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Abstract

large class of access technologies.

The service provided by current mobile networks is not adapted to spatio-temporal fluctuations in traffic demand,
but such fluctuations offer opportunities for energy savings. In particular, significant gains in energy efficiency are
realizable by disengaging temporarily redundant hardware components of base stations. We therefore propose a
novel optimization framework that considers both the load-dependent energy radiated by the antennas and the
remaining forms of energy needed for operating the base stations. The objective is to reduce the energy consumption
of mobile networks, while ensuring that the data rate requirements of the users are met throughout the coverage
area. Building upon sparse optimization techniques, we develop a majorization-minimization algorithm with the
ability to identify energy-efficient network configurations. The iterative algorithm is load-aware, has low
computational complexity, and can be implemented in an online fashion to exploit load fluctuations on a short time
scale. Simulations show that the algorithm can find network configurations with the energy consumption similar to
that obtained with global optimization tools, which cannot be applied to real large networks. Although we consider
only one currently deployed cellular technology, the optimization framework is general, potentially applicable to a
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1 Introduction

The strive for ubiquitous connectivity and high through-
put in the development of the fifth generation (5G) of
mobile networks is envisioned to lead to highly dense
network topologies providing the best possible service to
users at all times. Currently, the network topology and
also global network parameters are chosen to meet the
quality of service (QoS) demand at peak hours and are
largely static, but, as pointed out in many studies (see
for instance [2-5]), the traffic load fluctuates significantly
over time and space. Such spatio-temporal fluctuations
create large capacity surpluses at times of low traffic
demand, which in turn offers opportunities for energy
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savings through adaptation of the service supply to the
actual demand. However, in order to utilize the capac-
ity surpluses for significant energy savings, it is essential
to reduce the energy consumed by hardware and auxil-
iary equipment (e.g., coolers), which is a dominant form
of energy consumption in current mobile networks. In
fact, for a typical network with today’s technology, base
stations consume over 50 % of the total network energy
budget [6]. From this, we conclude that significant energy
savings can be achieved only by temporarily disengag-
ing redundant hardware components of base stations.
Hereafter, we call this energy-saving mechanism network
topology control.! Indeed, as pointed out by [4], reduc-
ing the number of active base stations in periods of low
traffic load offers a huge potential for energy savings.
This effect will become even more pronounced in 5G
networks because of the envisioned densification of the
networks [7].
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1.1 Related work

Over recent years, some research effort has been devoted
to exploiting temporal and spatial redundancies in wire-
less systems for energy savings. For instance, references
[8-10] address the problem of finding an optimal number
of base stations and cell site placements so as to minimize
the overall energy consumption subject to QoS require-
ments of users. Assuming a wireless network based on
time division multiple access (TDMA), the objective of
the study in [8] is to minimize the overall expected energy
consumption by optimizing the number of base stations
and their locations. The authors formulate the problem as
a mixed integer programming problem and suggest using
a simplex method together with the branch and bound
algorithm. The drawback of this approach is that, due to
the TDMA assumption, the analysis does not carry over
to systems with inter-cell interference, which is one of the
major challenges faced by designers of modern wireless
communication systems [11, 12]. Furthermore, branch
and bound methods may be slow [13], which excludes an
application of these methods to real-time scenarios, even
if the underlying problem is of moderate size.

References [9, 14] propose centralized and decentral-
ized algorithms for wireless communication networks to
address the problem of base station selection in the pres-
ence of traffic load fluctuations. Although the proposed
approach seems to provide good solutions in reasonable
time, it does not allow incorporation of different sources
of energy consumption, which is of utmost importance
in modern networks consisting of hierarchical structures.
In addition, the authors focus on numerical evaluations
to justify the approach. No analytical justification for the
performance of the proposed algorithms is given.

The authors of [10] argue in favor of sleep mode tech-
niques coupled with various network planning schemes. A
genetic algorithm is used to find energy-efficient network
deployments, so the authors have developed a heuris-
tic approach to put selected base stations into a sleep
mode for energy-efficient network operation. In addi-
tion to the lack of a mathematical justification, the main
shortcoming of this work is that the proposed approach
cannot incorporate other radio technologies other than
universal mobile telecommunications system (UMTS) ter-
restrial radio access network. In contrast, as mentioned
before, our optimization framework is general enough to
be applied to multi-radio access technology (RAT) scenar-
ios, including the second, third, and fourth generations of
cellular networks [15].

1.2 Our contribution

This paper deals with the problem of minimizing the over-
all energy consumption in the downlink channel of mobile
(cellular) networks. By taking into account the energy con-
sumed by hardware and auxiliary equipment, we address
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key shortcomings of most existing approaches to the
challenge of boosting energy efficiency of cellular net-
works. The underlying problem is of combinatorial nature
because it essentially amounts to selecting a subset of net-
work elements corresponding to the most energy-efficient
network configuration, while providing the desired net-
work coverage. More precisely, motivated by [14, 16], we
formulate a combinatorial optimization problem to find
a network configuration that consumes the least amount
of energy, while satisfying traffic demands expressed in
terms of minimum data rate requirements. In doing so,
we balance different forms of energy consumption in an
optimal manner by taking into account both the load-
dependent energy used for transmission and the static
energy consumed by hardware regardless of the actual
load. Similar to [14], the technology-specific constraints
are defined to capture the QoS requirements of the users.
Although our optimization framework is generic in the
sense that it can be applied to multi-RAT systems by
incorporating different RAT-specific constraints, owing to
the lack of space, our focus is on a single RAT according
to the long term evolution (LTE) standard.

In the following, we highlight the main contribution of
the paper:

e In contrast to our previous work [1], we use a more
detailed and broadly suitable energy consumption
model that explicitly considers both the energy
consumed by each cell (sector) at a base station and
models the basic energy consumed if at least one cell
is active at a base station. The model is based on the
computation of the cell load, which is also used to
account for the load-dependent energy consumption.
Based on this energy consumption model, we derive
an algorithm that is able to identify not only entire
base stations for deactivation but also individual cells
for base stations with multiple cells. We present an
extensive evaluation showing the effect of the
different energy consumption parts (static and
dynamic) on the solution of the energy saving
network topology.

e Starting from the worst-case interference assumption
used in [1], we develop a novel algorithm that uses
the framework of interference calculus [17, 18] to
arrive at larger energy savings by calculating more
accurate values for the spectral efficiency of links.

e We show how our algorithms can be applied to
systems where coordinated multi-point (CoMP)
strategies are employed. We also elaborate on the fact
that the use of CoMP techniques render the
application of some involved heuristics unnecessary.

e We complete the analysis of our algorithms by
including short discussions about the convergence
and the complexity of our proposed algorithms.
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1.3 Notation and paper organization

For a vector & € RY, its ith component is x; € R. Sim-
ilarly, for a matrix X € RM*N "its (i, J)-th component is
x;j. Inequalities involving vectors, such as x; > x», are
to be understood as component-wise inequalities. The set
R denotes the set of non-negative real numbers, while
R4+ := R4 \{0} is the set of positive real numbers.

