < My, ,a
—1/a



Fukuda et al. Journal of Inequalities and Applications (2017) 2017:119 Page 7 of 24

for 0 <a <1 and have

|eh\b/max{1,a}\1/" Wwf(‘lr b)|

|l/

i v
c=e Ji C” I f” —hlb—xll/"{\l/a\ll” ]d
- dl/Z

1/v
Clle"™ " fll

_ _ol/vy s |1V 1/ 1/v_
e~ M@-2"" ) min{lb—x" lx [ )+ Ual MY -1}
a1/2

R\/

<M,, 1/2||eh|xll/ ”
+M’ i P ”/ —h(2-21") min{[b-x /7, ‘x‘I/V}d

e
<l
here we used /2 e Hival' -1} - M, for0<a<l.
Thus, since max{l, a} < a +1 and max{1,a"?} ~ a'? + 1, it follows that

ehlb/(ml)\””
—W,
at’? +1 wf

<cler"y.

e Caseof 0<v<landa>1)Forh>h >0, weget

/91-1/v p /v
’eh 211V | b/ max{1,a} (! Wwf(ﬂ' b)|

1/v
_ Cle s
611/2

oo
x / e =Y+l e=b) al Y Y= (Y o) al 21V b max(alYY g
—00

Lemma 3.1 with « = |b/a — x/a|, B = |x/a| gives

1/v 1/v
x—b b
|x|1/v + 1-1/v
a max{l,a}
/v 1/v 1/v 1/v
b x| x b 1
_|1Z_Z +1Z _21—1/\) - +|x|l/v 1-1]=
a a a a a
/v 1/v 1/v
b «x x\' b 1
> 21—1/v z_7 Ml _ 21—1/1} - + | |1/v -
a a a a a
1/v
1
> |x|1/v - .
a

Therefore, we have

I 1/v
e Wl 1/”|b/max{lu}|1/"Wf( b)| < C|| I f|| / e H ) MY+ b al V) g

‘1/

C|le™ ,
2 CUETEFL (% e
al/z

Clle" ||

IA
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e Caseof 0 <v <land0<a<1)Lemma3.1witha =|b-x|, 8 =|x| gives

1/v 1/v

b
max{1,a}

1/v 1-1/v

x|

— |b_x|1/v + |x|l/v _21—1/\)|b|1/v + |b_x|l/v{ -
a

1
> 2171/U(|b_x| + |x|)1/v _ 21*1/V|b|1/v + |b_x|1/\){ —
a

1 1/v
! _1}.
a

> |b—x|“”{

Therefore, we have

ALl
’eh/Zlfl/V|b/max{l,ﬂ}|l/" Wd/f(a, b)‘ < C”e |x| f” / — (= {lel/"+\(x b)/“|1/v}d

all?

hxl/v
< e S Clle"™ Cle™ fll / K =Bl g

IA

clé”

fl:

Thus, since max{l,a} < a + 1, it follows that
” #2171V b (a1) \”“WfH < C” h|x|1/f”

e Case of ;> 1) Let i/ := /(1 + 8). By Parseval’s theorem, the wavelet transform can be

rewritten as

Wy f(a,b) = \/g /R FE)e % (ag) de. @)

Since

rmaxtlag Vi ag | 0) o h(lag |VH v lag | -1 h(lag |H +lag |10)

) > ce
similarly as (1), we see that

e ()| < CeMag ¥ +lag|1%)
Hence, we get

/
|Gl R Wyf(a,b)|

LA

f

< Ca? |k

/ - P e S COE O R 7S
—00

Lemma 3.1 with « = |&], B = |a&| + |a& |/ gives

1 1 Wyl
PG - {d(é/,u +1)(1 + ;) }
Un 1 s 1 WV
> |¢] +<'“E'+W> —{d(é/u+1)(1+;) }

|E1M5 + ag M+
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1 1/ " ) n 1 1/p
2<|§|+|a§|+w> +(2-2 )mm{|s| ,(Iaél+w) }

1 w1l
—{d(S/,u+1)(1+—> }
a
> (2-2"") min{lél”“ <|a$| + ;>W}
- ’ |ag|n ’

here we used

, RN ERYAE! w
IEI‘IEIII{l |§|+|a$|+W = ;+ +; .
Therefore, putting
D= {& e Ry &' < (lat| + lag| ")},

we have

asym
’eh{d(élu+l)(1+l/a) } W‘pf(ﬂ,l’))’

