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Abstract

Background: The distribution of Plasmodium falciparum clinical malaria episodes is over-dispersed among children
in endemic areas, with more children experiencing multiple clinical episodes than would be expected based on a
Poisson distribution. There is consistent evidence for micro-epidemiological variation in exposure to P. falciparum.
The aim of the current study was to identify children with excess malaria episodes after controlling for malaria
exposure.

Methods: We selected the model that best fit the data out of the models examined and included the following
covariates: age, a weighted local prevalence of infection as an index of exposure, and calendar time to predict
episodes of malaria on active surveillance malaria data from 2,463 children of under 15 years of age followed for
between 5 and 15 years each. Using parameters from the zero-inflated negative binomial model which best fitted
our data, we ran 100 simulations of the model based on our population to determine the variation that might be
seen due to chance.

Results: We identified 212 out of 2,463 children who had a number of clinical episodes above the 95th percentile of the
simulations run from the model, hereafter referred to as “excess malaria (EM)”. We then identified exposure-matched
controls with “average numbers of malaria” episodes, and found that the EM group had higher parasite densities when
asymptomatically infected or during clinical malaria, and were less likely to be of haemoglobin AS genotype.

Conclusions: Of the models tested, the negative zero-inflated negative binomial distribution with exposure,
calendar year, and age acting as independent predictors, fitted the distribution of clinical malaria the best.
Despite accounting for these factors, a group of children suffer excess malaria episodes beyond those predicted
by the model. An epidemiological framework for identifying these children will allow us to study factors that may
explain excess malaria episodes.
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Background
Malaria remains a major public health problem with
approximately 60 % of the world’s population at risk of
infection [1]. The current antimalarial drugs and
insecticide-dependent control methods are at risk from
the emergence of resistant parasites and mosquitoes,
respectively. Additional control methods, such as pre-
ventative vaccines, are therefore required. Vaccine devel-
opment could be guided by understanding why some
individuals are more susceptible to clinical malaria
than others. Through continuous exposure to malaria
parasites, children acquire immunity to clinical mal-
aria as they grow older [2]. However, the distribution
of clinical malaria is highly heterogeneous, even
among children of similar ages as demonstrated in
Kenya [3, 4] and in Senegal, where the numbers of
clinical episodes ranged from zero to 40 per child
over a 5-year period of surveillance in the same village [5].
In another study, a subgroup of children suffered malaria
attacks every 4 to 6 weeks over many years for unexplained
reasons [6, 7].
Like many other infectious diseases, malaria shows

heterogeneity of transmission [8], which may explain this
variation in the distribution of clinical malaria. There is
renewed interest in examining the fine-scale geograph-
ical variation in exposure to infected mosquito bites
that may account for this [9–11]. However, there are
indications that host susceptibility to clinical malaria
may also vary [12]. For instance, a number of genetic
polymorphisms have been associated with innate re-
sistance to Plasmodium falciparum malaria. These in-
clude the sickle cell trait (haemoglobin AS genotype;
HbAS), thalasaemias, and blood group (reviewed in
Gong et al. [13]).
Previously, we described a group of children who

suffer multiple episodes of clinical malaria in Kenya
[3]. In the current study, we confirm and extend
these findings by analysing a large data set compris-
ing two different cohorts including 2,463 children
over 15 years of follow-up, and by additional adjust-
ing for micro-epidemiological variations in exposure
[14]. This allowed us to identify and characterise a
group of children who experienced more episodes of
clinical malaria than would be expected based on their
exposure.