Given a matrix X € RN we use & := vec(X) € RMN
to denote the vector obtained by stacking the columns of
X. Note that the entries of x may be confined to take values
on [0,1] or {0, 1} depending on whether X €[0, 1]M*N or
X € {0, 1}MxN |

Definition 1 ([o-norm). For any vector x € RN and
matrix X € RM*N | their ly-norms |x|g and |X|o are equal
to the number of nonzero elements of x and X, respectively.
For a scalar x € R, |x|o := 1 ifx # 0 and |x|p := 0
otherwise.?

The remainder of this paper is organized as follows.
Section 2 introduces the underlying system model, and
in Section 3, we outline the general problem to solve. In
Section 4, the proposed algorithm to find solutions for
our optimization problem is derived based on a worst-
case inter-cell interference assumption. Section 5 presents
how to explicitly take into account a more realistic inter-
cell interference model. We present empirical evaluations
of the proposed algorithm in Section 6.

2 System model

We consider the downlink channel of a multi-cell LTE
network with an established network topology and a cen-
tral network controller. The central network controller
is responsible for collecting measurements, executing
the proposed algorithm, and propagating updated net-
work configuration parameters throughout the network.
In this work, as in [8—10], we assume that the mecha-
nisms required to collect measurements and to determine
when to execute our proposed algorithm are available at a
central network controller.

We assume that the network consists of L base stations.
Each base station has multiple sectors (called cells in the
following), and we denote the set of cells belonging to base
station / by ;. The set of all base stations is denoted by
L, and we use M := U;c,S; to denote the set of all M
cells in the network. The cell deployment is assumed to
be dense enough so that coverage areas of different cells
overlap. This implies that users can be served by different
neighboring cells.

2.1 Ensuring coverage via test points

In order to ensure the desired coverage anytime and
everywhere in the considered area, we impose coverage
constraints by adopting the concept of test points, which
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is widely used in network planning and optimization
[19, 20].

Definition 2 (Test point). A test point (TP) is a centroid
of a pre-defined geographical subarea that represents an
aggregated QoS requirement resulting from individual QoS
demands of all potential users in this subarea.’ Without
loss of generality, we assume N TPs with the set of all TPs
denoted by N .= {1,2,...,N}.

An interpretation of this definition is depicted in Fig. 1
for a generic service area. A consequence of Definition 2
is that small-scale fluctuations in QoS demand at the user
level are averaged out at the TPs. These small-scale fluc-
tuations must be compensated by the lower layers of the
protocol stack (e.g., through adaptive modulation or cod-
ing). On a large scale, the traffic demand is assumed to
be static for a sufficiently large period of time for which
we derive a feasible network configuration that supports
this traffic demand. The duration of this period depends
on the accuracy of the demand estimates and other fac-
tors such as security margins included in the optimization
framework.

Assumption 1. The QoS requirement for a TP corre-
sponds to the aggregated expected traffic over the respective
area per unit time. This traffic requirement is expressed in
terms of the minimum required data rate per TP,

Assumption 2. [fthe minimum rate requirement of TP j
is met, so are the requirements of the users in the associated
subarea.*

For services with no explicit data rate requirements (e.g.,
voice calls), we assume that they can be supported if a
minimum data rate per service request is ensured. By
Assumption 1, each TP j € N is assigned rate require-
ment rj, and we collect the rate requirements of all TPs
in the vector r = [ry,ry,...,rn] € ]R]X+. In general, a
TP can be assigned to any cell, and an assignment should
be understood as follows. If TP j € A is assigned to cell
i € M, then all users in the respective subarea associated
with TP j are served by cell j. The assignment of the TPs
to the cells is subject to optimization in this paper. We use
X =[x]e {0, 1}M*N to denote the assignment matrix
where x;; = 1 if TP j is assigned to cell i and x;; = 0
otherwise.

Assumption 3. While each TP is assigned to exactly one
cell, each cell can serve multiple TPs, and the set of TPs

served by cell i under assignment X is denoted by N;(X)
CN.

We point out that this assumption has been widely used
in previous studies [9, 14, 20], and it is valid throughout



Pollakis et al. EURASIP Journal on Wireless Communications and Networking (2016) 2016:61

Page 4 of 17

traffic demand density [kb/s / m2]

1500

2000
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the paper except for Section 4.3, where it is shown how
to include scenarios in which each TP can be served by
multiple cells. Note that if N;(X) = ¢ for some i € M,
then cell i can be deactivated for energy savings because
no TP is assigned to cell i. In contrast, if N;(X) # @, then
cell i is active, and each TP connected to it induces some
amount of cell load.

Definition 3 (Cell load). Given the assignment x =
vec(X), the load of cell i, denoted by p;(x) €[ 0, 1] or simply
pi for notational simplicity, is defined to be the ratio of the
number of resource blocks requested by TPs served by cell
i € M to the total number of resource blocks B; available
at this cell.®

We use p :=[ p1,. .., pmlT €[0,1]M to denote the vector
of all cell loads. From the definition of cell load, we have
the following:

Fact 1. The load at cell i satisfies p; > 0 if and only if
(iff) cell i serves at least one TP,

2.2 Spectral efficiency and resource usage

The optimal assignment of TPs to cells is strongly influ-
enced by the spectral efficiency of the corresponding
links. For the analysis in this paper, we adopt an OFDMA-
based (Orthogonal Frequency-Division Multiple Access
(OFDMA)) model for the spectral efficiency that is widely
used in the literature [11, 21, 22]. The spectral efficiency
also depends on radio propagation properties. Therefore,
we associate to each TP a path-loss vector and write the
path-loss vectors of all TPs as columns of the path-loss
matrix G =[g;;] € RfﬁN , where g;; captures the long-
term path loss and shadowing effects for a radio link from
cell i to TP ;.

Assumption 4 (Reliable path-loss estimates). A reli-
able estimate of G is available at the central network
controller.

Remark 1. The problem of reliable estimation and
tracking of the path-loss matrix is out of the scope of
the paper. However, the matrix captures only long-term
fading effects, so reliable estimates of G can be obtained
and tracked in practice. Promising algorithmic solutions to
this estimation problem are for instance presented in [23].
Moreover, in network planning problems, knowledge of G is
a very common assumption in the literature [11, 20, 24].

Now, we are in a position to define the signal-to-
interference-noise-ratio (SINR) y;; : R{\f — R, between
celli € M and TP € N by [11, 24]:

P; gij
D kerii) Pr 8hj ok + 0%

Vij(p) = (1)

where P; > 0 is the transmit power per resource block of
cell i and 02 > 0 is the noise power per resource block.
Accordingly, the link spectral efficiency w;; : Rf‘f — Ry
(in bits per resource block®) for the link from cell i to TP j
is given by [21]

Vi (P) ) 2

SINR

wij(p) =gy log2(1 +
ij

where n?,]w € R44 and ngINR € Ry, are suitably

chosen constants, referred to as bandwidth and SINR effi-
ciency, respectively. These constants depend on the over-
all system design, which includes the choice of scheduling
protocols and multi-antenna techniques. The choice of
these constants has no impact on our results, so they
are assumed to be arbitrary and fixed throughout the
paper. For realistic values of these constants, we refer the
interested reader to [11, 21].