< Ca?|| e | / (2 g

1/n 1/ /8y1/,
+Ca1/2”eh\g| " ”/ 2-271ag | +ag T e
Ca”2|| hlé\”“f”f e he=2"IENE geif g >,
h\EI
C”e e Ei Jpe e 2N e if0<ac<l
1
< Cmax{a“z 1/2}H Al [ ”

Thus, since

1 —1/ 31/, Up =1/ (u+8
MAGIA DAL W ld@ I Y _ hd(6lus1)Ma (+9)

and max{a?, a2} = 7> max{a,1} ~ a~V*(1 + a), it follows that

a2 ehd(&/uﬂ)”“a‘”(“*‘”

] =l

e Case of ;1 > 1 with the condition |f(£)| < Ce 67" Let 8 1= 8/(u + 8). By (2) we get

| htdl e wevia YV )
< 4l ||eh<\s|“ﬂ+|ér“5>j||

oo
% / ¢ HIEIH 181 4lag H +lag P —{d(lne) (el (etfa D e
—00
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Lemma 3.1 with « = |£]| + |&|7*%, B = |a&| + |a&|/® gives

&M+

1 o 1 4 S\ i
& |18 +lag ™" + lag |’ (3/M+1)(1+a) 1+ — g3

1\ 1\ ) 1\ Ve
> <|§|+W) + (W§|+W> —{d(é/pc+1)(1+a)" (1+ —/5) }
1 1 1/
= <'5' * g TSl |as|ﬂ“>
y ) 1/n 1 1/p
F2-2 ‘)mln{<|§|+|s|ma> (| £+ mgw) }

, 1\
- {d(é/,u +1)(A +a)? <1 + ) }
at/s

U\ oo e L\
> (-2 min (61 + ) (1o + )

here we used

. 1 LY (8 i)a )M/11“’
1;161{{1 |E|+W+|aEI+W = ;+ +a +—/5 .

Therefore, putting

D= {& eR; (1&] + [517°)"™" < (la]| + lag[ )"},
we have
’ eh{d(&/ﬂ+1)(1+a)“/ (141/a/8)8 Ui W, f(a, b)]
< Call? | e +1er ”5)f||/ 221 €W g

i —1/8 i wl/é\1/ i
1/2” A(IE1MH +1E ] f”/ =21 )(|ag | +|ag|7H%) dg

Call2 || MM e [ 22 e g g > 1,

h(g 111 g 1710y 5 1/ 1/ .
Clleal—ufllfRe—h(Z—z DIEM ge if0<a<l

= Cmax{a”z,a‘l/z} H eh(ls‘w"‘g'_l/a)f||.

Thus, since

’

, 1\ 1\*
1+a <1+ /3) > (max{a,—}) , (3)
akt a

and

eh{d(smu)um)ﬂ’(1+1/a#/5)5/}1m = hd/p+ )V max(a,a )
i )
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it follows that

1/2 _hd(8/pu+1)VH (max{a,a~1}) 1/ (14 +9)
a’'-e n(lg|/1 =1/8y 4,
Wyf Il < Cll e +Em0g

l+a
e Case of 0 < u <1) Let k = max{l/u — 1,1} = 1/8. For h > i’ > 0, we get

1911/ "\
|eh VIG5 u+1) A +1/a) YR Wwf(d, b)|

< Cal? ”ehml/

7

o0
y / - (r=HE P+t Vi fag |19)
—00

x @~ 1 +lag W ag |10 21V s s (/) Y Y e

We note that if u #1, i.e., 0 < u < 1, there exists L > 0 such that

1 1/ 1 els Vi
_ +
('“f”—msw/a) - s (lag )

e ((ag [Py L 1V 4 Llag [Pty if |ag| > 1,

|a&
W((|a€|”“/‘s)”“+ll/“+L|a§|) if0<|aé| <1
1
< g (gl ) e 10 ¢ Ljag it
= |ag """ + +Llag|x. (4)

|a€_-|1/8

If 1 = 1, (4) also holds with L = 0. Lemma 3.1 with « = |£|, B = |a&| + 1/|a&|"® gives
1 1 w1/
E[V + |ag |+ — =27 A+ 1)1+ —>
|&l§'|1/5 a
1 1/ 1 I ym
> g4 (Jag|+ ——— ) —LlagF =2V 1dS/u+ 1)1+ -
ag 7 a