Methods
Ethics
Approval for human participation in these cohort stud-
ies was given by Kenya Medical Research Institute Ethics
Research Committee, and research was conducted ac-
cording to the principles of the Declaration of Helsinki,
which included the administration of informed consent-
ing in the participant’s local language.
Cohorts
The active weekly clinical surveillance-platform for the
collection of the data analysed is based on two cohorts
of children living in rural subsistence farming villages at
the coast of Kenya [15, 16], Junju and Ngerenya,
where 1,235 and 1,259 children had been followed by
December 2013 and December 2002 from the incep-
tion of the cohorts, respectively. Junju and Ngerenya
were founded in 2005 and 1998, respectively, and have
been under continuous weekly active surveillance for
malaria ever since. Children are recruited at birth in
study homesteads, and exit follow-up at 15 years of age.
Junju is under moderate malaria transmission intensity
with P. falciparum parasite prevalence from cross-
sectional surveys at 30 % during January to May [17, 18],
while Ngerenya is in an area in which malaria transmis-
sion has fallen to very low levels since 2004 [19], such
that older children were historically exposed but younger
ones have not been. For that reason, we excluded all the
follow-up data from Ngerenya collected from 2002 on-
wards due to paucity of malaria episodes. In this region,
P. falciparum is primarily transmitted during two periods
of increased precipitation each year: May through July,
and October through December [17, 18].
Asymptomatic infections were assessed from blood

smears collected during annual cross-sectional surveys
conducted during the dry season.

Malaria diagnosis and treatment
Children were visited in their homes by field workers
that lived in their midst to determine malaria-associated
fevers. An episode of malaria is defined as axillary
temperature ≥37.5°C associated with >2,500 P. falcip-
arum parasites per microliter of blood. In addition,
where children were positive for malaria with the rapid
diagnostic test, thick and thin blood smears were pre-
pared and subsequently stained with 10 % Giemsa and
examined at ×1,000 magnification for asexual P. falcip-
arum parasites. In total, 100 fields were examined before
slides could be considered negative. Malaria in this area
has been treated with co-artemether since 2005. Previ-
ously, it was amodiaquine, introduced in 2003 after the
failure of sulfadoxine/pyrimethamine due to increases in
resistant P. falciparum parasites.

Determination of asymptomatic P. falciparum infections
Asymptomatic P. falciparum infections were assessed by
microscopy at annual cross-sectional surveys at the end
of the dry season where the level of malaria transmission
is very low.

Analysis
We analysed data collected over a period of 16 years
(1998–2013) from 2,463 children from Kilifi county aged
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Fig. 1 Distribution of malaria episodes. Panel a shows the distribution
of episodes by age-blocks. Children are stratified by the amount
of exposure to parasites in their environment into three tertiles;
green line, highest exposure index; blue line, medium exposure
index; and red line, lowest exposure index. Panel b shows an overlay of
the expected Poisson over the observed distribution of numbers of
clinical malaria episodes. Panel c is the distribution of excess malaria
(observed minus expected) determined after 100 simulations of the
zero-inflated binomial distribution of the numbers of clinical episodes
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between zero and 15 years that were actively followed
for the determination of frequencies of clinical malaria,
constituting a total of 573,264 field observations and
11,371 child-years of observation. After determining the
number of malaria episodes for each child, we fitted
various count models including Poisson, negative bino-
mial, and zero-inflated negative binomial models using
child-years as the unit of observation (i.e. to allow for
varying age and calendar time in order to account for
trends in transmission intensity in the study area with
time and “exposure index (EI)” during the time of
follow-up). EI is a marker of the level of an individ-
ual’s exposure to malaria, and was calculated as the
distance-weighted prevalence of clinical malaria within
1 km radius of the child’s residence as previously de-
scribed [14, 20, 21].
We determined the best model for our data by com-

paring the Akaike information criterion (AIC) and we
determined that zero-inflated negative binomial was a
better fit than negative binomial using the Voung test.
For the non-linear fits, we used the multivariable frac-
tional polynomial routine from Stata, and quoted the
P values based on comparisons between the linear and
non-linear effects. We simulated the model 100 times in
order to determine the random distribution of excess
malaria (EM), using Poisson functions, a gamma distri-
bution with the parameters returned by the model fit
and a chance of zero-exposure for a given year based on
the zero-inflation parameter. We placed an arbitrary cut
off at the 95th percentile of excess malaria (observed
minus expected episodes). We did not use observed di-
vided by expected since a number of children had zero
expected episodes. For parasitaemia and temperature,
we compared the children with “excess (EM)” and
“average (AM)” numbers of clinical malaria episodes
by Student’s t-test.

