
Tamburri et al. Journal of Internet Services and Applications (2015) 6:10
DOI 10.1186/s13174-015-0024-6

RESEARCH Open Access

Social debt in software engineering: insights
from industry
Damian A Tamburri1*, Philippe Kruchten2, Patricia Lago1 and Hans van Vliet1

Abstract

Social debt is analogous to technical debt in many ways: it represents the state of software development organisations
as the result of “accumulated” decisions. In the case of social debt, decisions are about people and their interactions.
Our objective was to study the causality around social debt in practice. In so doing, we conducted exploratory
qualitative research in a large software company. We found many forces together causing social debt; we represented
them in a framework, and captured anti-patterns that led to the debt in the first place. Finally, we elicited best
practices that technicians adopted to pay back some of the accumulated debt. We learned that social debt is strongly
correlated with technical debt and both forces should be reckoned with together during the software process.

Keywords: Software project management; Social debt; Socio-technical decisions; Social software engineering;
Case study

1 Introduction
Software engineering success is increasingly dependent
on the well-being of development communities [1]. In
some of our previous work [2-4], we found many decisions
influencing community well-being. For example, changing
the organisational structure [5] of the development com-
munity (e.g., through outsourcing), changing the develop-
ment process (e.g., by adopting agile methods), leveraging
on global collaboration (e.g., by striking a balance between
formal and informal communication across global sites)
are all socio-technical decisions, i.e. social and techni-
cal at the same time, that influence the state and welfare
of developing communities and their members [5]. The
social connotation of these decisions, changes the way
people work and interact with others - i.e., their organisa-
tional and social structure [4]. The technical connotation
of these decisions, changes the way in which development
tasks are worked out. In agile methods, for example using
Kanban boards, a “pull” task-allocation is often used, as
opposed to classic “push”.

Some socio-technical decisions eventually cause addi-
tional cost (e.g., through delays) on software projects and
the development community around them. This cost, is

*Correspondence: damianandrew.tamburri@polimi.it
1VU University Amsterdam, Amsterdam, The Netherlands
Full list of author information is available at the end of the article

not immediately visible and its resolution is often post-
poned. Also, if the same decisions remain into place,
project costs may increase. For example, organisations
often employ strict information-filtering protocols to pro-
tect industrial secrets when they embark in open-source
[6]. This decision, however, might slow down develop-
ment interactions, causing delays or even inciting fear.

This extra cost is conceptually similar to technical debt
[7], i.e., the additional project cost caused by sub-optimal
technical decisions. However this extra cost is not neces-
sarily related to code and it is actually “social” in nature, i.e.
connected to people and their development organisation.
Paraphrasing Cunningham [8] who first introduced tech-
nical debt, social debt can be thought as: “not quite right
development community - which we postpone making
right”. In Layman’s terms, by social debt, we indicate the
additional cost occurring when strained social and organ-
isational interactions get in the way of smooth software
development and operation.

While technical debt has received increased attention
over the last 10 years, this other form of debt, namely
“social debt”, has remained latent and relatively unex-
plored. For instance, software engineering practitioners
still lack a way to formalise socio-technical decisions and
measure the connected debt.

This article takes one small step forward towards defin-
ing and studying social debt by means of an industrial

© 2015 Tamburri et al.; licensee Springer. This is an Open Access article distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction
in any medium, provided the original work is properly credited.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Crossref

https://core.ac.uk/display/208573805?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
mailto: damianandrew.tamburri@polimi.it
http://creativecommons.org/licenses/by/4.0

Tamburri et al. Journal of Internet Services and Applications (2015) 6:10 Page 2 of 17

exploratory case study. The case study was driven by the
following research questions: “What are the factors at play
around social debt during the software lifecycle? Are there
patterns in said factors? Can they be mitigated?”

From our study we learned that, indeed, there is a strong
correlation between social debt and sub-optimal charac-
teristics in organisational-social structures behind soft-
ware development communities. Also, social debt is inex-
tricably related to technical debt in many ways, e.g., unin-
formed socio-technical decisions generate both social and
technical debt in a compounding manner that cannot be
trivially “payed back”. In addition, our findings suggest
the presence of community “smells”, i.e., precursors to the
emergence of social debt, much like code smells may lead
to technical debt, e.g. as shown in [9] by Zazworka et al.
Finally, our findings uncovered some “mitigation strate-
gies”, i.e., ways in which some community “smells” may be
averted and avoid the debt, even if partially.

In summary, this article offers four contributions: (1) a
framework to define and interpret social debt; (2) a list
of community “smells”, intended as socio-technical anti-
patterns that may appear normal but in fact reflect unlike-
able community characteristics, such as anti-social organ-
isational behaviour across the community, e.g., developers
that refuse or delay information sharing; (3) a list of miti-
gations to said community “smells”, as emerging from our
case study; (4) a list of lessons learned as part of our case
study that further discuss social debt and its implications.

The rest of the article is structured as follows: Section 2
outlines previous work related to the study of social
debt. Section 3 outlines our study design, discussing our
research methods and materials. Section 4 presents our
contribution while Section 5 discusses their implications,
pointing out to relevant threats to validity and ways in
which they were tackled. Finally, Section 6 concludes the
article.

2 State of the art
On of the very first attempts at linking software and the
social/organisational processes around it is represented
by Conway’s Law [10]. According to Conway’s law, soft-
ware mimics (and sometimes is almost isomorphic to)
the organisational-social structure around it. Therefore,
understanding and supporting this structure, is critical
to engineer software better, e.g., fitting dynamic users’
needs and their new expectations. This can be useful
to, for example, use IT to support governance in global
corporations [11].

Nagappan et al. [12] show in practice the influence of
organisational structure and other “human” aspects on
software quality. This and similar works (e.g. Repenning
et al. [13] or Viana et al. [14]) bring evidence that moti-
vates our study of social communities in organisations
and the debt (if any) connected to them. This family of

studies contributes to social debt by providing evidence
of its existence and impact. In addition these studies pro-
vide valuable data to identify the orders of magnitude that
regulate social debt. Our study is related to results noted
by Nagappan et al. [12], in that we confirmed the rela-
tion between solid and straightforward software devel-
opment/operations and well-structured software devel-
opment social organisations. However, in our case we
observed a live organisational and social structure to elicit
possible causes and effects for its sub-optimality. While
Nagappan et al. establish the causality between organ-
isational structures and software quality, we strived to
understand patterns of sub-optimality across said struc-
tures, e.g., to allow for preventive action by means of social
networks analysis (SNA) [15]. More in particular, we
found correlations between sets of organisational-social
circumstances and additional cost in software process.
Also, we reported the recurrent set of circumstances in
which said additional costs occur. While the study by
Nagappan et al. serves as motivation and theoretical foun-
dation for our study of social debt, the results in this paper
are useful for practitioners embarking on software engi-
neering so that recurrent patterns can be detected and
avoided.

Studies on socio-technical congruence, first defined by
Cataldo et al. in [16] can support the study of social debt.
Socio-technical congruence is the degree to which tech-
nical and social dependencies match, when coordination
is needed. For example, in [17] Cataldo et al. elaborate
socio-technical congruence in formal terms and empir-
ically investigate its impact on product quality. Similar
works (e.g. [18]), can be used as starting points to evaluate
metrics for social debt. Perhaps socio-technical congru-
ence represents a first rudimental metric for social debt
in certain development communities. In our study we
did not put any emphasis on measurements, although we
offer a rough estimation of the debt we encountered. Our
measurement, however, is not based on socio-technical
congruence. Nevertheless, the results of our study could
be used to evaluate if and how socio-technical congru-
ence can be used as a measurement for social debt and to
what degree. Indeed, as part of our results we observed
that socio-technical congruence is sufficient to express
one third of the possible “debt-effects”, i.e., those related to
collaboration.