1 1/ 1 w'y1/p
> 21-1/M(|s| +|ag| + —) —Llag| - 21‘1/"{d(5/u +1) (1 + —) }
a

|ak |2

= —Llagl",

here we used

min(|§| +|a&| + ;) =d/u+ 1)(1 + l)M/.
£eR |ak |18 a
There exist R > 1 >r > 0 independent of a > 0 such that
Li|ag|F < (h—W)(lag["" + |a&| ™) for |a&| = Ror |at| <,
since —1/8 < k = max{1/u — 1,1} — 1/8 < 1/p. Therefore, putting

1:= {E eR;r/a < |&| <R/a},
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we have
WAV (6 ) (1 ap Py b
le vf(@,b)]

1/, / 1/ 1/, -1/8 / k
< Cam”eh‘g' "f”v/e—(hfh V&IV H +|ag |V +|ag | =) +LK |ag| dg
R

/
/ o NN g
R\/

+ Cal? ”ehm““ fc“ / B R e et de
I

< Cal?| 1"}

<ca? | [t ag
R

+ Cal? || eh‘slwf

/ e-(h-h’)\s|1/ﬂ+Lh’max{Rk,rk} dt
R
< Ca'? Heh‘glwf”‘
Thus, it follows that
||a_1/2eh/21—1//1.d(5/M+1)1//1.u—1/(ﬂ+5) Wwf” < ” d—l/th/Zlfl//‘“{d(5/u+l)(1+l/a)“'/}1/“ Wwf”
LU
= C[ "
e Case of 0 < u < 1 with the condition []}(E)| < Ce‘h‘grm) For h> W >0, we get

7o1-1/p1 W 10/8\8' \1/
’eh 2 {d(8/n+1)A+a)* 1+1/at'®)° } Wllff(ﬂ! b)|
< Ca'? ||eh(\él”“+|sr“5)j?||

% / - e = IUE M 18171 ag [VH +lag 7%
—00

W UENISEI P hag |0 vl 1021V s s s (11 Y e

By (4) Lemma 3.1 with & = €| + 1/|€|*%, B = |a&]| + 1/|a&|"'® gives

&1+ 1817+ ag M +

8y 1/u
_ol-l/p w
2| 2 {d(&/u+1)(1+a) <1+ _a“/‘s) }

1 1/ 1 1/
z<|5I+ ) +<|as|+—> ~L(I&1F +ag|¥)

£ a7

amé

, 81/
—21‘1/“{d(8/u +1)(1 +a)" <1+ —) }

>t ! |a&| L W—L(|&|k+| £1F)
= e TSI g ?
8§ y1/pn
- 21‘1/“{d(8/u + (1 +a)” <1 + L) }
amé

=—L(|&* + |a&|"),

Page 12 of 24
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here we used

5/
) =d8/n+1)Q1 +a)“/ <1 + ﬁ) .

. 1 1
ggg(|s| e gl

13

There exist R,LR>1>r,7>0 independent of a > 0 such that
Li|ag|* < (h-H)(la&|"" +1ag| ) for |ag| > Ror |ag| <7,
and for ¢ > 0 satisfying h > W' +e>h >0 (eg., e = (h-H1)/2)
LI E1* < (h—H —e)(1§1"" + 1§°)  for 5] > Ror [§] <7,
since —1/8 < k = max{l/u — 1,1} — 1/8 < 1/p. Therefore, putting
I:={¢ eRirla<|§|<R/a} and J:={¢ eR;7 <|€| <R},

we have
| 2V A )y (11 ) Wyf (a,b)|
/ -1/8y 4,
< Ca'? ||eh(\5|1“+|s\ ! 7

% ] e =g 1141 |70 s lag V0w lag | )L (6 +lag) g
R

i =1/8y~, / -1/8
< Cal? Hehusﬂwm ! )f”{/ e e
R\(1U))

+ / ¢ e lg IO ~(hi ) (lag 0+ ag |V O)+ Lt ag | e
v

! / -1/8 /1e1k
+/ ¢ )L g
N

+/ e(hh’><|s1/“+s|-“5+a5|”“+|as-”5)+Lh’(|s|k+|a$|k>d5}
nJ

1/ =1/8y, 1/ -1/8
< Call?| sl el >f||{/e—5<f' e g
R
. / eI maxRE) g
R
. / B € V0L max(RA )
R
+ / o~ (=H &M+ [E7H0) L max{RE RN K75 dg}
R
1/ =1/8y~,
< Ca1/2||eh(\él H+g] )f”

Thus, by (3) it follows that for 4> 4’ > 0,

_ 1-1/, /, —11\1/(1e+8)
” a2 h2 M d(8/u+1) V1 (max{a,a—1}) 1+ W‘/,f”

This concludes the proof of Theorem 2.4.