Results
As expected from previous studies [2], the number of
clinical episodes varied with increasing age showing an
initial increase and subsequent decrease in risk, consist-
ent with initially increased mosquito biting rates as the
child grows and loss of protective maternal antibodies,
and subsequent acquired natural immunity to clinical
malaria (Fig. 1a). This increase and decline was most
evident among the children living with the highest
exposure to P. falciparum parasites in the microenviron-
ment (i.e. with the highest exposure index), followed by
those in the medium, and then the lowest of the three
exposure index tertiles.
In order to demonstrate the degree of over dispersion

in an unadjusted analysis, we first restricted analysis to
5 years of surveillance for each individual. The mean
number of clinical malaria episodes for children that had
accumulated within the 5 years of surveillance was 0.6
per child per year. A Poisson distribution based around
this mean would predict that very few children would
have a sum of more than eight episodes of febrile mal-
aria (i.e. <1 %) from at least 5 years of follow-up. How-
ever, this was not the case and over 16 % of the children
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Fig. 2 Fractional polynomial plots showing relationships between
age, exposure index, and calendar year with numbers of clinical
malaria. a Age (in years) was broken down into several blocks.
b Exposure index, an estimate for the local prevalence of malaria for
individual children. c Calendar years during which the respective clinical
data were collected
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had more than eight episodes (Fig. 1b). The Poisson dis-
tribution is therefore a poor fit for the data.
We then included the full data set with adjusting for

time at risk for each individual in order to compare how
well different statistical models fit the data. We com-
pared Poisson, zero-inflated Poisson, negative binomial,
and zero-inflated negative binomial models adjusting for
measures of P. falciparum exposure in the microenvir-
onment: exposure index, calendar year, and age. We in-
cluded significant (i.e. P <0.05) non-linear effects using
multiple fractional polynomials as described previously
[22] and used child-years of observation as the unit of
analysis in these models, and therefore clustered individ-
ual observations by child using the robust-sandwich
estimator to account for linked observations. The zero-
inflation models used exposure index as a logistic func-
tion to predict the risk of zero counts. The negative
binomial model was a significantly better fit for the
data than the Poisson model as judged by the AIC test
(AIC = 16,811). Similarly, the zero-inflated binomial
model was a significantly better fit than the negative
binomial model when the two were compared by
Voung test (i.e. Z = 3.17, P = 0.001). This is not sur-
prising, considering that 47 % (1,167 of 2,463) of the
children included in the model accumulated zero epi-
sodes and the distribution clearly did not fit a Poisson
distribution. The relationships between age, EI, and
calendar year with malaria, the building blocks of the
model, are shown by plotting the partial predictors
and residuals in Fig. 2. The final model with non-
linear transformations is shown in Additional file 1.
Having determined the best fitting model out of those

tested, we then ran 100 simulations applying the param-
eters returned from the model to the covariates observed
in our population and selected children above the 95th