From (2), we can easily see that the necessary number
of resource blocks b;; at cell i to serve TP j with data rate

. ri e .
rj is equal to b;; = T](ﬂ) > 0. In addition, following
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Definition 3, the load at cells can be computed by the
following system of non-linear equations

= Y B

jenioo Bi

——, ie M. 3
N Biw;j(p) ®)

Remark 2. In practice, cells need to reserve some frac-
tion of their resource blocks for signaling. If cell i has B}
resource blocks in total, and it needs to reserve a; > 0 of
its resource blocks for signaling, then the resource blocks at
cell i available for allocation to TPs are B; = B} — a;.

For a fixed assignment, X cell load p in 3 can be effi-
ciently computed by means of fixed-point algorithms (c.f.
Section 5). However, the assignment of TPs to cells is the
main subject of our optimization problem and thus we
cannot evaluate (3) easily. In order to keep the complex-
ity of the optimization problem tractable, we lower bound
the spectral efficiency.

Assumption 5 (Worst-case interference). We have the
worst-case interference scenario if all cells are fully loaded,
ie.p=1

Unless otherwise stated, we use the worst-case interfer-
ence assumption, which results in a lower bound on the
true link spectral efficiency w;j(p) > @;; := w;;(1) for
every p €[ 0, 1]M. In general, this bound diminishes gains
in energy savings when taking into account the energy
consumption of hardware, and we show in Section 5
how to incorporate the actual link spectral efficiency to
improve the energy savings. Nevertheless, having fully
loaded cells as in Assumption 5 is desirable because it has
been proven in [25] that full load (i.e., p = 1) is opti-
mal with respect to the transmit energy consumption (see
also [26]).

Remark 3. The worst-case interference assumption can-
not exploit the full potential for energy savings, but the
assumption is of high practical relevance because it is an
effective way to avoid coverage holes as a result of deacti-
vating cells based, for instance, on imperfect information.

2.3 Energy consumption model

In contrast to most works in literature, we consider a
model for the energy consumption of a base station and
its cells that takes into account not only the cell load-
dependent transmit energy radiated by antennas but also
the remaining sources of energy consumption that are
independent of the cell load as long as the cell/base station
is active.

Definition 4 (Active base station/cell). Consider a par-
ticular base station | € L and its cells i € S;. Let p; €[ 0, 1]
be the load of cell i. We say that a cell i is active iff p; > 0
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and that base station [ is active iff one of its cells is active,
i€, Y jes Pi > 0.If a cell or base station is not active it is
said to be inactive.

With Definition 4, we are in the position to define the
energy consumption of a base station.

Definition 5 (Energy consumption). Given a TP assign-
ment X inducing a cell load p, the energy consumption
Ei(p) = 0 of base station [ is defined to be the power that
the respective base station consumes per unit of time, where
E;(p) = 0 iff base station l is inactive.

The function E;(p) depends on the hardware setup of
the base station, but it can be split into three parts in
general:

(i) The static energy consumption of the base station
¢; > 0 (due to shared hardware between sectors, e.g.,
cooling and power supply),
(i) The static energy consumption e; > 0 (i € &) of its
active cells (e.g., due to power amplifiers and signal
processing units), and
the load-dependent dynamic energy consumption of
its active cells f;(p;) (i € Sj), where f; :[0,1] - R is
a given continuous function relating the energy
consumption to the corresponding cell load.

By these definitions and Fact 1, E;(p) is a discontinuous
function of the cell load, and we have

E _|o cells i € S; serve no TP
1(p) = ¢+ Ziesl,active e; + fi(pi) otherwise,

where Sjactive C Sy is the set of active cells of base station
[. Therefore, the total energy consumption in a network,
which is the accumulated energy consumption of all active
base stations, yields

Ep=Y_Em=)_ a|> _sn

leL leL !

+Y (eilpilo +fi(od) |-
0 i€S;

(4)

For concreteness, we make the following assumption
throughout the paper (see also Remark 4)

Assumption 6 (Concave dynamic energy consump-
tion). f; :[0,1] > Ry (i € M), is concave and continu-
ously differentiable.

In particular, this assumption is satisfied by a linear
dependency of the base station energy consumption and
the cell load reported in current studies such as [27].

Remark 4. In fact, the load-dependent dynamic energy
consumption can also be assumed to be a convex function
of the load. Moreover, we could even assume that it is a sum
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of convex and concave functions. The optimization frame-
work presented in this paper can be straightforwardly
extended to cover these cases.

For convenience, we have summarized the main system
variables in Table 1.

3 Problem statement

Spatio-temporal redundancies in coverage and capacity
resulting from day-time fluctuations in traffic demand
present great opportunities for energy savings by deac-
tivating redundant cells at times of relatively low traffic
demand. Indeed, if the traffic demand decreases, some or
all entries of the rate requirement vector r € ]R]X 4 become
relatively small, which can be utilized to reduce the total
energy consumption by minimizing the cost function in
(4) subject to different constraints that follow from the
system model and (3). Formally, the problem under con-
sideration can be stated as follows (note that the complete
set of equations is referred to as (5)):

min.Y "¢ |Y oi| + Y (eilpilo +fi(p) (52)
leL ieS; 0 i€S;
S.t.:ZL{xid‘Zpi ie M (5b)

o By

in,}‘ZI jEN(SC)
ieM
pi €[0,1] ie M (5d)
xij € {0,1} ieM,jeN, (5e)

Table 1 List of variables

Variable Symbol

Set of all base stations L=1{,..., L}
Set of all cells M={,..., M}
Set of cells associated with base station / S cM

Set of all test points N={,..., N}
Set of test points served by cell i N cN

Rate requirements of all test points r=1[n.n..., W] € Ry,

Assignment matrix X =[x;] € {0, 1"V
p=lor,....om" €0, 11"
G =[gjle RﬂiN

a),'J'ZRA_ﬁ — Ry

Cell load vector
Path-loss matrix

Link spectral efficiency in bits per resource
block

Worst-case link spectral efficiency in bits @ € Ry

per resource block

Number of resource blocks available at Bie Ryt
cell

Static energy consumption of base geRy
station /

Static energy consumption of cell i e € Ry
Dynamic energy consumption of cell i ;00,11 — Ry
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where the optimization variables are x;; and p; (i €
M,j € N).In particular, Assumption 3 is captured by (5c)
together with (5e). Constraints 5b and (5d), in contrast,
ensure that the cell load is in accordance with Definition 3.

To ensure feasibility of the above problem and to show
the effectiveness of our approach, we consider scenarios
where the rate requirements of TPs are sufficiently low
for a reasonable amount of redundancies that allow for
deactivation of cells. Moreover, if the traffic requirements
in the system are sufficiently low or the number of cells
is sufficiently large, p* is expected to be sparse with zero
entries specifying cells that can be deactivated.

4 Energy-efficiency optimization

The difficulty of problem (5) lies in its combinatorial
nature. In fact, it can be shown that the problem is related
to the classical bin-packing problem, which is known
to be NP-hard (non-deterministic polynomial-time hard)
[28]. Consequently, the complexity is expected to grow
exponentially with the number of cells. On the posi-
tive side, problem (5) has a special structure that can be
exploited by majorization-minimization techniques [29],
which have been widely used in recent years to tackle var-
ious problems in compressed sensing [30] and machine
learning [31].