An evolution of the socio-technical stream leads to
works such as that of de Souza et al. [19] discuss awareness
maintenance mechanisms. These mechanisms are intu-
itively close to the notion of social debt, since their role
is to track and maintain project knowledge with the aim
of limiting delays and connected “debt”. In relation to this,
our work offers means to observe social debt in action and
relate it to social constructs and characteristics such as
awareness.

Tamburri et al. Journal of Internet Services and Applications (2015) 6:10 Page 3 of 17

Bird et al. in [20] use social-network analysis to inves-
tigate coordination among groups of developers with
socio-technical dependencies. These lead to using social-
networks analysis to elaborate on social debt, studying the
very foundations of communities, i.e. their social-network
representation. In our work, we did carry some limited
form of social-network and organisational analysis. An
additional study of our data using socio-technical net-
works as a construct to structure our data might have
revealed additional insights in social debt. This study,
however, is out of the scope of this article. Conversely, our
results in this paper strive to concretise recurrent set of
circumstances into patterns that can quickly be reused in
practice to avoid connected nasty consequences.

Works in organisational or socio-technical decision
making (e.g. scaling agile methods or offshoring) can pro-
vide sample arenas in which social debt emerges. For
example, Cusick and Prasad in [21] research the process
of understanding if the current organisational layout of
a company is performant (or even compatible) with cer-
tain decisions (going “offshore” in their case). For more
informed decision-making, it is vital to measure the social
debt (if any) connected to such decisions. Similarly to
[21], many works research the influence of organisational
decisions on collaboration and product quality aspects,
for example [22,23]. These works support the study of
social debt’s impact in different scenarios, in terms of end-
product quality and evolvability. Our work shares similar
goals to the works above in supporting decision-making
by means of a social debt framework - to establish the vari-
ables around the phenomenon - and recurrent patterns
behind its emergence - to avoid or calculate additional
costs.

Finally, from a social point of view, many works are
indeed related to defining and characterising social debt.
First, there is a rich and elaborate body of knowledge
concerning social capital, e.g., Meverson in [24]. In Lay-
man’s terms, social capital assumes the role of an opposite
force to social debt in that it measures and maintains
the positive value connected to certain organisational and
social structures. In continuum with social capital, social
and organisational Labianca et al. in 2008 introduced the
notion of social ledger [25], conceptually similar to social
debt. Quoting from Labianca et al. “[the effect of] the
social liabilities that can result from negative relationships
[...] in order to flesh out the entire social ledger [of an
organization]”.

3 Research design
3.1 Research problem and research question
From sociology literature, quoting from Onions [26]:
“social debt of a society represents the set of strained
social relationships that emerges as a consequence of
debtor-creditor circumstances”. In software engineering,

the concept can be used, for example, to represent the lack
of trust within a community [27] or the degree to which
it is immature or unable to tackle a certain development
problem. We sought to characterise and study social debt,
pivoting around the following research questions: “What
are the factors at play around social debt during the soft-
ware lifecycle? Are there patterns in said factors? Can they
be mitigated?”

3.2 Research methodology
3.2.1 Empirical background
The results in this article are based on a study in a large
IT service provider (which we call “Capita” from now
on) for the aviation industry. “Capita” has around 3,000
employees in several locations in Germany and around
Europe. Also, “Capita” controls several offices in 14 other
countries.

The context of our investigation is a large software
project featuring the Integration of two very different
software products (which we call “Integra” from now
on). The community of developers we analysed involves
two geographically distributed production sites A and
B. Both sites are responsible for the implementation of
incoming user requests (e.g., new requirements, revised
requirements, bug-reports, etc.) and maintenance of the
two products to be integrated (which we call RED and
GREEN, from now on). The main organisational differ-
ence between the two sites, pointed to us when we first
started our investigation, is that responsibilities in the
remote site are limited to follow what is decided by prod-
uct managers in Site A. Product managers are responsible
for management, software architecture, requirement elic-
itation and critical decision making. Also, while RED was
a well established product, active for well over 10 years,
the GREEN product and people were relatively new.

In our study, the objective of “Capita” was to: (a) clar-
ify the organisational and social problems for the project
under inquiry by distilling a clearer organisational picture
(i.e., to understand the organisational scenario involving
the two sites and their ramifications to other branches of
the “Capita”, if any); (b) later on, consolidate and gen-
eralise our approach for this study for further reuse in
other projects. The gathered data was to be analysed and
evaluated, highlighting the pros and cons (consistencies,
completeness, weakness, strengths, etc.) from a decision-
making point of view, highlighting the roles and factors
involved in the different groups taking part in the scenario,
and trying to find ways to harmonise their collaboration
for the benefit of the Integration project. The industrial
partner instructed us to possibly describe how the deci-
sion making process should be carried out at best and
what knowledge elements should be part of the deci-
sion making so that resulting organisational and social

Tamburri et al. Journal of Internet Services and Applications (2015) 6:10 Page 4 of 17

structure is more sound, well constructed and better fit for
the development effort at hand.

3.2.2 Data collection
The data we used to obtain our results is based on 16
semi-structured interviews (with an average of 90 mins
per interview) as well as 3 focus-groups (with a dura-
tion average of 3 hrs) and two workshops (half-day) to
investigate the scenario over a period of 6 months. The
study involves a total of 22 people, including: managers,
architects, developers, operators, Integration engineers,
testers, technological assistants, logistic assistants and
product owners. Interviewee selection was carried out to
ensure complete coverage of the development/operations
community at hand. This criterion made sure that the
entire organisational and social scenario was investigated.
Nevertheless, to access difficult to reach or hidden popu-
lations in our scenario, we adopted “Snowball” sampling,
i.e., asking our interviewees “who else should we ask about
<a topic>?” [28]. This is typical in scenarios such as ours
where fear and similar social factors may obscure key
people or information from researchers’ view.

Interviewsa were structured according to procedures
and guidelines suggested by Neville-Neil [29]. It should
be noted that social debt itself was never mentioned
during data elicitation, to avoid bias. In addition, focus-
groups were instrumented according to guidelines pre-
viously introduced by Morgan et al. [30]. Finally, work-
shops were structured according to the “Working Group”
organisational and social structure in [5]. The aim of the
workshops was to provide validation of observations made
and refinement where possible, e.g., for unclear or mis-
understood concepts. A final workshop was held with all
participants present, to further validate our observations
after analysis was completed. A report of the study was
compiled into a presentation and hand-outs with possible
comments. After the presentation, the results were dis-
cussed in groups and hand-outs were used for feedback.
Following strict non-disclosure agreements, all transcrip-
tions were completely anonymised at the source.

3.3 Analysis methods
The findings presented in this paper were elaborated fol-
lowing a rigorous empirical analysis approach based on
several methods and described in the following.

3.3.1 Grounded theory
The results reported in this article were obtained con-
ducting an exploratory case study, according to guidelines
proposed in Runeson et al. [31]. We analysed said mate-
rial using Grounded Theory [32,33]. Our GT approach is
structured as follows:

1. Open Coding - (4 phases)

a) Pilot study: a set of 3 interviews were randomly
selected to generate an initial set of codes by an
independent researcher.
b) develop initial theory: based on the pilot study, an
initial theory was generated
c) Constant comparison: the pilot study generated an
initial set of 39 codes. These were organised into a
hierarchy of codes based on emerging relations
between concepts. Thus structured, the start-up list
of codes was used to code the rest of the interviews.
Each interview transcript was analysed line by line
with the list of codes. A code was applied if it reflected
a concept in a paragraph, i.e., microanalysis [34].
d) Constant memo-ing: along step 3, notes were kept
to capture key messages, relations and observations
on the study.