< |a 2O ) ) (Le1/a ) Uk wyf| <c| s ig T 2 '

Page 13 of 24
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4 Concrete examples
In this section, we introduce concrete examples according to whether the order of vanish-
ing moments is finite or infinite.

e Case of finite vanishing moments) Let us consider the function and the wavelet

f(x) = sech(hx), ¥(x) = i sech(hx)

In particular, when % = \/i, it holds thatf(é) =f(§), and we also see that 1/A/(§) = iEf(&)

and ¥ € S}Z?(R) with 0 < /' < h. By the change of variables ¢ = ¢?#%*, we have the wavelet

transform

a
Wyf(a,b) = /C— / Y (x)f (ax + b) dx
R
= —4h 1 d
- Cx// / ehx +e—hx eh(ax+b) +e—h(ax+b) x

0o tl/a _ dt

ehb /C]/,ﬂ/ (tl/u +1)2 ’ t%(t.,.e—Zhb)’

where
9 2
(&) « 21002).
€]
Using the Holder inequality A + B > ¢~ 1 —L AVPBIVP with
2 2 2 .
I<—F <ps:= < - <00 for sgnb = +1 respectively,
1+7 1:thmax{lu} 1_7

we obtain the estimate (from above)

|Wyf(a,b)|
dt
ehhm/ tlla +1 t ¥ .th/pie—ﬂtb(l 1/ps)
Wps — 1)1 VP hb(1-2lps) poo g dt
B pi\/C—wa o tatl t%ﬂﬁ
Cypet1-2lpx)  poo dt
B va o thetl tl—ﬁiﬁ;um
- Cye(1-2/p) { /1 1 dt N f°° 1 dt }
- Ja 0o 0+1 tl‘ﬁim ., tVe 40 tl—;—aiﬁ;(m)
Ch,e b(1-2/p+) 1 1
Cyyeb01-2/p=) 4a
ﬁ 1- (hm:)/:[ll,a} )2

< C /a1/2e—h’|b\/max{l a) (5)
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here we used the fact that

1 n 1 n
1-—+——— <1, 1+ —f+————>1
2a  2hmax{l,a} 2a  2hmax{l,a}

Then (i)’ and (ii)’ in Theorem 2.4 become

[y = €

W) a2 W | oo,y = ClE" | ey

From estimate (5) it is possible that this example is the near critical case of (i)’ and (ii)’
since |b/(a + 1)| ~ |b|/ max{1, a}.

Remark 4.1 If we consider the typical example of the Mexican hat wavelet
VW= () ) =
Tl4/3 i

we see that ¢ € S};%Z?(R) with 0 < /' < i = 1/2. In particular, when f (x) = e e S}g:;:o(R),

the wavelet transform is computed as

1/4 5/2 2
2«/—7'[ -1-b )e—bz/(2u2+2)

1/3C¢,(a2 +1)52

Then (i)' in Theorem 2.4 becomes

Wy f(a,b) =

/o—1 2 ?
[ W f e,y = ClE™ f ey

The exponent —b?/(24% + 2) is not a critical case of (i)’ with 0 < h/ <h= % since W'271|b/(a +
1)|2 ~ b?/(4a?® + 4). Therefore, we gave the new wavelet yr(x) = sech(hx) € SY°(R) with

L
0<h<h=Z.
e Case of infinite vanishing moments) Firstly we prove the following.

Proposition 4.2 The inverse Fourier transform of e~ -7 g given by

[o¢]

5 22 t” 1-n1 «?
]: [ %‘ ¢ Z < 2 15;_2)1 (6)

where 1Fi(a, b, z) is the confluent hypergeometric function of the first kind.