Instead of finding a global solution to (5), we will pur-
sue a less ambitious goal. We apply the majorization-
minimization techniques mentioned above to develop a
low-complexity anytime algorithm that has a strong ana-
lytical justification. This algorithm is expected to provide
good results (in terms of low energy consumption) with
low complexity. To this end, we reformulate problem (5)
to pose it in a more tractable form. First, we observe that
each load pj; is, in fact, a function of X (c.f. Definition 3 and
5b). We can therefore modify the problem to have only X
as an optimization variable. The objective function in (5a)
can be equivalently written as

Silea D ol +D (eiloilo +£iton)

lel €S 0 €S

Pl CHIDIENIED I EID DL AT
lel €S jeN o €S jeN 0

=Y |« ‘tlTic‘O +> <ei s,-Tic’O +ﬂ'(pi))
lel €S

(6)

where s; := vec(S;) with S; € {0, 1}"*N being a matrix
of zeros, except for its ith row, which is a row of ones.
Similarly, ¢; := vec(T;) with T; € {0, 1YMXN s a matrix
of zeros, except for its rows i € Sj, which are rows of
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ones. The first equality in (6) follows from Fact 1 and
the definition of the /y-norm, which does not account for
magnitudes. More precisely, if at least one TP is served
by cell i (i.e., Zje./\/ x;j > 1), then the cell load at cell i is

=1

The second equality in (6) uses vector multiplication to
represent the sums in a more compact way.

non-zero p; > 0 and we have |p;|og = ‘Z]«EN Xij
0

Definition 6. Given the assignment x and the load
dependent energy _consumption fi(pi(x)) of cell i with
pi(x) = Zje/\f %é),v,xi:/ (c.f 5b), we define the function

SO 1M = Ry &> i en 5 %)

Considering Definition 6 and using p; < 1 (see Defini-

tion 3) in (5b), we arrive at an equivalent problem given
by

o (el S, r0) oo

lec ic
7y ,

s. t.: B o x; <1 ieM (7b)
jeN ; Z
Z xij =1 jeN (7¢)
ieM
xi; € {0,1} ieM,jeN, (7d)

where the assignment variables x;; (i € M,j € N) are the
only optimization variables.

4.1 Problem relaxation
To obtain an optimization problem that is computation-
ally tractable, we first relax the binary constraint (7d) to’

xij € [0,1],Vie M,Vj e N. (8)

The above makes all constraints convex, so now the only
problem is the objective function, which is not continuous
due to the /p-norm. We also note that by Assumption 6
and Definition 6, the load-dependent term ﬁ(&) in the
objective function (7a) is concave and continuously dif-
ferentiable for & €[ 0, 1]NM since these properties are pre-
served under a composition with a linear function [32, 33].
To address the non-continuity of the /p-norm, we consider
the following relation [30]:

K -1
log (1 + |z €
Vze]RK 1zlo = lim M

9
0~ log (1+€1) ©)
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By using 9 and the non-negativity of s;, £;, ¥, the cost
function in 7a can be equivalently written as

cl‘tl ‘ +Zel
lL

=2

log (1+ €1 t]%)
— i A S R}
GEZ})Z (Cl log(1+€71)

lel

log(1+e LsTx) e

s; x‘ +f(x))

(10)

€S

We can therefore obtain an approximation to problem
(5) by replacing the objective function by the right-hand
side of 10 for a sufficiently small but fixed € > 0. More pre-
cisely, for some € > 0, the objective is to find a matrix X €
[0, 1]M*N or, equivalently, a vector ¥ = vec(X) € [0, 1]"M
that solves the following problem

log (14 € 1¢l
min Z (cl og( € 711 x) (11a)
o log (1 +e€ )
log(1+etslx) - )
+ ei——————~— +fi(¥)
ieZSI ( log (1+€71)
s. t.: #xw <1 ieM (11b)
jeEN
Z xij =1, jeN (11c)
ieM
xij € [0,1] ie M,jeN. (11d)

Solving problem (11) is not straightforward because
we need to minimize a non-convex function over a con-
vex set. Fortunately, reference [30] presents an optimiza-
tion framework based on the majorization-minimization
(MM) algorithm [29] to handle problems of this type.
The framework can be used to decrease the value of the
objective function in a computationally efficient way. For
completeness, the reader can find some details of the MM
algorithms in the Appendix.

4.2 Majorization-minimization (MM) algorithm

For notational convenience, we define ¢; = —"—5 -
og(l+e~1)

B, e— €j . ey .
and ¢; := fogite D)’ and we use these definitions in (11a)

to simplify the objective function (ignoring unnecessary
constants):

h: X - R,

@ =Y (alog (e + /%))

lel
+ Z (é,' log (e + sfic) —|—]~’i(5c)> ,
ieM (12)
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where X € RMN s the closed convex set of points satisfy-
ing the constraints (11b)—(11d) and we have used the fact
that M = U, S;. Since f; is concave and continuously
differentiable by Assumption 6, so is the function in (12)
for any € > 0. Therefore, according to the explanations in
the Appendix, we can use the following function

g: XXX > R: (%9 — h@y)+ Vi) x—y)

as a majorizing function of 12, where the gradient can be
easily calculated:

1 1 -
Vh(x) = —— + ei——— + Vfi(%) | .
@ ;cle—l—tlfc i;/l(ee—#sffc A€ ))

(13)

Thus, updates of the MM algorithm take the form (see the
Appendix)

" ¢ argming <5c, 5\:(”))
xeX

e+el&" (14)

for some feasible starting point® 9 e X. In words,
the MM algorithm solves iteratively a sequence of convex
optimization problems. For the chosen majorizing func-
tion, the problem to be solved in every iteration is a linear
programming problem (LP), which can be typically solved
efficiently with standard optimization tools.

As discussed in the Appendix, the sequence &} en C
X for some 9 € X generated by (14) produces a
non-increasing sequence {h(fc("))},,eN of objective values.
Therefore, as n — 00, we expect the corresponding
sequence of assignment matrices {(X"},en (note that
" = vec(X™)) to evolve towards network configura-
tions with low energy consumption.

We stop the algorithm if the improvements in the objec-
tive value are small enough in the sense that for some
sufficiently small €* > 0, the following condition is met

h(E™) — h(x"D) < €. (15)

Note that (12) is monotonically decreasing (c.f.
Appendix) and bounded from below (h(x) >
Yierciloge + 3, eiloge, V& € X), so the sequence
{h(i(”))}neN converges by the monotone convergence
theorem. We emphasize that this does not imply a con-
vergence of {&(")},,GN. For properties of the sequence
{ic(”)},,eN, we refer the reader to [34].
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Upon termination, the resulting assignment matrix
X" e [0,1]™*N needs to be mapped to a matrix
X* e {0,1}*N in order to obtain a feasible point to
the problem in (5). For this purpose, we use the heuris-
tic described in Algorithm 1 (Fig. 2). The main idea is
as follows. We start by rounding the entries xl(;') to the
closest integer, and then we check if the obtained assign-
ment matrix is part of the set X. Otherwise, we activate
additional cells and connect TPs to them. By using the
standard LP solver of CPLEX (“IBM ILOG CPLEX Opti-
mization Studio” [35]) in our simulations, most entries of
the matrix X e [0,1]"*N are typically either zero or
one, so the rounding operation rarely results in a viola-
tion of a constraint (but we emphasize that this is not
guaranteed to be true in general).