2. Selective Coding - (2 phases)
a) Axial coding: comparing the concepts coded led us
to inductively generate relations among coded
concepts (e.g. “Sub-Optimal Organisational
Structure” causes “Social Debt”, etc.)
b) Aliasing: the definitions of all concepts coded were
compared with each other to identify aliases.

3. Theoretical Coding - (3 phases)
a) Data arrangement: we captured every portion of
text that was coded with a code on a table.
b) Data modelling: the data was represented in a
diagram (see Figure 1). The diagram shows all the
core concepts (i.e., code-clusters resulting from axial
coding, phase (b)) and relations found
c) Theoretical sampling: the diagrams and all the
data at hand were analysed and sorted, trying to
identify recurrent patterns, underlying relations and
hidden meaning. Our observation was aided by
standard analysis methods such as weighted
frequency analysis (i.e. by analysing the number of
times certain concepts showed up against the
number of interviews in which they were found)
card-sorting (by rearranging the hierarchy of types to
let underlying relations show themselves), and
conceptual modelling.

Finally, coding was carried out by two independent
coders to ensure inter-coder reliability. First, the method
was applied by a junior researcher that generated the
pilot list of possible codes (39 codes). Second, a post-doc
researcher re-coded a fresh version of the entire dataset
using the pilot list of codes, resolving issues in concor-
dance with researchers involved.

3.3.2 Causality modelling
To represent causality, we applied the 6C model [35].
The 6C model allows to represent empirical causality
by relating six variables: Cause, meaning the event or

Tamburri et al. Journal of Internet Services and Applications (2015) 6:10 Page 5 of 17

Figure 1 An interpretative framework for social debt.

circumstance that gives rise to a consequence; Conse-
quence, meaning the effect produced by a certain cause;
Condition, meaning the constellation of variables that
need to be true in order for a cause to manifest into a
consequence; Context, meaning the circumstances that
form the setting of the causality function; Covariance,
the set of conditions that produce a mutual variation with
cause or effect; Contingent, the event or artefact whose

value is compromised by the consequences in the causality
function. These six variables are to be found among core
concepts.

For example, on Figure 2,“Category” represents a com-
munity smell. The left-hand side represents the cause
for “Category”, i.e. the set of circumstances that make
“Category” evident and result into the consequences on
the right-hand side. In addition to the cause, the smell

Figure 2 6C model for grounded theory.

Tamburri et al. Journal of Internet Services and Applications (2015) 6:10 Page 6 of 17

“Category” might be subject to a set of conditions (box
on top of “Category”, see Figure 2). Causes for “Category”
exist in the context of the smell (On top of the conditions
in Figure 2). Let’s assume you might want to do some-
thing about the smell by influencing “Category” cause.
Certain covariances (or co-evolving factors) might occur
(lower-box under “Category” cause). Contingents (lower-
box on the right-hand side) represent the value or event
influenced by the consequences of “Category”, similar to
covariances, but for consequences.

From the total set of core concepts extracted during
coding, we identified existing causality dependencies for
about 20% of concepts found. While in most cases the
application of the 6C was straightforward, in some cases
we fell short in identifying “Covariance” and “Contingent”.
This is further discussed in Section 5. When our data did
not allow us to apply the 6 Cs, we used a “ - ” sign in the
related figure: there was no core concept in our study that
was applicable.

4 Results
4.1 Defining social debt: a framework
As previously noted, the core concepts that define social
debt emerging from our study are presented in Figure 1
using a UML notation. The framework depicts the core
concepts that play a role in social debt (Classes UML
Classes). For example, the “SocialDebt” class. The frame-
work also represents the relations behind said concepts
(Associations between UML Classes). For example, the
“SocialDebt” class is in causal relationship with the
“Sub-Optimal Social Structure” class, in particular with
its “undesirableCharacteristicEffect” attribute. Comments
represent how often the relations were found in the data-
set. For example, the causal relationship between the
“SocialDebt” class and the “Sub-Optimal Social Struc-
ture” class was found 28 times in 9 interview transcripts.
To keep the diagram compact, we did not include the
occurrence frequency of core conceptsb.

Based on the definitions and relations for concepts in
Figure 1, social debt is defined as a cumulative and
increasing cost in the current state of things, con-
nected to invisible and negative effects within a devel-
opment community. These effects might need some
digging in order to be found since they are connected
to undesirable, often implicit characteristics in the
organisational and social structure [5] emerging in
development communities. These characteristics pro-
duce an additional cost, e.g., increase the time needed
for development.

To elaborate a (very rough) estimate for the impact of
social debt in “Integra”, we proceeded as follows: (a) we
counted the sub-optimal characteristics reported in its
organisational and social structure over a period of 18
months (114 distinct characteristics); (b) we calculated the

average delay (4 hrs) using delays directly reported in our
interviews for these characteristics, where possiblec; (c)
multiplied the two values.

According to our calculations, This figure equates to a
total of 57 days of extra cost connected to social debt. This
number is referred to the closing date of our study. More-
over, evidence from the final rounds of interviews and
workshops (around the end of our study) suggest that this
estimate was bound to increase, e.g., quoting from the last
workshop in our dataset: “I am [still] not aware of any way
to provide [direct] feedback to an architect. The only way
we are using is by talking and asking around [to strangers]”.

In addition, our study revealed a number of characteris-
tics of social debt, also evident in Figure 1:

• Social Debt is indirectly connected to
socio-technical decisions; analysing the latter
requires aiming for the former - As evident from
Figure 1 there is no direct relation between
socio-technical decisions (“Socio-Technical Decision”
class in Figure 1) and the emergence of social debt
(“SocialDebt” class in Figure 1). For example in our
case study of “Integra” we found a key decision to
adopt a new programming language as an Integration
bridge between RED and GREEN. This decision
seemed good at the time it was taken and was
motivated by two reasons: (a) the language’s efficiency
for the job; (b) the language was shared between RED
and GREEN, tentatively helping in the creation of an
organisational bridge between the two communities.
Eventually, however, the decision caused the addition
of new technicians to the organisational and social
structure which caused fear factors to emerge in the
rest of developers. Consequent condescending
behaviour resulted in managers and software
architects to issue a project slow-down, for
problem-solving. At the end of the study, we
confirmed that problems related to that decision were
still causing slowdowns. This not withstanding, this
property might be related to the exploratory nature of
our study. Since we introduced social debt only after
the interviews, it would have been impossible for
interviewees to point out direct relationships between
social debt and socio-technical decisions, if any.

• Social Debt cannot be ascribed to any one
software artefact in the development and
operations process, rather, it is an emergent
property of the development community itself -
As evident from Figure 1, there are no relations
between social debt and any software artefacts.
Conversely, there is strong evidence that suggests the
effect social debt has on software artefacts, as
represented by the relation between the “SocialDebt”
class in Figure 1) and the “DebtEffect” sub-classes in
Figure 1). For example, in our case study of “Integra”

Tamburri et al. Journal of Internet Services and Applications (2015) 6:10 Page 7 of 17

none of the interviewees could point fingers as to
who or what was causing trouble (e.g., extra costs or
delays) in GREEN or RED and their Integration.
There was a perception of problems that pervaded
the “Integra” project, and this “hunch” sentiment is
constant across our entire dataset. In addition, over
100 “DebtEffects” were reported in 14 interviews as
connected to software artefacts as well.

• Social Debt can be quantified by combining
social network analysis of undesirable
characteristics with analysing their compounding
costs - As evident from Figure 1 the “SocialDebt”
class is strongly correlated to the “Sub-Optimal Social
Structure” and “Sub-Optimal organisational
Structure” classes. Sub-optimality for these
classes is determined by a series of
“undesirableCharacteristicEffect” that can be
quantified. For example in our case study of “Integra”
we found, among others, the following sub-optimal
characteristics: “colleague downturn” - people refuse
or refrain from helping; “extraneous colleagues” -
coworkers do not know each other. Both these
characteristics can be measured through social
network analysis (e.g., as suggested in [36]);
consequently the connected cost may be estimated.
This not withstanding, more research is needed to
establish and apply the use of SNA for social debt
estimation.