percentile for observed minus expected numbers of clin-
ical cases as an EM group (Fig. 1c). We noted a positive
skew with an excess of children with extreme positive
observed–expected values. We restricted this analysis to
children with 5 or more years of follow-up to reduce un-
certainty. We then compared this EM group with a
group of children matched for similar EI but who had
only experienced an average number of clinical episodes
(AM), defined as children with the expected number of
cases of malaria or fewer, as determined by the zero-
inflated negative binomial model. We aimed to match
each EM child with the closest two AM controls, one
with higher and one with lower EI. There were 212 out
of 2,463 children that fulfilled our criteria for EM and
we identified 319 exposure-matched AM children. The
average time in follow-up and age at entry were similar
between the AM and EM groups: 8.03 (confidence inter-
val (95 % CI), 7.8–8.3) vs 7.70 (95 % CI, 7.6–8.2), P = 0.5,
and 1.88 (95 % CI, 1.64–2.11) vs 1.75 (95 % CI, 1.55–1.95)
years, P = 0.4, respectively. Exposure indices were 0.51
(95 % CI, 0.48–0.53) vs 0.49 (95 % CI, 0.47–0.51), P = 0.2,
for EM and AM children, respectively. Insecticide-treated
net usage was similar between the EM and AM children
(P = 0.9, Fisher’s exact; 84 % vs 83 %, respectively).
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Fig. 3 Differences in the levels of parasitaemia and axillary body temperature between excess malaria (EM) and age-matched average malaria
(AM) controls. EM children were matched to AM children by EI, where both groups of children have been under active weekly surveillance for at
least 5 years. Panels a and b compare the levels of parasitaemia and temperature during clinical malaria. Panel c compares the levels of
asymptomatic parasitaemia during cross-section surveys done before malaria transmission. Panel d shows the prevalence of positive blood
smears per individual children over several cross-sectional surveys

Table 1 Sickle cell trait protects against excess malaria

Group

Genotype Normal Excess P value

AA 281 (77.8 %) 204 (96.7 %) 0.001

AS 78 (21.6 %) 7 (3.3 %) 0.001

SS 2 (0.6 %) 0 –

Total 361 211

The numbers in brackets are percentages out of the total for the column. Fisher’s
exact test was applied to test for differences

Ndungu et al. BMC Medicine  (2015) 13:183 Page 5 of 8
Compared to AM, the EM children had (1) a higher
geometric mean parasitaemia density during asymp-
tomatic infections determined from cross-sectional
surveys of blood smears in the dry season when P. fal-
ciparum transmission is minimal [43,891 (95 % CI,
8,500– 79,282) vs 4,597 (95 % CI, 1447– 7746) para-
sites per μ L], P = 0.0001; Fig. 3 panel c), (2) a higher
geometric mean parasitaemia density during clinical
malaria diagnosed from active weekly surveillance
[80,230 (95 % CI, 67,718–92,742] vs 72,056 (95 % CI,
65,804–78,307) parasites per μL], P = 0.0001; Fig. 3
panel a), and (3) were less likely to be of the sickle cell
(HbAS) trait genotype that is known to protect from
malaria (Table 1). Although the proportion of children
admitted to hospital with malaria was higher amongst
EM than AM children, the differences were not significant
(Table 2). There were no differences in the levels of axillary
body temperatures during clinical malaria (Fig. 3b). Finally,
there was no significant difference in the prevalence
of asymptomatic P. falciparum positive blood smears
at pre-transmission cross-sectional surveys (0.22 (CI,
0.16–0.28) vs 0.16 (CI, 0.12–0.21), P = 0.2, for EM and
AM, respectively; Fig. 3d).
Both EM and the matched AM children were fre-

quently found in the same geographical locations, fur-
ther supporting the idea that having excess malaria is
not always explained by environmental factors like
increased exposure to malaria in the microenvironment
(Fig. 4). For example, 79 out of 173 EM children in this
study area (Junju) shared homesteads with at least one
or more AM children (Fig. 4).
All these epidemiological markers point to EM as a

group of children, who, over a sustained period of time,
fail to acquire the ability to control parasite growth.
Together, our analyses suggest that the factors respon-
sible for increased susceptibility in the EM group are
host dependent and not environmental, with sickle-cell
trait being an obvious example tested.
We compared the outputs of classification of EM

based on the zero-inflated binomial regression model
and the output of a simple cut-off, varying the cut-off
from >5 to >10 clinical episodes irrespective of exposure
and other variables (Additional file 2). There was no