For convenience, we summarize the complete approach
in Algorithm 2 (Fig. 3).

4.3 Serving a test point with multiple cells

By Assumption 3, each TP is restricted to be served by
exactly one cell. This strict limitation introduces the non-
convex constraint (5e) to the optimization problem in (5),
which motivates the relaxation (8) and the heuristic map-
ping introduced in Algorithm 1 (Fig. 2). To avoid these
heuristic approaches for which we are not guaranteed to
find solutions, we assume in this section that each TP
can be served by multiple cells. This assumption is imple-
mented by using 8 directly instead of 5e. As a result, there
is no need for any relaxations of the constraints or the use
of heuristic mappings such as that in Algorithm 1 (Fig. 2).
We only need to approximate the cost function as done in
(11a) and apply the MM algorithm to the resulting opti-
mization problem, and we note that these operations have
a strong analytical justification.

The assumption of multiple cells serving one TP has a
practical interpretation when considering Definition 2. It
means that cells can serve only a fraction of the traffic
generated in the area corresponding to some TP. In other
words, we do not use a all-or-nothing approach, where
cells should serve either all users or no users in the area
corresponding to a TP.

5 Load-aware energy-efficiency optimization

The model presented in Section 2 assumes the worst-
case interference in a fully loaded system, which leads
to a lower bound on the link spectral efficiency (c.f.
Assumption 5). As pointed out in Remark 3, the main
rationale behind this approach is the need for avoid-
ing coverage holes when network elements are deacti-
vated. The price is a sub-optimal performance in terms
of energy efficiency because the interference is over-
estimated, and therefore, users may use more resource
blocks than required to keep their minimum data rate
requirements. An immediate consequence of this is that
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Algorithm 1 Heuristic to map [0,1]"*N = {0, 1}V

Input: X, N, M, set of constraints X representing (11b) and (5e)
Output: final assignment matrix X*
1: initialize: set of assigned TPs A = () and final assignment matrix X*
2: for all i € M,j €N do
3. if 2" € {1} then
4: S T§"7> and A =AU {j}.

Ty
5. end if
6: end for

5]

8: while B#( do
9: (i,j) = argmax; ;{B}
10:  ifzf;:=1—X*€X> then

7: Define set B = {Lfn) € (0,1) Vi e M,Vj € N\A}

11: ry;=1and A= AU {j}.
192: B= B\{LET;) [Vie M}

13:  else

14: B= B\{‘T%)}

15:  end if

16: end while
7: for all j ¢ Ado

—

assign z7 ; = 1.
19:  A=AU{j}.
20: end for

18:  activate closest non-active cell ¢ which yields z7; := 1 — X* € &> and

feasible assignment X* € {0, 1}**N for the problem in (5)

Fig. 2 Heuristic to map [0, 1M*N — {0, 1}*N_Heuristic to map the assignment matrix X e [0, 11M*N obtained by the proposed algorithm to a

more cells are activated than are necessary for meet-
ing the minimum rate requirements at the TPs. In this
section, we extend the optimization problem in (11) to
incorporate more precise estimates of the load induced

task because it involves load computation (with fixed
assignments) that requires the solution of a system of
nonlinear equations [11, 24, 36] (note that we can eas-
ily estimate the link spectral efficiency from the load by

by a given user-cell assignment, which is not a trivial using 2).

Algorithm 2 Network reconfiguration for improved energy efficient operation

Input: set of TPs, set of cells, constraints
Output: optimized network configuration according to X*.
1: initialize X(©) with a feasible point.
2: repeat
3. compute ™ by solving (14)
4:  increment n
5: until (15) is valid
6: use Alg. 1 to map X™ to X* € {0, 1}V
7. connect the TPs to cells according to X*.

8: deactivate all cells no TP is connected to.

Fig. 3 Network reconfiguration algorithm for improved energy-efficient operation. Algorithmic description of the main approach proposed in this
paper. The algorithm iteratively solves and updates a problem closely related to the original assignment problem and maps its solution into the

solution space of the original problem
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In what follows, we propose an approach that typically
yields good approximations of the true link spectral effi-
ciencies. The idea is to use a two-step alternating iterative
scheme:

Step 1 Compute the link spectral efficiency

Viem,jen wij(p) defined in (2) for the load value
obtained in the previous iteration of Step 2 of
the algorithm (in the first iteration of the
algorithm, we can use the worst-case spectral
efficiency) and solve Problem (11) with these
(fixed) link spectral efficiencies to obtain an
TP-cell assignment X.

For the TP-cell assignment obtained in Step 1,
compute the load induced by this assignment.

Step 2

Regarding the load computation in Step 2, we use the fact
that the load p induced by a given assignment X is a fixed
point of the following standard interference mapping (see
[36, 37] and the references therein for further details):

J:RY > RY o0 . u(@]”,

where

Aij Xij

I;(p) := min ,T

Pi gij
“—~ 1o (1 I %)
jeN 108 MR Y kea\ii Pi 8kj Prto?

. rj . .
I" is alarge constant and A;; := 3RV n}BW . Since 7 is a stan-
1 ij

dard interference mapping and 7;(p) is bounded above, we
conclude that the fixed-point always exists and is unique
[17, 18]. Moreover, efficient iterative methods are known
to approach the fixed point with an arbitrary precision
[17, 18]. We summarize the heuristic proposed in this
section in Algorithm 3 (Fig. 4).
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Remark 5. The convergence of Algorithm 3 is established
as follows. The convergence of Step 1 of the algorithm for
a fixed load is outlined in Section 4.2, which results in a
monotonically decreasing energy consumption. In Step 2,
we obtain better estimates for the interference caused by
active cells, which let us compute the spectral efficiency of
links for the next iteration. The feasibility of the resulting
optimization problem is guaranteed because we only allow
for deactivation of cells (we do not allow reactivation of
cells deactivated in a previous iteration step).

6 Numerical evaluation

In the following, we present a numerical evaluation of the
performance of the proposed algorithm in different net-
works. We start by outlining the basic simulation scenario
followed by a comparison with two reference schemes
with respect to the energy savings and computational
time. Next, we present the ability of the proposed algo-
rithm to incorporate a variety of different base station
energy consumption models. Finally, we show the perfor-
mance gains achieved by applying Algorithm 3 (Fig. 4)
from Section 5.

6.1 Basic simulation scenario

The simulated network is located in a square-shaped area
of size 2 km x 2 km, where L base stations are placed at
locations chosen uniformly at random. Unless stated oth-
erwise, each base station has three cells directed at 0°,
120°, and 240°, respectively. Traffic generated by users is
represented by N TPs on an irregular grid. Hence, each TP
represents the traffic requirements of an area of different
sizes. To obtain spatially varying traffic requirements, we
use the following traffic model in each run of the simula-
tions. We define three circular hot-spot areas with centers
chosen uniformly at random within the area. There are

Algorithm 3 Load-aware energy minimization

Input: Worst-case spectral efficiency w(—1 = w(1). Maximum number of it-

erations Z.