• Social Debt’s existence is heralded by
organisational and social anti-patterns (i.e.,
community “smells”) which are emerging and
recurring across the community - As evident from
Figure 1 the “Socio-Technical Decision” class is in a
causal relationship with “Community Smell”. Also,
according to our evidence, the times at which this
causality was reported are antecedent to the
emergence of sub-optimal organisational structures.
For example in our case study of “Integra” we found a
pattern of behaviour recurring in subsequent periods
of time and a consequent suboptimal characteristic,
“communication delays”. We defined this pattern as
the “radio-silence” community “smell”, that is, a
recurring delay (a few hours to half a day) in
answering sometimes critical emails or posts. The
smell is connected to the previously reported
“extraneous colleagues” characteristic.
Communication was relying solely on the “kindness-
of-strangers” effect. Although the delay may seem
small enough, its compounding effect across the
community produced a non-trivial delay. An overview
of the smells we found is available in Section 4.2.

• Social Debt can be causing technical debt as well
- For example in our case of “Integra” we found the
“replicated-coding” and the “code-churn” technical

debt smells [9]. Both smells were emerging from the
aforementioned socio-technical decision to adopt a
new language as an Integration bridge between the
RED and GREEN products as well as a collaboration
ground for both communities. As a result of the
intended collaboration, people at both ends of the
bridge (both in RED and GREEN) replicated pretty
much the same functionality (although with different
structure) working for re-adaptation of their “end”,
with consequent waste. Hence, both smells are a
“SocialDebtEffect”, that is, a negative effect with
invisibile socio-technical causes.

• Social Debt may be mitigated by specific socio-
technical decisions (“mitigations”) - For example
in our case of “Integra” we found over 50 decisions (or
better, instances of “Socio-Technical Decision” class)
made to try and “pay back” parts of the accumulated
social debt, with mild to very good results. Among
these decisions was the decision to adopt a
supporting learning community for technicians and
staff involved in “Integra”. This decision was taken to
“pay back” some of the debt connected to the
“radio-silence” smell, and succeeded, at least partially.
The supporting community increased the social and
organisational mesh across the project network and
increased mutual social relations such as
collaboration, learning and understanding. An
overview of the successful mitigations emerging from
our study is available in Section 4.3 and mapped to
the smells they were addressing.

4.2 Hunches for social debt? Community “smells”!
In essence, community “smells” are sets of organisational
and social circumstances with implicit causal relations.
These circumstances together are not a problem per se,
but if reiterated over time cause social debt, in the form of
mistrust, delays, uninformed or miscommunicated archi-
tectural decision-making. We found over 70 series of such
circumstances in the “Integra” project. 9 such circum-
stances were recurring over time (i.e., more than 5 times),
and reported over the 6-month timespan of our study.
Here follow these 9 community “smells”:

1. Organisational Silo effect: this smell was reported 7
times. In essence, (too) high decoupling development
tasks (and related developers) in the community
caused lack of communication. Also, high task
decoupling lowered developers’ mutual awareness
[37] and collaboration probably compromised
socio-technical congruence [16]. In our scenario
these circumstances led to “organisational silos”, i.e.,
sets of loosely dependent development partners
wasting resources over the development lifecycle.
The developer silos smell is shown in Figure 3.

Tamburri et al. Journal of Internet Services and Applications (2015) 6:10 Page 8 of 17

Figure 3 Organisational silo effect, i.e., isolated sub-communities.

Cause: high decoupling between tasks, lack of
communication or lack of cooperation in checking
task dependencies. Context: the entire development
and operation community around “Integra”.
Conditions: fine-grained command and control
policies for information exchange. Strict superiority
management and use rigid frameworks of reporting
to control and administer command. Consequences:
as a consequence of this smell, the community filled
with wasted resources (e.g., time) and duplication of
code. Also, people in the community reportedly
developed a “tunnel vision” with a consequent lack of
creativity, lack of cooperation and collaboration.
Also, this condition eventually led some developers

to make architecture decisions without the necessary
background and premises, quoting from our
interviews “they [members of team RED] started
taking decisions on their own using different format
every time, I could see it from TCR (technical change
request) documents”. Covariance: number of tasks
and number of dependencies are proportional to
architecture decisions - change or increase to such
decisions usually has two effects: (a) number of tasks
increase; (b) number of dependencies increase.
Contingent: this smell produces a risk on ensuring
project success.

2. Black-cloud effect: this smell was reported 8 times.
In essence, this smell was caused by two distinct

Figure 4 Black-cloud effect, i.e., information overcrowding obfuscates reality.

Tamburri et al. Journal of Internet Services and Applications (2015) 6:10 Page 9 of 17

circumstances taking place at the same time. First,
the lack of people able to bridge the knowledge and
experience gap between RED and GREEN product
teams (i.e., project boundary spanners [38]). Second,
the lack of prescribed occasions for knowledge
sharing (e.g., daily stand-ups). These two
circumstances combined together increasingly
created confusion every time knowledge exchange
initiatives took place. A “black-cloud” of confusing
back-and-forth messages were constantly
obfuscating reality. The black-cloud effect smell is
shown in Figure 4.Cause: lack of boundary spanners;
lack of sharing protocols. Context: the entire
development and operation community around
“Integra”. Conditions: fine-grained command and
control policies for information exchange.
Consequences: this smell reportedly created mistrust
and people taking “matters and decisions in their
own hands”, quoting from our interviews.
Covariance: the effect of this smell is proportional to
the number of information filtering protocols (e.g.,
how many clearance levels) in place to protect
information exchange. Contingent: -.

3. Prima-donnas effect: this smell was reported 9
times. unreceptiveness to change in RED (a legacy
product), caused severe isolation problems for people
involved. These people become “prima donnas”,
acting with a seemingly condescending and
egotistical behaviour, unable to welcome support
from development partners. This compromised the
chances of success for “Integra”. This scenario led to
the emergence of the “Prima Donnas” community
smell. Some areas of the development community
are still unable or irreceptive towards external
influence, cooperation or collaboration. Quoting

from the interviews: “everyone wants to pull the
stream towards their own windmill and [everyone
will vote] for a decision that simplifies their agenda,
uncooperative behaviour [...]”. The prima-donnas
smell is shown in Figure 5. Cause: innovation and
organisational inertia, stagnant collaboration.
Context: this smell was having an effect in all
interactions between RED and GREEN. Condition: -.
Consequence: seemingly egotistical behaviour, lack
of communication and collaboration. Covariance:
organisational changes increased irreceptiveness to
external forces, since every change sparked more fear
in prima donna sub-communities. Contingent: - .

4. Leftover-techie effect: this smell was reported 6
times. Increased isolation of maintenance, help-desk
and operations technicians in both RED and GREEN
reportedly caused technicians to feel as the “last piece
of the ladder” and also the “first ones to deal with all
complaints [from clients]”. This led to creating
mistrust some sort of sharing villainy, i.e.,
misconduct in sharing results or current status in the
unwilling technicians. The leftover-techies smell is
shown in Figure 6. Cause: increased isolation
between development and operations people.
Context: this smell was having an effect in all
interactions between RED and GREEN as well as the
interactions between all products involved and the
(paying) customers. Condition: - . Consequence:
seemingly egotistical behaviour for knowledge and
status awareness sharing, lack of communication and
general lack of trust. Covariance: the more clients the
more the negative effect of the smell. Contingent: - .