Remark 4.3 The change of variables also yields

F [ il \/7/ e e cosx& d&

= ﬁ/ eSOV 0 g(2x)E di
0
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= V2F e OV (Vo)

2, (=/2¢8)" 1-n1 «?
S ()
n! 2 20 2

n=0

Proof of Proposition 4.2 Let us put

I(t, %) := F! [e“sz_tz‘sfz](x) = \/g/ e 5t cosx& dE.
0

Differentiating I(¢,x) in x, we have

2 [ 2 2.0
9. 1(¢,x) = — - / e T Esinxk dE,
0
2 2 [ 22672 9
9 1(t,x) =— - e E“cosxé dE.
0

On the other hand, differentiating / in ¢, we also have

2 h _
,d(t,%) = — | =2t / e 2 s xt dE.
T 0
Moreover, the integration by parts yields
2 o 2627/ g2
0l (t,x) = — | —t {e : } e* EcosxtdE
T 0
2 a * g2 22 9 .
=)=t e {(1-28) cosx — x£ sinxé | dE.
T 0
Thus, we see that I(z, x) satisfies the partial differential equation

8,1(t, %) = 2¢7 { %1(:, X)+02(t,x) + gaxl(t, x)}. (7)

We may suppose that x > 0 since I(¢,x) = \/gfooo e 627 cos x& d& is an even function
in x. Now we consider the point x =2./=y (y < 0) and get for J(¢,y) := I(¢,2./=Y)

-1 1 1
3](t,}’)= —(a I)(t>2\/ _y); 32](t,)’):—— afl (t;2\/ —)’)—— ](t;y)'
’ NS ’ 5 2y
Therefore, by the change of variables x = 2, /=y, it holds that

3J(t,y) =2t { %] (t,9) - 931 (t,y) + <y - %) 3,/ (t,y)}.

To solve this partial differential equation, we shall use the method of separation of vari-
ables. By putting J(¢,y) = Y oo Lu(£)K,(y), we obtain

L) —YOyKu(3) = (5 = 3)3,K,(y) + 5K, (y)
= =: Ay
2L,(2) K, ()
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We immediately see that L, (¢) = £2*7L,(1). It is known that

[2 [ -
I(t,0) = ;/ 6—52_1:2& de
0
1

o 1 (-2) ;  (-2)?
=E€2 (:E{1+Ttl+7t2+}> (8)
We note that
1(6,0) =J(5,0) = Y Li(OK,(0) = Y Ly(®),
n=0 n=0

here we may take K, (0) =1 for all # € N by choosing the suitable L,(¢). Hence we see that

An =75 and

1 (-2)"
E n!

tn

Ln(t) = tnLn(l) =
Meanwhile, the eigenvalue problem
2 1 1 n
—yayKn()’) “\3 —y )9 Ku(y) + EKn(y) = EI(HO/)

with K,,(0) =1 has

1-n1
K, (y) =1F , =Y.
» 11( 5 2)’)

Thus it follows that

= S 1 (=2, (l-n1
](t’y) :;Ln(t)KnO’):;E ! t lFl( P 15;)’))

which gives

1 =\ (=2) 1-n 1 «?
](t,x)— E;t TIF&(T,E,_Z)‘ (9)

We knew that I(£,x) is an even function in advance and supposed that x > 0. The last
representation also implies that I(¢,x) is an even function in x. So, (9) holds for all x € R.
We have derived (9) by solving the partial differential equation. To avoid confusion, let

us denote the solution represented as in (9) by 1(t,%). It remains to show the uniqueness of
1(t,%) = % Yoot (21" 1F1(1’7”, %, —%) and I(t,x) = \/gfooo e &1 cosxé d¢ except the

n:

case of ¢ = 0. Instead of I(¢,x), we consider for (s,x) € (0,00) x R

Z(5,2)(= 1(v/5,%)) = \/g /ooo e cosa d
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for the differentiation with respect to s. Then, by Stirling’s formula, we obtain

o0 .
970/ Z(s,x)| < ﬁf R PR
T Jo

< Csupe™*"y™ - supe M2 /"%
n>=0 u=0

< Ce‘V”(T) .e—j/2]-j/2

N

< Cr;”"im!(j!)”2 (5 Crs"‘+7m!j!).