Output: Network configuration X (%) with low energy consumption.

1: forn=0:7 do

2. Use w™ Y to construct Problem (5).

3. Use Alg. 2 to obtain X and remove deactivated cells from the set of
cells to be considered in subsequent iterations.

4:  Compute the new link spectral efficiency w(™ for the assignment X by

computing the fixed point of the standard interference mapping 7.

5. end for

6: Return the network configuration resulting from X (%),

Fig. 4 Load-aware network energy minimization algorithm. The algorithm alternately executes Algorithm 2, to obtain network configurations with
low energy consumption, and updates the link spectral efficiency @ by a fixed point algorithm
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two types of TPs: “hot-spot TPs (HTP)” and “standard TPs
(STP)” Each TP in the simulation has probability 0.3 of
being a HTP and probability 0.7 of being a STP. While the
position of STP is chosen uniformly at random within the
whole area, a HTP can be assigned uniformly at random
to one of three hot-spot areas. Its final position is deter-
mined in polar coordinates by sampling the distance from
the hot-spot center from a normal distribution and the
angle from a uniform distribution. We use a wrap around
model to avoid boundary effects and determine the loca-
tion of TPs to be placed outside the square-shaped area.
The data rate requirements of TPs are derived from a
normal distribution with ug = 128 kbps and variance
03 = 32 kbps? with a lower bound of 1 kbps. The sig-
nal attenuation for links between cells and TPs follows
the International Telecommunication Union (ITU) prop-
agation model for urban macro cell environments with a
horizontal antenna pattern for three-sector cell sites with
fixed antenna patterns [38].

Unless otherwise stated, we use the following simulation
parameters: €* = 1073, ¢ = 1073, B; = 20 MHz, P; =
40 dB, nsing = 1, nw = 0.83, ¢; = 500 W, and ¢; =
280 W. The values of the last six parameters have been
chosen to mimic the behavior of commercial LTE systems.
Furthermore, we use f;(p;) = 564 p; to model the load-
dependent energy consumption, which is a value similar
to the dynamic energy consumption of current macro cells
with six transmit antennas [27].

The proposed algorithms are compared with a solu-
tion of the original problem in (5) and, where possible,
with the centralized cell zooming approach from [9]. The
solution to the problem in (5) is obtained by using Mat-
lab 2013a in combination with IBM’s CPLEX on a Intel
Core i7 computer with four cores. As shown later in this
section, the computational time to solve 5 grows fast with
the problem size. Therefore, to solve the problem in (5)
in a reasonable time for comparison purposes, we con-
fine our attention to small networks with M = 102 cells
(L = 34 base stations) and N = 100 TPs, unless oth-
erwise stated. We obtained the 95 % confidence intervals
depicted in the figures by applying the bias corrected and
accelerated bootstrap method [39] to the outcome of 100
independent runs of the simulations. Results related to the
overall network energy consumption will be normalized
to the energy consumption of the network when all cells
are active and fully loaded.

Definition 7 (Normalized network energy consump-
tion). Given a TP assignment X inducing cell load p and
given the resulting network energy consumption E(p), the
normalized network energy consumption is defined to be

Ep) _ E(p)
EQ)  Yepat Yiemle+41)

Enorm(p) :=
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where the term in the denominator is the energy consump-
tion for a fully loaded system (p = 1).

We refer to the sparsity supporting majorization-
minimization algorithm as “sMM” and to any algorithm
that solves 5 directly as mixed-integer programming
(MIP) algorithm. We refer to solutions obtained by the
centralized cell zooming algorithm in [9] as “cCZ”. The
alternating approach proposed in Section 5 is referred to
as “alternating sMM” algorithm.

6.2 Notes on the complexity

The complexity of the proposed algorithm is of the same
order of solving iteratively LP problems, which is a class
of problems that can be solved efficiently with many stan-
dard optimization tools [33]. In our simulations for this
task, we use CPLEX, which implements the dual sim-
plex algorithm to solve LPs [35]. Typically, our proposed
algorithm terminates after a few iterations (< 100) [1].
The complexity of the proposed algorithm is linear in the
complexity of the simplex method, which has a polyno-
mial time complexity on average and an exponential time
worst-case complexity. In contrast, integer programming
problems are typically solved by branch and cut algo-
rithms (also in CPLEX [35]), which have an upper bound
on the number of nodes 2MN and solves one LP per node
resulting in an exponential complexity.

6.3 Computational performance comparison between
sMM, cCZ, and MIP

The cCZ has limited capability to incorporate differ-
ent energy consumption models and base stations with
several sectors, so we confine ourselves to a simple
base station model. We assume a homogeneous network
model under which all base stations have only one omni-
directional cell, and all base stations have the same energy
consumption model. More precise, we use [L| = M =
100, |S;| = 1 and (4) with ¢; = 500, e; = 280, fi(p;) = 0
(leL,ie M)

To show trends, we start with the standard setup
described above, and we gradually increase the number of
TPs in the system. Figure 5 shows the normalized network
energy consumption. As expected, the normalized network
energy consumption for all three algorithms increase as
the number of TPs increases. This is intuitive because
additional TPs add extra rate requirements that increase
the total system load, which in turn reduces the redun-
dancy in the network to be exploited for energy savings.
The proposed sMM algorithm as well as the MIP algo-
rithm provide network configurations that exhibit much
smaller normalized network energy consumption when
compared with the network configurations obtained with
the cCZ algorithm. The smallest energy consumptions are
achieved with the MIP algorithm, which outperforms the
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Fig. 5 Normalized network energy consumption. Comparison of
normalized network energy consumption obtained with the sMM
algorithm, the cCZ algorithm, and the solution of the MIP problem for
increasing number of TPs. Normalization with respect to the network
energy consumption for a fully loaded system (p = 1) when all cells
are active. Results are averaged over 100 different realizations of the
network and the 95 % confidence intervals are provided in gray

proposed sMM algorithm. For the scenario with 200 TPs,
the sSMM algorithm results in normalized network energy
consumption of 12 % on average. For the same number of
TPs, the average normalized energy consumption under
the cCZ and MIP algorithm are 49 and 7%, respectively.
Similarly, for 1000 TPs, the resulting average normalized
network energy consumption of 31 % for the sMM algo-
rithm is still larger than the 21 % normalized energy con-
sumption corresponding to the MIP solutions. However,
it is still much smaller than ¢cCZ with 88 % normalized
energy consumption. These results emphasize that the
sMM algorithm is a suboptimal heuristic, which is able to
find network configurations consuming low energy. Even
though the resulting network energy consumption is not
globally optimal, it shows much larger energy savings than
the comparison scheme cCZ. The main advantage of the
proposed sMM algorithm is its fairly low computational
complexity, which is directly affecting the time required
to obtain an optimization result. Figure 6 depicts the nor-
malized time needed to obtain the results of Fig. 5. This
time is normalized with respect to the computation time
of the MIP algorithm with 100 cells and 100 TPs. The
sMM algorithm always provides results in a substantially
shorter time than the MIP algorithm. Even for a relatively
small scenario of 100 cells and 300 TPs, the computa-
tion time is already about 200 times larger for the MIP
algorithm compared to the proposed sMM algorithm. For
larger setups with 1000 TPs, the normalized time to solve
the MIP was ~ 237 compared to =~ 0.49 for the sMM
algorithm, which is an approximate 488-fold reduction in