5. Sharing villainy: this smell was reported 5 times.
Lack of knowledge exchange incentives or
face-to-face meetings in “Integra” limited the value

Figure 5 Prima-Donnas, i.e., condescending behaviour due to change irreceptiveness.

Tamburri et al. Journal of Internet Services and Applications (2015) 6:10 Page 10 of 17

Figure 6 Leftover-techies, i.e., disgruntled operations people.

that developers perceived in sharing their knowledge
and experience. Knowledge interaction became a
chore, an activity connected more to waste of time
and effort, rather than producing evident benefit.
This condition limits developers’ engagement in
knowledge sharing, to a point in which shared
information is outdated, unconfirmed or wrong. This
scenario leads to the emergence of the “Sharing
Villainy” community smell. People do not recognise
the importance of sharing good quality knowledge
carefully, e.g., by sharing outdated, unchecked
updates.

The sharing-villainy smell is shown in Figure 7.
Cause: lack of knowledge sharing incentives as well
as activities which promote useful knowledge sharing
and synch, e.g., face-to-face meetings. Context: this
smell negatively affects knowledge exchange and
related interactions across the community. For
example, people in RED were not motivated enough
(e.g., by incentive), enabled (e.g., by buddy-pairing
with GREEN) or instructed (e.g., by protocols like
agile methods as in GREEN) to communicate with
fellow partners overseas, likely disseminate
unconfirmed or outdated knowledge, forming the

Figure 7 Sharing villainy, i.e., poor quality of knowledge interaction.

Tamburri et al. Journal of Internet Services and Applications (2015) 6:10 Page 11 of 17

ideal conditions for the “Sharing Villainy” smell, as
the pattern became recurrent. Condition: - .
Consequence: undefined information flow and lower
engagement in the community, as a consequence of
members’ detachment. Covariance: - . Contingent: - .

6. Organisational Skirmish: this smell was reported 7
times. Misalignment between organisational culture
in the development unit and the operations unit
during “Integra” caused severe managerial issues. For
example, different average expertise levels between
GREEN and RED reportedly expected dropped
productivity up to 50% for weeks at the first attempt
to integrate. This scenario leads to an “organisational
skirmish” among organisations, each with its own
layout and properties. The Organisational Skirmish
smell is shown in Figure 8. Cause: different
communication and expertise levels adopted
between units involved in the project. Context: The
skirmish smell was observed during maintenance of
RED and GREEN as separate products, but their
Integration would likely see the same effect as well.
Condition: - . Consequence: this smell led to project
delay of a few days. Covariance: - . Contingent: - .

7. Architecture hood effect: this smell was reported 5
times. Architecture decision-makers for “Integra”
were far away from both GREEN and RED developers
and operators. Also, decisions were taken in an
“architecture board” across which it was difficult to
find those directly responsible for decisions and their
reasoning. This created social strain when decisions
were “questioned” by developers or operators in
GREEN and RED. In essence, the decision to adopt a
software architects’ board to speed-up decisions, did
in fact increase decision-making but created a
“nobody’s fault” effect from architects, nobody

wanted to take accountability for the decision and
lead in its implementation in practice. Also,
developers were reportedly blaming the architecture
decisions for any technical mishaps during “Integra”.
The architecture hood effect: smell is shown in
Figure 9. Cause: geographical and socio-technical
dispersion of architecture decisions. Context: The
smell was observed when decisions were being
communicated to RED and GREEN. Condition:
geographical distance between decision makers and
others played a major role. Consequence: this smell
led to uncooperative behaviour across the
community. Covariance: - . Contingent: - .

8. Solution defiance: this smell was reported 9 times.
Different levels of experience and different cultural
backgrounds divided developers into overly similar
subgroups (through homophily). Then, developers
divided themselves into factions with completely
conflicting opinions concerning socio-technical or
technical decisions to be taken. This slowed down
“Integra” by up to 2 days and led (in some cases) to
“organisational rebellion” (e.g., some developers did
not take the decision into account until the last
possible minute). The solution defiance smell is
shown in Figure 10. Cause: homophile subgroups.
Context: The smell was observed when opinions on
decisions were being asked to RED and GREEN
communities. Condition: different experience and
cultural backgrounds. Consequence: uncooperative
behaviour, ignoring decisions. Covariance: the more
decisions are thrown the more defiance is fostered.
Contingent: technical debt emerging in the project
was reportedly dependent on this circumstance.

9. Radio-silence: this smell was reported 16 times.
Increasingly formal organisational structure full of

Figure 8 Organisational Skirmish, i.e., clashes of organisational structure.

Tamburri et al. Journal of Internet Services and Applications (2015) 6:10 Page 12 of 17

Figure 9 Architecture hood, i.e., architecture decisions are made without accountability, everyone blames the architects.

“regular procedures” forced changes to be retarded,
time is lost between people, mostly extraneous
between each other, to be notified and certified with.
This introduced a fixed recurring delay of 1/2 to 2
days per decision. Also, sometimes people reportedly
refrained from asking additional info at all. The
radio-silence smell is shown in Figure 11. Cause:
highly formal and complex organisational structure.
Context: The smell was observed when
socio-technical decisions were being communicated
to RED and GREEN sub-communities. Condition:
closed organisational compartments between RED

and GREEN. Consequence: time delay. Covariance:
the more decisions are made the more the delay.
Contingent: -

4.3 It smells! What can I do? Mitigations!
Not all debts in “Integra” were left unpaid or un-tackled.
We found over 26 socio-technical decisions operated with
the intent of mitigating, although partially, the effect or
debt evident in “Integra”. Seven interviewees reportedly
belonging to the management board of “Integra” reported
over 20 socio-technical decisions operated over the span
of 18 months to “pay back the debt”. In this paper we report

Figure 10 Solution defiance, i.e., overly similar (through homophily) groups with conflicting opinions.

Tamburri et al. Journal of Internet Services and Applications (2015) 6:10 Page 13 of 17

Figure 11 Radio-silence, i.e., too many filters hinder information passing.

only those decisions that reportedlyd procured a benefi-
cial effect and map these decisions to the relative smell
they tried to tackle. Unfortunately, we did not have data
to understand to what degree these decisions reduced or
hampered the effect of related smells. Also, we found evi-
dence of mitigations that increased social debt rather than
the opposite. It is worth mentioning that about 40% of the
mitigations adopted did not yield positive outcomes and,
in some cases, they made things worse. Also, over 80% of
the reported mitigations were generated by “BadExperi-
ence” as a malevolent effect connected to social debt (see
the relation between “BadExperience” and “Mitigation” in
Figure 1).

We found recurring evidence that 6 such decisions pro-
cured clear benefits to tackle some community “smells”,
i.e., “deodorants” for said smells:

1. Full-circle: to mitigate the leftover-techie smell,
managers for “Integra” decided to establish a fixed,
dedicated instant-messaging line of communication
between operations technicians, managers and key
developers, in a manner much consistent with the
DevOps trend [39]. This decision indeed greatly
hampered further consequences, although not all the
connected debt was actually payed back.

2. Learning-community: to mitigate the radio-silence
smell, managers for “Integra” decided to establish an
online learning community much similar to the
Learning Community type reported in our previous
work[5]. All practitioners involved in the project
were eventually involved in the community and led
by dedicated tutoring and coaching personnel. This

decision reduced almost completely further delays
and consequences of the radio-silence smell, either
directly (by creating stronger social and
organisational bonds between practitioners) or
indirectly (some practitioners were learning from the
community what they would have otherwise asked to
stranger colleagues). Nevertheless, we found evidence
that subversive behaviour eventually emerged across
the community which suggests the need for ad-hoc
community structure and management. More in
particular, some community members started using
the community to “outsource” part of their work or
decisions, for example, quoting from our interviews
[members of the learning community] are essentially
“[different developers from different products and]
from different teams each pulling towards their own
direction, pushing their own work, instead of finding
a common standard [for community structure and
goals]”.