This implies that Z(s,x) is analytic for (s,x) € [sp,00) x R with arbitrarily fixed
So > 0. Therefore, we see that I(¢,x) = \/gfooo et cosx& d& is analytic for (t,x) €
(0,00) x R. O

Remark 4.4 Probably I(¢,x) would be analytic also at £ = 0. But Z(s, x) (= 1(+/s, x)) loses the
analyticity at s = 0. Indeed, we find that I(/s,0) = %e‘z‘ﬁ = %{1 + (_1—,2)\/5 + %s +ooe

The Taylor expansion around a point £ = T > 0 gives
2 [* g2 22 n 2k
I(t,x)| =,/ — e cosxEdE | = Z ani(t—T) ,
T Jo n=0,k>0

since I(t,x) is an even function in x. By (9) we also get another Taylor expansion

. 1 & 2 (=2)" 1-n1 2 . .
I(t,x)zﬁg{(t_T)+T} p 1F1< 5 ,5,—2)2 Z ﬂn,k(t—T) x2k.

n>0,k>0

Then U(t,x) := I(t,x) — I(¢,x) = Y =00 Unk(t — T)"x%k satisfies
41 2 x
0. U(t,x) =2t ELI(t,x)+8xU(t,x)+ Eaxl,[(t,x) ,

and by (8)
Uu(,0)=0.
Therefore, we get u,o = 0 for all # > 0 and

7 nut(t =T = Y @k + Dt + 4k + Dt JE - T)"5%, (10)
n>1,k>0 n>0,k>0

here we used that

8,%1 = Z 2k(2k — Vw1 (2 — T)' %2 = Z 2(k +1)(2k + V)ugyy pes1 (£ — T) %%~

n>0,k>1 1n>0,k>0

Moreover, the left-hand side of (10) is changed into

Z nut(t — T)" % = Z (M ie + (1 + Vit f T (8 - T) .
n>1,k>0 n>0,k>0
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Thus, it holds that
nipi + (m+ Dy p T = 2k + 1){Mn,k +4(k + 1)Mn’k+1}.

Hence, when u,,o = 0 forall n > 0, we find that ,,; = 0 for all # > 0, and recursively u, ; = 0
for all # > 0 and k > 0. So, we have

Utx)= Y unilt—T)"x* =0.

n>0,k>0

This concludes that I(t,x) (= \/g fooo o8-8 cosx€ d€) must coincide with I(¢,x) (=
f > Ot” n, "R = é, 2 7)) for (¢,x) € (0,00) x R. [

As an application of Proposition 4.2, we can compute the Fourier transform and the
wavelet transform of concrete functions in the Gelfand-Shilov spaces. So, now let us take
@(E) :f(f;‘) = e We see that v.f € Ség;,/z(R) for some /1 > 0 since ¢ gives u =1/2
and the Gevrey function e~ - gives § = 1/2 and v = 3/2 by the Paley-Wiener theorem.
Then by (2) it follows that

Wy f(a,b) =2 /Cif e Ura)E?=(ea e (o0 e e
¥
~(ra ) (1ra?)o™ cos b wdw
\' C¢(1+ﬂ2)/ V1 + a2
—w?—(a+l/a)?w2 i—/
\/ Cw(1+zz2 / e i do

—l[e— w2~ (a+l/a)’w 2]( b )
Cw(1+ﬂ2) V1 +a?

By the Paley-Wiener theorem, we find that for some p >0

‘2/3

|W¢f(ﬂ, b)| < Ce—plb/m‘za ~ Ce—ﬂ\b/(lﬂl)

This implies that the order (i) in Theorem 2.4 is almost optimal with respect to a and b.

Using Proposition 4.2 with £ =1 and ¢ = a + 1/a, we have the following.

Theorem 4.5 Let /(§) = f(¢) = e~ for £ #0 and = 0 for & = 0. Then

> ) 1-n1 &
0 £ = 7= 3 SRR (T ) S
n=0

for some h > 0, and the wavelet transform is given by

[ 7a 2\ {-2(a +1/a)}" 1-n 1 b?
Wif(a,b) = Cy(1+a?) ; n! 1F1< 2 ’5’_4(1+a2)>’

where 1F1(a, b, z) is the confluent hypergeometric function of the first kind.
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Remark 4.6 Especially when b = 0, we also find

_ na —2(zz+é)
|Wy.f(a,0)] = /7% )" . (1)

Then (iii)’ in Theorem 2.4 becomes

- /2 ma -1 ., 2 =214,
”ﬂ l/Zeh 2max{a,a }W¢f||Lw(R+><R) S C”ehmdxﬂé\ LE] }f’”Lw(R)

(11) implies that max{a,a'} in (iii)’ cannot be improved anymore since 4’ ~ 1 and

W2max{a,a™'} ~ 2<a + l)

a

Remark 4.7 As introduced in Remark 1.1, the Bessel wavelet ¥ (x) satisfies &(E y=e &
for £ >0 and ¥(£) =0 for € <0 belongs to S;*(R). Hence, we also see that

1 1 —
lﬁ(x) = WT—MI(I(Z 1- lx) + m[ﬁ@ 1+ lx)

satisfies /(£) = e ¥1-E1™ for £ #0 and /(€) = 0 for & = 0 belongs to SL(R) and Sé’;l(R) for
some /1 > 0.