—&—cCZ
10" f| —k—sMM
—8— MIP

- average data rate per tes point of 128 kbpg
— empirical average over 100 realizations
o | - 100 base stations

normalized computation time
-
o
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number of TPs
Fig. 6 Normalized computation time. Comparison of normalized
computation time to obtain results with the sMM algorithm, the cCz
algorithm, and the direct solution of the MIP problem. Normalization
with respect to the empirical average of the MIP's computation time
for 100 cells and 100 TPs over 100 realizations. The 95 % confidence
intervals are provided in gray

the computation time. We emphasize that the simulated
scenarios are small and the computation of the MIP solu-
tion becomes infeasible in practical scenarios. Already for
a network with 200 cells and 10,000 TPs, the sMM algo-
rithm provided a solution in about 13 s, whereas the MIP
algorithm could not find a solution within 1 h. Compared
to the cCZ algorithm, the proposed sMM algorithm takes
longer time due to the lower complexity heuristic used in
the cCZ algorithm. For a scenario of 300 TPs, the average
computation time is about 22 times larger for the sMM
algorithm, and with 1000 TDPs, it is about 43 times larger.
However, with typical values of less than 1 s, the compu-
tation time is still reasonably small to allow for an online
implementation. Considering the advantages in energy
savings, as seen from Fig. 5, the proposed sMM algorithm
presents a good trade-off between computation time and
energy savings.

6.4 Cells with different sources of energy consumption

In contrast to other approaches to the problem of energy-
efficient network topology control, our optimization
framework can easily deal with heterogeneous networks
in which cells have different static and load-dependent
energy consumptions in (4). In other words, the proposed
sMM algorithm can cope with different energy consump-
tion models of cells. It can select those network configu-
rations that exhibit as low overall energy consumption as
possible. To illustrate the impact of different energy con-
sumption models on the optimization result, we start by
varying the static energy consumption of all cells, while
keeping the load-dependent energy consumption fixed.
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Later in this section, we show the impact of the load-
dependent energy consumption by changing the weight of
the load-dependent part relative to the static part.

To study the impact of the static energy consumption
of cells e;, in the following simulations, we use single-
cell omni-directional base stations, and we set the load-
dependent part for all cells and the common static part
at base stations to zero f(p;) = 0 and ¢; = 0. The
static energy consumption of half of the cells is varied,
while the static energy consumption of the other half
remains unchanged. We refer to the cells with standard
fixed energy consumption as type I, while type 2 is used
to refer to cells with a varying energy consumption. The
energy consumption of type 2 cells is specified relative to
that of type I cells. More precisely, an energy consump-
tion relation of 8 = 0.5 means that if ¢; = 780 W for type
1 cells, then ¢; = 390 W for type 2 cells. The results for
a scenario consisting of 100 cells and 100 TPs are shown
in Fig. 7. The simulation confirms the ability of our opti-
mization framework to incorporate different static energy
consumptions. When all cells consume the same amount
of energy (8 = 1), the algorithm makes no difference
between type I and type 2 cells. The energy consumption
of type 1 and type 2 cells is roughly the same indicating
that equally many type 1 and type 2 cells are active in the
obtained solution. In contrast, if type 2 cells consume less
energy than type I (8 < 1), then the algorithm prefers
to deactivate type I cells, while attempting to keep type 2
cells active. Obviously, if 8 > 1, the situation is reversed
in the sense that, if possible, type 2 cells are preferably
selected for deactivation.

The differentiation becomes even more evident for cell
deployments, where type I and type 2 cells are co-located.
In such a case, two cells of different types are located
at the same site and are “exchangeable” with respect to
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the service provided to the TPs (recall that we use omni-
directional cells in these simulations). In other words, if a
TP is assigned to a location with two co-located cells, then
it does not matter which cell is used to provide the ser-
vice to the TP. This implies that the decision whether to
deactivate a cell or not should depend only on the energy
consumption of this cell in relation to its co-located cell®.
The simulations with such a deployment are shown in
Fig. 8, where we see that, for 8 < 1, there is no active
cell of type 1, while, for B > 1, type 2 cells consume more
energy and the simulations confirm that the algorithms
clearly prefer to activate type 1 cell.

To obtain insight into the impact of the load-dependent
energy consumption, we fix the static energy consump-
tion of a single-cell omni-directional base station to be
e; = 780 W and ¢; = 0 W, and we vary the load-dependent
energy consumption f;(p) = 564 ¢’ p; by letting ¢’ take val-
ues on ¢ € {0,1,10}. For an increasing number of TPs,
Fig. 9 shows the fraction of active cells, while the nor-
malized network energy consumption is shown in Fig. 10.
First, we observe that the network energy consumption
always increases with an increasing number of TPs, which
is in fact no surprise. Moreover, the fraction of active cell
increases with ¢ for both the sMM algorithm and the
MIP algorithm. An examination of the objective function
in (5a) shows that this is what we expect because if the
ratio of the load-dependent energy consumption becomes
larger relative to the static one, then the algorithm tends
to increase the fraction of active cells for an improved
load balancing in order to keep the load of each active cell
at a relatively low level. In other words, instead of deac-
tivating as many cells as possible to minimize the static
energy consumption, the algorithm deactivates the cells to
find the best possible balance between the static and load-
dependent energy consumption. This can be observed
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Fig. 7 Cell selection for heterogeneous energy consumption models—random deployment. Fraction of active type T and type 2 cells in the final
solution obtained with sMM and MIP. Deployment uniformly at random for type T and type 2 cells. Results are averaged over 100 different
realizations of the network and the 95 % confidence intervals are provided
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Fig. 8 Cell selection for a heterogeneous energy consumption
model—co-located deployment. Fraction of type 1 and type 2 cells in
the final solution obtained with sSMM and MIP. Deployment of type 1
cells uniformly at random and type 2 cells are co-located with type 1.
Results are averaged over 100 different realizations of the network
and the 95 % confidence intervals are provided

in Fig. 9, where we can see that the higher is the load-
dependent energy consumption (which is reflected by
¢ > 0), the more cells are activated under both the sMM
algorithm and MIP algorithm. In particular, if ¢ = 10,
then the fraction of active cells is significantly increased
compared with the situation, in which the load-dependent
energy consumption is negligible (¢’ = 0).