3. Culture conveyors: to mitigate the prima donnas
and sharing villainy smells, managers for “Integra”
decided to appoint some developers both in RED and
GREEN as architects (i.e., through promotion). The
promotion was subject to the condition that new
architects would also disseminate a homogeneous
organisational culture harmoniously, with the intent
of Integrating the RED and GREEN communities as
their respective products were being integrated. This
decision reduced smell effects but, reportedly, not as
much as originally hoped, considered the expense for
the promotions. Although we did not have enough
data to investigate further, this decision might have,

Tamburri et al. Journal of Internet Services and Applications (2015) 6:10 Page 14 of 17

in fact, payed back some debt while generating some
other, connected to the additional introduced cost
(promotion scheme).

4. Stand-up voting: to mitigate the architecture-hood
smell managers for “Integra” decided to establish
fixed daily stand-ups also for RED (previously
adopting a “waterfall” process model). At the end of
the stand-ups practitioners would be asked to vote in
an anonymous voting-system either for accepting
decisions communicated as part of the meeting or
proposing feasible alternatives. This decision indeed
reduced greatly the effect of the smell almost to none.
Nevertheless, the application of this strategy suggests
the continued and consistent presence of mistrust
among professionals in both RED and GREEN.

5. Community-based contingency planning: to
mitigate the prima-donnas and solution defiance
smells, managers for “Integra” decided to: (a) make
technical (e.g., architecture) and socio-technical (e.g.,
social or organisational structure changes) together;
(b) use the appointed learning community as a device
to generate “contingency plans” in case certain
technical or socio-technical decisions lead to warning
scenarios. This increased the cohesion of the
community and reportedly hampered the effects of
the smells.

6. Social wiki: to mitigate the prima donnas, solution
defiance, black-cloud effect, sharing villainy and
organisational silo effect smells, managers for
“Integra” decided to adopt a “social wiki” combining
practitioners profiles with the artefacts under their
care and the connected documentation. This
decision was being implemented at the time our
study completed its analysis so we are unsure as to
the cost or effect of said mitigation. Nevertheless, we
decided to report it as it is consistent with the
increasing needs for Enterprise 2.0 and enterprise
social networking [40].

5 Discussion
This section discusses our findings and their implication.
Also, we report a number of lessons learned from the
study. These are general insights that might benefit fur-
ther research into social debt as well as practitioners at
hands with it. Finally, we discuss a few threats to validity
we identified for this study.

5.1 On the implications of social debt
In the following, the implications for social debt are
emphasised in bold.

In previous work [3] we operated a rough comparison of
social debt with the notion and state of the art in technical
debt. What resulted were a series of key research ques-
tions on the overlaps between social and technical debt.

Among said questions, was the following: “What decisions
cause both technical and social debt?”. We indadvert-
edly stumbled upon the answer to this question, that is,
decisions about using technicalities (e.g. introducing
new programming language) to influence community
aspects as well, might lead to technical and social debt
together. In our scenario we found 7 such decisions. For
example, the previously mentioned decision to use a com-
mon programming language between RED and GREEN as
a collaboration opportunity. Although it seemed a good
decision, well motivated and with sound rationale, the
decision ultimately led to technical and social debt. All
such decisions should be taken into further inquiry by
social and technical debt researchers for further study.

Community smells can be clustered in three sets,
depending on their context: (1) smells that exist in a
community’s structure - i.e., that can be observed and
have an effect on the structural properties of a community,
such as its formality; (2) smells that exist in the com-
munity’s context - i.e., that can be observed and have an
effect on the constellation of properties surrounding the
community’s operational environment, such as political
boundaries or laws; (3) smells that exist in the community
members’ interactions - i.e., the set of social and technical
relations and actions that allow the community to exist,
such as meetings. This suggests a framework to struc-
ture future research in discovering community smells, but
also suggests an intrinsic difficulty to measure social debt
in a precise way, depending on non-trivial relations and
characteristics with implicit relations.

The three clusters above share a remarkable sim-
ilarity with the 3C model for communitarian work,
previously defined in [41]. The 3C model states that
three basic activities drive the operations for software pro-
duction: (a) communication with peers to realise organi-
sational activities; (b) coordination of activities and tasks
to achieve planned business goals; (c) cooperation on
tasks that require concurrent and shared work/expertise.
Intuitively, smells that exist in community members’ inter-
actions hinder communication. Similarly, coordination, or
organisation in context [42], is compromised by smells
that exist in the communities’ context. Finally, coopera-
tion, is compromised by smells existing in communities’
structure.

This intuitive similarity has two key implications: (1)
the investigation of social debt [3] needs to focus around
the three dimensions in the 3C model and, consequently,
rotate around community smells in the corresponding
clusters; (2) software engineering research focuses on
investigating one out of three sets of smells, that of coor-
dination by means of socio-technical congruence [16] -
studying the remaining two dimensions could prove valu-
able to govern development communities, maximising
their social worth or managing their social debt [3], if any.

Tamburri et al. Journal of Internet Services and Applications (2015) 6:10 Page 15 of 17

Influencing “smells” without preemptive study is
ultimately a trial-and-error exercise. In our case, we
found over 10 relatively uninformed socio-technical deci-
sions made to tackle “smells”. These did not yield the
desired effect and, in 3 cases, reportedly led to worse
outcomes. This suggests that a more accurate study of
“smells” and mitigations is in order. This study might
reveal previously reported “smells” as well as effective
ways in which they were tackled under certain conditions.
This study might start from the body of literature in soft-
ware engineering success or failure or, in parallel, from
the body of literature in organisations and social networks
research.

5.2 Lessons learned
There are several lessons we learned from studying the
scenario at hand.

Integrating two products means joining two (or
more) communities as well. In our case, many social,
organisational and technical decisions were taken along
the way to “merge” the two communities involved into
one. However, we discovered a number of “ancillary” peo-
ple, part of other business units, not directly involved
in “Integra” that actually played a role in the project
(e.g., helpers, information conveyors, etc.). With this we
learned that the organisational and social Integration
between communities responsible for a certain product is
critical and should be carefully planned and orchestrated.

Software practitioners generally associate guilt and
fear to the social and organisational investigation of
their efforts. We observed this circumstance in many pre-
vious studies of similar nature. It may well be connected
with the “my boss will not be happy about this” social
dynamic, which may cause the connected anxiety. Nev-
ertheless, with this we learned that the tools with which
a development community should be studied or “influ-
enced” should be automated and non-invasive, observing
people and software artefacts together as well as based on
gamification schemes and similar technology.

Many “Contingent” factors for reported smells were
missing. We observed this circumstance on 4 out of 9
reported smells. This can suggest that, for instance, the
smells are applicable to multiple possible “Contingents”
or “Contingents” for negative effects observed were not
addressed by practitioners in the first place. This calls
for further research to identify and study “Contingent”
factors.

Divide-and-conquer may no longer be fit to rule.
In our set of 90 organisational, socio-technical or tech-
nical decisions, over 80% of these decisions applied a
classic software engineering innuendo: divide-et-impera.
Most of these decisions, however, implied divisions in the
product as well as corresponding divisions in the com-
munity. While the former may procure benefits, the latter

may compromise everything. With this we learned that
a more communitarian formula should be researched for
teaching and practicing software engineering. In fact, this
observation is corroborated by looking more deeply at
the mitigations reported in Section 4.3. All the mitiga-
tions reported have the goal of increasing the diversity,
connectedness and awareness [43] of a community of peo-
ple. More research is needed to establish the ways and
practices in this theoretical formula. Such research would
very well benefit from the study of successful (and failing)
open-source communities. These are a clear example of
efficient and powerful self-organisation.