5 Conclusions

In this paper, we consider the Banach spaces of Gelfand-Shilov functions satisfying van-
ishing moment conditions and study the wavelet transforms. Our contributions are as
follows:

(1) We derived sharp estimates of the wavelet transforms which are useful for the
time-frequency analysis, and stated the continuity properties of the wavelet
transforms in Gelfand-Shilov spaces as a corollary.

(2) We computed the Fourier transforms and the wavelet transforms of concrete
functions in the Gelfand-Shilov spaces. These examples show the optimality of
estimates in Theorem 2.4.

Appendix
Concerned with the inverse wavelet transform, we also get the following.

Theorem A.1 Let p, v, h, W' and § be positive constants such that i +v > 1, i’ < h. Define
that d(A) = A(A — 1) V% Then, for the inverse wavelet transform M, with the wavelet
¥ e Sffjf(R), the following estimates hold: for F € Vv’f;f(R+ x R)

(iv) Hehd(wwl)'x'l/(W)MwF | oy

1/ 1/ -1/8 .
< cletrmmtat g s,
.\ h/21—1/vd(v/ﬂ+1)‘x‘ll(;uv)
(iv) e M‘PF”LOO(R)
1/ 1/ -1/8 .
< Cleme At TRE gy #O<V S,
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| |1/2 (8 DV (max{lg |1 0e?)
(v) FMyF]
1 v
€] + L®(R)
h{|b/ max{La}|/V +al/t +a=1/8) .
= ||e F||L°°(R+><R) ifu>1,

/91-1/p 1/ —11\1/(+6)
(v) ”eh2 d(8/pu+1)H (max{|€[,1E17)) ]:[wa] ”LOO(R)

< CHeh{lh/max{l,a}ll/"+a1/“+a‘1/5}F”LOO( ifo<pu<Ll

R; xR)
The weight function of (iv) and (v) can be estimated as

] max{La}[V/" +al/t 44713} _ 3 max{|b/(a+1)|MV ,al/it,a=1/8)

’

and estimated from below as

1/(+v) 1/(p+v)
ehd(v/ml)lxl > Cehlxl ,

and

1 11//1 , —1y\1/(p+6) 1/(u+8) —1/(p+8)
|& [M2hd 0/ 1) 1 (max g1 ceIEM ) 1| ) € s

>
&1 +1 N e 1

in the same way with (1). Therefore, by Theorem A.1, we can also get the following conti-

nuity property.

Corollary A.2 Let u, v, h and § be constants such that u >1,v >1,h >0 and § > 0. Then,

for the wavelet ¥ € Sfi 2 (R), the inverse wavelet transform Vf é’il(R+ x R)> F—> MyF €

S/L+5,[L+5

e (R) is continuous.

We shall only give a sketch of the proof of Theorem A.1.
e Case of v > 1) From the definition of the inverse wavelet transform we get

|ehd("/u+l)lxll/(" +V)M1//F ()]

< C|| eh{lb/max{l,a}|1/v+a1/u+u—l/5]F||

X/ /a—S/Ze—h{lh/max{l,a}l”"+al/“+a’1/5+|(x—b)/a|1/”—d(v/u+1)|x|1/(/““)}dhda.
R; /R

We shall use the Holder inequality A + B > (Ap)"?(Bq)"4 withp = /v +1, g =v/p + 1. If

a>1, Lemma 3.1 with « = |x/a — b/a|, B = |b/a| gives

1/v

b x—b|" v
‘7 N L —d(— + 1) || /()
max{l,a} a %
1/v 1/v 1/v
x b b x v
2(2—21/“)min{ e }+ = +azl/“—al<—+1>|x|”(‘”")+a‘“‘S
a a a a w
1/v 1/v
e b b
2(2—21/")m1n{ A N }+a‘1/‘3.
a a a
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If0<a<1, Lemma 3.1 with o = |x — b|, B = || gives

1/v
—d(i +1> |x|1/(u+v)
"