6.5 Alternating sMM algorithm

We now study the performance of the alternating sMM
algorithm presented in Section 5. The standard simulation
parameters are used with a total number of Z = 10 iter-
ations. To show the effect of different TP requirements,
we performed simulations under our standard simulation
setup for different mean data rates p, at TPs and, for each
mean data rate, we used 100 different realizations of the
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Fig. 9 Varying dynamic energy consumption—active cells. Fraction
of active cells for different dynamic energy consumption ¢’ with
increasing number of TPs. Results are averaged over 100 different
realizations of the network and the 95 % confidence intervals are
provided
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Fig. 10 Varying dynamic energy consumption—normalized network
energy consumption. Normalized network energy consumption for
different dynamic energy consumption weights ¢’ with increasing
number of TPs. Normalization with respect to the energy consumption
when all cells are active. Results are averaged over 100 different
realizations of the network and the 95 % confidence intervals are
provided

simulation scenario. The initial link spectral efficiency is
computed based on the worst-case interference according
to Eq. (2). Our goal is to show the huge potential for energy
savings when the actual load is estimated as in Algorithm 3
(Fig. 4), instead of assuming the worst-case interfer-
ence scenario, which corresponds to the full-loaded sys-
tem (see Definition 5). The outcome of the simulation
is depicted in Fig. 11, which includes the 95 % confi-
dence level and shows the normalized network energy

— % — MIP 64 kbps 1
—<— sMM 64 kbps
— © — MIP 256 kbps |
—&— sMM 256 kbps
— < — MIP 1024 kbps [1
—+&— sMM 1024 kbps

= = = = o

- € - - - < —

normalized network energy consumption

iteration

Fig. 11 Alternating sMM algorithm. Normalized network energy
consumption when applying Algorithm 3 (Fig. 4) when using the sMM
algorithm compared to the using the MIP solution in each iteration.
Normalization with respect to the energy consumption when all cells
are active. Results are averaged over 100 different realizations of the
network and the 95 % confidence intervals are provided
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consumption with respect to the energy consumption
when all cells are active. We can see that the application of
the techniques from Section 5 leads to a significant reduc-
tion of the normalized network energy consumption for
both the sMM algorithm and the optimal MIP solution.
Furthermore, the largest reduction was always observed
after the first iteration, which shows that the worst-
case interference assumption is very conservative and the
load estimation may lead to considerable performance
gains.

7 Conclusions

We have introduced an optimization framework for
enhancing the energy efficiency of cellular networks. In
wireless systems, problems of this type are hard to solve
because they are combinatorial problems, and they have
a complex interference coupling structure among cells.
Indeed, even with a simplifying assumption of the worst-
case interference, the energy saving problem is a mixed
integer programming problem that is strongly related to
the bin-packing problem, which in turn is known to be
NP-hard. As a result, we cannot expect to find optimal
solutions quickly, so we focused in this study on fast sub-
optimal heuristics. Unlike many existing approaches in
the literature, the proposed methods can naturally con-
sider both the dynamic and static energy consumption
of base stations with multiple cells in heterogeneous net-
works.

In the first proposed heuristic, we relaxed the mixed
integer programming problem to a form suitable for
the application of majorization-minimization techniques.
The resulting algorithm requires the solution of a series
of linear programming problems that can be efficiently
solved with standard mathematical solvers. Therefore,
it can be applied to large-scale problems, and it is
also suitable for online operation. One limitation of
this first method is that it uses the worst-case interfer-
ence scenario, so it can be too conservative in terms
of energy savings. To address this limitation, we also
proposed a two-step alternating approach that obtain
accurate values of the spectral efficiency of links by
using the framework of standard interference functions.
Simulations show that the proposed fast heuristics are
able to obtain network configurations that are compet-
itive in terms of energy consumption against optimal
algorithms.

Endnotes
1\We lend the term topology control from work in the
field of ad hoc networks where it refers the task of
generating a network with desired features by
coordinating the nodes’ transmitting range [40, 41].
2Although the /p-norm is not a norm, we use the term
“norm” as it is a common practice in literature.
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3 A test point becomes a user if it represents a QoS
requirement of one particular user, in which case the
subarea is a point corresponding to the position of this
user.

“The smaller the area represented by each TP, the better
is this approximation. However, smaller areas imply an
increased number of TPs, and the computational
complexity of the proposed algorithm grows.

>Note that B; can also be interpreted as the total
bandwidth available at cell i, in which case p; is expressed
in terms of the fraction of required and available
bandwidth.

6 A resource block is defined as a portion of the
available time-frequency plane spanning a number of
consecutive OFDM symbols in the time domain over a
number of sub-carriers in the frequency domain.

"This relaxation together with 7c leads to a
communication scenario where multiple cells serve one
TP. A more detailed discussion on the implications is
presented in Section 4.3

8In our experience a good starting point is derived
from a feasible assignment matrix obtained by
connecting each TP to the cell providing the strongest
received signal strength.

Even though such setups are unlikely in practice, we
use it for reasons of illustration.

Appendix

Majorization-minimization (MM) algorithm

Here, we briefly summarize the majorization-mini-
mization (MM) algorithm [29], which can be seen
as a generalization of the well- known expectation-
maximization (EM) algorithm. The presentation that
follows is heavily based on that in the study in [42] (see
also [1, 36]).

Suppose that the objective is to minimize a function
h : X — R, where ¥ C RN. Assume that there
exists a solution to this optimization problem, and let
x* € X be a global minimizer of #; i.e., h(x*) < h(x) for
every x € X. Unless & has a special structure that can
be exploited (e.g., convexity), finding x* is computation-
ally intractable in general [43]. Hence, we typically have
to content ourselves with generating a sequence of vec-
tors with non-increasing objective value. To this end, we
can use the majorization-minimization (MM) technique,
which drives # downhill with the help of a majorizing
function g : X x X — R. In more detail, we say that
g is majorizing function for / if it satisfies the following
properties:

C.1 g majorizes h at every point in X, i.e.,
vVx,y € &,

h(x) < g(x,y), (16)
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C.2 gand h coincide at (x, x) so that

h(x) =g(x,x), VxeX. (17)

By starting from a feasible point x*) € X, the MM algo-
rithm generates a sequence {x(”)}n oy € & with mono-
tone decreasing function values #(x") according to (we
assume that the optimization problems have a solution)

x" D ¢ arg min g(x,x") . (18)
XeX

Irrespective of the choice of g, we can easily verify
monotonicity of the objective value with the help of (16),
(17), and (18): h(x") = g(x™,x") > gx+D x") >
g (x(”H),x(”H)) =h (x(”+1)). Therefore, since the func-
tion / is bounded below when restricted to X by assump-
tion, we can conclude that % (x(”)) — ¢ € R for some
¢ > h(x*) as n — o0o. However, we emphasize that this in
general does not imply the convergence of the sequence

xM1,
{ Thl. choice of the function g is problem dependent, but
it should be sufficiently structured in order to make the
optimization problem in 18 tractable. In particular, in our
study, we deal with concave and continuously differen-
tiable functions /. In such cases, a natural choice for g
satisfying (16) and (17) is

gxy) = h(y) + Vhy) T (x —y).

This particular choice is common in, for example, sparse
signal recovery [30].

(19)

Remark 6. We note that, instead of solving the optimiza-
tion problem in 18 exactly, it is sufficient for the mono-
tonicity of the sequence {h(x")} that g (x(”“),x(”)) <
g (x(”), x(”)) for every n € N. This observation is relevant if
the right-hand side of 18 can only be solved asymptotically,
in which case the iteration can be truncated whenever the
above inequality is satisfied.
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