5.3 Threats to validity
Based on the taxonomy in [44], there are four potential
validity threat areas, namely: external, construct, internal,
and conclusion validity.

External Validity concerns the applicability of the
results in a more general context. Being this study per-
formed in one organisation, results could be specific to its
context. To reapply results and possibly confirm the valid-
ity of this study we are planning additional independent
exploratory case-studies.

Construct Validity and Internal Validity concern the
generalisability of the constructs under study, as well as
the methods used to study and analyse data (e.g. the types
of bias involved). To mitigate these threats, our meth-
ods were tailored to use multiple triangulation of data
sources. A representative from “Integra” verified our inter-
pretations of the data and provided clarifications and
corrections where necessary. Partial results and incremen-
tal analysis was conducted to gather constant independent
feedback by three senior researchers.

Conclusion Validity concerns the degree to which our
conclusions are reasonable based on our data. Our con-
clusions were drawn by an analysis of empirical evidence
using known and confirmed methods from literature such
as, coding, gap- and taxonomy analysis. The approach and
instruments that we used to gather such evidence were
presented and validated in previous work [2,4,45].

6 Conclusions and future work
In this paper we discuss and elaborate on the notion of
social debt that was originally introduced in [3]. To inves-
tigate social debt in action we conducted a case study
in industry. To answer our primary research questions,
namely, “What are the factors at play around social debt
during the software lifecycle? Are there patterns in said
factors? Can they be mitigated?”, this article offers four key
contributions.

First, a framework to define and interpret social debt.
This can be used in practice to identify the variables
that govern social debt, e.g., for more informed decision-
making.

Tamburri et al. Journal of Internet Services and Applications (2015) 6:10 Page 16 of 17

Second, a list of community “smells”. These are socio-
technical anti-patterns that may apparently look normal
but reflect unlikeable community characteristics, such
as anti-social organisational behaviour across the com-
munity, e.g., developers that refuse or delay information
sharing. These patterns can be used in practice to “sense”
the precursors of social debt in much the same way code
smells fathom technical debt.

Third, a list of mitigation strategies to community
“smells”, as emerging from our case study. These can be
used in practice to reduce the negative effects connected
to some “smells”.

Fourth, a list of lessons learned as part of our case study
that further discuss social debt and its implications. These
can be used by researchers interested in pursuing further
social debt research.

From our study we learned that social debt is a force
to be reckoned with, hand in hand with technical debt.
This force is connected to sub-optimal characteristics
in software development communities. Further research
is needed to generate a more systematic approach. For
example, the use of community detection and characteri-
sation mechanisms via social networks analysis might be
used to understand if social debt can somehow be mea-
sured automatically. Also, investigating further the rela-
tion between software architectures and “organisational
architectures” might reveal patterns that lead to social and
technical debt.

In the future, we plan to devise mechanisms to visualise
and study the social community structure of development
communities, by putting together their socio-technical
properties and observable characteristics. In so doing, we
hope to discover ways to mine data from software devel-
opment communities that can lead to the discovery of
their sub-optimal characteristics, and, possibly, any con-
nected “smells”. Also, we plan to elaborate further on
the notion of community “smells” perhaps starting from
analysing literature in software engineering (e.g., study-
ing software failure stories). More in particular, we plan to
answer the following research questions:

“What software engineering artefacts are affected by
community smells?” Much information and data in our
dataset concerning software artefacts (e.g., software archi-
tecture, requirements, integration requests, etc.) in our
investigation scenario remains to be analysed - perhaps
this data can be analysed in continuation with the study in
this paper, e.g., to understand if community smells have a
direct or indirect impact on software itself.

“How can social debt be measured?” Social debt clearly
entangles a number of software and lifecycle artefacts,
finding measurements for the negative characteristics
connected to social debt in said artefacts is the start-
ing point to measure social debt in the first place. This
research venue might benefit from research in Mining

Software Repositories (MSR) since it involves mining
software products to establish causality. However, an
exploratory study is needed to establish what should be
measured and how.

“Are there community smells previously reported in lit-
erature?” Software engineering literature offers empirical
research in software failure that could potentially contain
a number of community smells. Mapping this portion of
software engineering literature could be a valuable tool
for practitioners embarking on complex software engi-
neering endeavours involving more than one team or
organisation.

7 Endnotes
aInterview guide is only available through written

request.
bNevertheless, every core concept was found more

than 48 times in the entire dataset.
cThe average of 4 hrs was calculated on 34 sub-optimal

characteristics for which our interviewees explicitly gave
us a delay - this average was then extended to all
sub-optimal characteristics found.

dBy at least two interviewees.

Competing interests
The authors declare that they have no competing interests.

Authors’ contributions
DAT carried out the analysis and wrote a draft report to be submitted to the
attention of PK, PL and HVV. DAT also drafted a publishable manuscript and
submitted it to all coauthors. All authors helped partially to analysis and
contributed during brainstorming and theory-building. HVV and PK provided
major edits to the manuscript while PL contributed to study design, provided
major edits to the manuscript and co-located editing, reviewing and analysis
sessions via Skype. All authors read and approved the final manuscript.

Acknowledgements
The authors would like to thank Dr. Francesco Castri for his invaluable
contribution to this study.

Author details
1VU University Amsterdam, Amsterdam, The Netherlands. 2University of British
Columbia, Vancouver, Canada.

Received: 29 October 2014 Accepted: 5 March 2015

References
1. Keyes J (2011) Social Software Engineering. Taylor & Francis, Auerbach

Series, Boca Raton, FL
2. Tamburri DA, di Nitto E, Lago P, van Vliet H (2012) On the nature of the

GSE organizational social structure: an empirical study. doi:
10.1109/ICGSE.2012.25

3. Tamburri DA, Kruchten P, Lago P, van Vliet H (2013) What is social debt in
software engineering?. In: Cooperative and Human Aspects of Software
Engineering (CHASE), 2013 6th International Workshop On, Washington,
DC. pp 93–96. doi:10.1109/CHASE.2013.6614739

4. Tamburri DA, Lago P, van Vliet H (2013) Uncovering latent social
communities in software development. IEEE Software 30(1):29–36.
doi:10.1109/MS.2012.170

5. Tamburri DA, Lago P, van Vliet H (2013) Organizational social structures
for software engineering. ACM Comput Surv 46(1):3

Tamburri et al. Journal of Internet Services and Applications (2015) 6:10 Page 17 of 17

6. Capek PG, Frank SP, Gerdt S, Shields D (2005) A history of ibm’s
open-source involvement and strategy. IBM Syst J 44(2):249–258

7. Kruchten P, Nord RL, Ozkaya I (2012) Technical debt: From metaphor to
theory and practice. IEEE Software 29(6):18–21

8. Cunningham W (1993) The WyCash portfolio management system. OOPS
Messenger 4(2):29–30

9. Zazworka N, Shaw MA, Shull F, Seaman C (2011) Investigating the impact
of design debt on software quality. In: Proceedings of the 2nd Workshop
on Managing Technical Debt. MTD ’11. ACM, New York, NY, USA.
pp 17–23. doi:10.1145/1985362.1985366. http://doi.acm.org/10.1145/
1985362.1985366

10. Conway ME (1968) How do committees invent. Datamation 14(4):28–31
11. Wenger E, McDermott RA, Snyder W (2002) Cultivating Communities of

Practice: a Guide to Managing Knowledge. Harvard Business School
Publishing

12. Nagappan N, Murphy B, Basili V (2008) The influence of organizational
structure on software quality: an empirical case study. In: International
Conference on Software Engineering. IEEE, Leipzig, Germany. pp 521–530