> |b|1/v +d<£ +1) |x_b|l/(y,+v) —d(i +1) |x|1/(p,+v) +ﬂ—1/5
1% n

1/v

x—b
+a —_—

a

1/ -1/8 +

’ b
+a

max{l,a}

Vv
> d<— * 1) (2 = 2"y min{ e - b0, |pY ) — iy, + a7,
"
here we used
V
b - d<— + 1) 6"V > m,,, forbeR.
"

Thus, it follows that
“ehd(v/u+1)\x\1/(““’)M1//F” < C”eh{lb/max{l,a}\1/"+al/“+a'1/8}F||

[ee] 1
— _ 1,118 _ Ll -1/8
X C{/ a3Peha da+f a e M-muvra }da}
1 0

< [ Htrimtalai ey py

e Case of 0 < v <1) This case can be shown similarly as the case of v > 1.

e Case of i > 1) This case can be shown similarly as the case of i > 1 with the condition
IF(€)] < Ce " for the wavelet transform by exchanging the roles of  and &.

e Caseof 0 < <1)Forh>H >0, we get

1911/ W 188" \1/
’ehZ (S p+1)(I+EDH (1+1/1E1#°)° ) I‘F[MT//F](%‘”
< C”eh{lb/max[l,a}l””+a”“+a'1/5}F|| f / a—3/26—(1’1—h,){ﬂ1/ﬂ+1f1/8+\a§|1/”+|a§\_”5]
R;: JR

_ W, A, ,~1/8 1/u —-1/5 _91-1/u uw 1/8\8" 1/
% e W {|b/ max{La}|"'V+a *+a=""° +|a& " * +|ak| 2 {d(8/u+1)(A+|EDH (1+1/|E|H°2)0 } }dbdﬂ.

Similarly as the case of 0 < & <1 for the wavelet transform, by (4) Lemma 3.1 with « =

a+a M, B=ak| +|a&|M° gives

b l/v
+al/ﬂ +a—1/5 + |ﬂ§|l/ﬂ + |6l§|_1/8
max{l,a}
5 , 1 8y 1/p
—21-1/”{01(— +1) (1+])" <1+ —/5> }
M |&1*
b 1/v
> —L(ak + |oz“§|k) + | —
max{1,a}

There exist RLR>1>r,7>0 independent of a > 0 such that

LK |ag|* < (h—W)(ja&|"™ + |ag| ™) for |a&| > R or |a&| <,
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and for ¢ > 0 satisfying h>h +e>H >0 (eg., e =(h-H)/2)
LWd" < (h -h - 8)(&1/“ + a‘l/‘s) fora>Rora<r,

since —1/8 < k = max{1/u — 1,1} — 1/8 < 1/p. Therefore, putting
I:={aeR;r/lE|<a<R/|E]} and J:={aeR,;F<a<R},

we have

7ol-1/p1 w w/8\8' V1
|eh2 {d(S/u+1)(1+[EN)H (1+1/]E[H7°)° ) ]:[MwF](S”

< C” eh{lb/max[l,a}ll/”+a”"+a“1/5}FH

. _ _ —(h—W M 1y 118 1/ -1/8 /(K k
X/ mln{a 1/2,61 3/2}e (h=H'a' " +a="° +|ag |V +|ag | " Y+ LK (a* +|a& | )dﬂ
R,

/v, 1/ -1/8 . _ _ (A, -1/8
< CHeh{lblmax{La}l +a'Mra }F” {/ mln{a 1/2,61 3/2}e e(aM+a )dﬂ
R:\(1V))

. _ _ PV VTR VI N A i -1/ / k
+f mm{a 1/2’6[ 3/2}6 e(a™+a=0)—(h=h')(|a&|"* +|ak| )+LK |a&| da
Iy
. _ _ (h_ i\ (A 118 'k
+/ mm{a 1/2,61 3/2}e (h=h")a"""+a=°)+LK a da
IAY

. _ _ (h—W VA 118 1/ -1/ s k
+/ mm{a 1/2,11 3/2}e (h=n")(a""*+a="% +|a& "' * +|ag |~ %)+ LH (a" +|a| )dﬂ}
ny

< | ehimaxia)atiea )

Thus, by the inequality (1 + |& D™ (1 + W)‘S/ > (max{|&], é})“/, it follows that

” ¢/ ) max(gLIE YD AL P < b ma Ll el ea ) F|.
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