13. Repenning A, Ahmadi N, Repenning N, Ioannidou A, Webb D, Marshall K
(2011) Collective programming: making end-user programming (more)
social 6654:325–330. http://www.bibsonomy.org/bibtex/
26e8152bfef95458d1dcec728a4f51c2a/dblp

14. Viana D, Conte T, Vilela D, de Souza CRB, Santos G, Prikladnicki R (2012)
The influence of human aspects on software process improvement:
Qualitative research findings and comparison to previous studies. In:
EASE. pp 121–125

15. Meneely A, Williams L, Snipes W, Osborne JA (2008) Predicting failures
with developer networks and social network analysis. In: Harrold MJ,
Murphy GC (eds). SIGSOFT FSE. ACM. pp 13–23

16. Cataldo M, Herbsleb JD, Carley KM (2008) Socio-technical congruence: a
framework for assessing the impact of technical and work dependencies
on software development productivity. In: Proceedings of the Second
ACM-IEEE International Symposium on Empirical Software Engineering
and Measurement. ESEM ’08. ACM, New York, NY, USA. pp 2–11.
doi:10.1145/1414004.1414008. http://doi.acm.org/10.1145/1414004.
1414008

17. Cataldo M, Mockus A, Roberts JA, Herbsleb JD (2009) Software
dependencies, work dependencies, and their impact on failures. IEEE
Trans Software Eng 35(6):864–878

18. Kwan I, Schroter A, Damian D (2011) Does socio-technical congruence
have an effect on software build success? a study of coordination in a
software project. IEEE Trans Software Eng 37(3):307–324.
doi:10.1109/TSE.2011.29

19. de Souza CRB, Redmiles DF (2011) The Awareness Network, To Whom
Should I Display My Actions? And, Whose Actions Should I Monitor? IEEE
Trans Software Eng 37(3):325–340

20. Bird C, Nagappan N, Gall H, Murphy B, Devanbu P (2009) Putting it all
together: Using socio-technical networks to predict failures. In:
Proceedings of the 2009 20th International Symposium on Software
Reliability Engineering. ISSRE ’09. IEEE Computer Society, Washington, DC,
USA. pp 109–119. doi:10.1109/ISSRE.2009.17

21. Cusick JJ, Prasad A (2006) A practical management and engineering
approach to offshore collaboration. IEEE Software 23(5):20–29

22. Jaktman CB (1998) The influence of organisational factors on the success
and quality of a product-line architecture. In: Australian Software
Engineering Conference. IEEE Computer Society, Washington, DC.
pp 2–11

23. Andreou AS (2003) Promoting software quality through a human, social
and organisational requirements elicitation process. Requir Eng
8(2):85–101

24. Meverson EM (1994) Human capital, social capital and compensation: The
relative contribution of social contacts to managers’ incomes. Acta
Sociologica 37(4):383–399

25. Labianca G, Brass DJ (2006) Exploring the social ledger: Negative
relationships and negative asymmetry in social networks in organizations.
Acad Manage Rev 31(3):596–614

26. Muir DE (1962) The social debt: An investigation of lower-class and
middle class norms of social obligation. American Sociological Review
27(4):532–539

27. Moe NB, Smite D (2008) Understanding a lack of trust in global software
teams: a multiple-case study. Software Process: Improvement and
Practice 13(3):217–231

28. Atkinson R, Flint J (2012) Accessing hidden and hard-to-reach
populations: Snowball research strategies 33

29. Neville-Neil G (2011) Interviewing techniques. ACM Queue 9(6):30
30. Morgan DavidL., Krueger RichardA. (1993) 1. In: Morgan DL (ed). When to

use focus groups and why. SAGE Publications, London. pp 3–19. http://
www.bibsonomy.org/bibtex/2ce683d8f889e49e740d81683fdc2c2b9/
pkraker

31. Runeson P, Höst M (2009) Guidelines for conducting and reporting case
study research in software engineering. Empirical Software Eng
14(2):131–164

32. Corbin J, Strauss A (1990) Grounded theory research: Procedures, canons,
and evaluative criteria. Qualitative Sociology 13(1):3–21

33. Schreiber C, Carley KM (2004) Going beyond the data: Empirical validation
leading to grounded theory. Comput Math Organization Theory
10(2):155–164

34. Onions PEW (1962) Grounded theory applications in reviewing
knowledge management literature. 1–20

35. Glaser BG (1978) Theoretical Sensitivity: Advances in the Methodology of
Grounded Theory. Sociology Press, San Francisco, CA

36. Kilduff M, Tsai W (2003) Social Networks and Organizations. SAGE
Publications Ltd, London

37. Chisan J, Damian D (2004) Towards a model of awareness support of
software development in gsd. IEE Seminar Digests 2004(912):28–33.
doi:10.1049/ic:20040309

38. Peng Y, Sutanto J (2012) Facilitating knowledge sharing through a
boundary spanner. IEEE Trans Prof Commun 55(2):142–155

39. Labs P (2013) 2013 state of devops report. Technical Report. Available
Online

40. Li M, Chen G, Zhang Z, Fu Y (2012) A social collaboration platform for
enterprise social networking. In: Gao L, Shen W, Barths J-PA, Luo J, Yong J,
Li W, Li W (eds). CSCWD. IEEE, Washington, DC. pp 671–677

41. Swart J, Henneberg SC (2007) Dynamic knowledge nets - the 3c model:
exploratory findings and conceptualisation of entrepreneurial knowledge
constellations. J Knowledge Manage 11(6):126–141

42. Boella G, van der Torre L (2006) Coordination and organization:
Definitions, examples and future research directions. Electron Notes
Theor Comput Sci (ENTCS) 150(3):3–20

43. Manteli C, van der Hooff B, van Vliet H (2014) The Effect of Governance on
Global Software Development: An Empirical Research in Transactive
Memory Systems. Inf Software Technol 56(10):1309–1321

44. Wohlin C, Runeson P, Höst M, Ohlsson MC, Regnell B, Wesslén A (2000)
Experimentation in Software Engineering: an Introduction. Kluwer
Academic Publishers, Norwell, MA, USA

45. Tamburri DA (2012) Going global with agile service networks. IEEE
Conference Proceedings, Washington, DC

Submit your manuscript to a
journal and benefi t from:

7 Convenient online submission

7 Rigorous peer review

7 Immediate publication on acceptance

7 Open access: articles freely available online

7 High visibility within the fi eld

7 Retaining the copyright to your article

 Submit your next manuscript at 7 springeropen.com

http://doi.acm.org/10.1145/1985362.1985366
http://doi.acm.org/10.1145/1985362.1985366
http://www.bibsonomy.org/bibtex/26e8152bfef95458d1dcec728a4f51c2a/dblp
http://www.bibsonomy.org/bibtex/26e8152bfef95458d1dcec728a4f51c2a/dblp
http://doi.acm.org/10.1145/1414004.1414008
http://doi.acm.org/10.1145/1414004.1414008
http://www.bibsonomy.org/bibtex/2ce683d8f889e49e740d81683fdc2c2b9/pkraker
http://www.bibsonomy.org/bibtex/2ce683d8f889e49e740d81683fdc2c2b9/pkraker
http://www.bibsonomy.org/bibtex/2ce683d8f889e49e740d81683fdc2c2b9/pkraker

	Abstract
	Keywords

	Introduction
	State of the art
	Research design
	Research problem and research question
	Research methodology
	Empirical background
	Data collection

	Analysis methods
	Grounded theory
	Causality modelling

	Results
	Defining social debt: a framework
	Hunches for social debt? Community ``smells''!
	It smells! What can I do? Mitigations!

	Discussion
	On the implications of social debt
	Lessons learned
	Threats to validity

	Conclusions and future work
	Endnotes
	Competing interests
	Authors' contributions
	Acknowledgements
	Author details
	References