Table 2 Common causes for hospital admission in the cohort

Diagnosis Group

Average malaria Excess malaria P value

Malaria 12 (13.7) 11 (19.7) 0.5

Febrile convulsions 4 (4.5) 4 (7.2) 0.7

Gastroenteritis 11 (12.5) 7 (12.5) 1

Lower respiratory tract
infections

12 (13.6) 7 (12.4) 1

Urinary tract infections 5 (5.7) 2 (3.6) 0.7

Bronchiolitis 2 (2.3) 1 (1.8) 1

Epilepsy 1 (1.1) 1 (1.8) 1

Total 88 56

The numbers in brackets are percentages out of the total for the column. There
was no evidence for a statistically significant difference in the total numbers of
admissions between the two groups, Fisher’s exact test P = 0.432. The groups
were also compared by Fisher’s exact test
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cut-off that closely replicated the results of the model,
the best compromise was a cut-off of >7 episodes, for
which 27 children were classified as EM by the model
but not by the cut-off, and 11 children were classified as
EM by the cut-off but not by the model.
Fig. 4 Geographical distribution of excess malaria (red dots) and average m
(2005–2013). The gradation from light green to dark green correlated with
mark the location of study homesteads
Discussion
Previous studies demonstrated heterogeneous distribu-
tions of the numbers of accumulated malaria episodes
for individuals, even amongst children of similar ages
living in the same villages [3, 5, 23]. There is good evi-
dence to show that variation in exposure to infected
mosquito bites, which may in turn be influenced by the
host factors, including behaviour, economics, attractive-
ness to mosquitoes, and other factors [4, 24, 25]. How-
ever, there is also evidence for variations in host
susceptibility [12, 26]. Herein, we have used a zero-
inflated negative binomial model controlling for expos-
ure in the microenvironment to identify children with
EM that may be attributed to individual factors. We
found children with similar levels of exposure to P. fal-
ciparum, similar levels of bed net usage, and similar ages
but with some having suffered excessive numbers of
clinical episodes. We also found EM and AM children
frequently living close to each other or even sharing the
same homestead.
Furthermore, EM children had increased parasite

densities upon asymptomatic infections and during
alaria (dark green dots) children in one of the study locations, Junju
low to high exposure to malaria in the homesteads. The black dots
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clinical malaria compared to AM controls, suggesting
that they have reduced immunity to control malaria in-
fections. Furthermore, the increased parasite densities
and the higher proportion of EM children admitted to
hospital with a diagnosis of malaria point to the possibil-
ity that clinical malaria in these children would have
been more severe than malaria in AM children if left un-
treated, or with delayed treatments. In interpreting this
result we should note that because the children in these
cohorts are under active weekly surveillance for malaria,
they receive more timely treatment for malaria upon
diagnosis than the general population. Hence, we as-
sume that the risk of hospital admission due to malaria
would be higher in the general population.
These findings are in agreement with our previous

study which also described a group of children with in-
creased susceptibility to clinical malaria in Kenya [3]. In
the current study, we confirm and extend these findings
by analysing a large data set comprising two different co-
horts including 2,463 children over 15 years of follow-up,
and by additional adjusting for micro-epidemiological vari-
ations in exposure.
A study in Senegal has also shown that asymptomatic

parasite densities increased with age among a group of
children with multiple episodes of malaria [27]. In con-
trast, asymptomatic parasite densities in the general
population decreased with age, leading the authors to
suggest that these children were failing to acquire anti-
parasite immunity. Furthermore, in a separate study
conducted in Kenya, pre-transmission asymptomatic
infections in the absence of antibodies were found to be
a risk factor for clinical disease in the ensuing malaria
transmission [28].
In the current study, we carefully controlled for varia-

tions in exposure, including use of EI, to predict the risk
of a zero count, representing a sub-population of chil-
dren with no exposure during a year of follow-up [29].
However, we cannot capture all variation in exposure,
which may vary even within a homestead. In support of
a role for host factors, we found that HbAS is strongly
protective against excess malaria. HbAS is well known
to protect against clinical malaria [30] and therefore fail-
ure to identify HbAS as a significant factor distinguish-
ing EM from AM children would have indicated that
variation in exposure was still a dominating factor.
An additional finding was the increased risk of clinical

malaria with calendar year between 2005 and 2013. This
is consistent with wider trends in malaria transmission
described on the Kenyan Coast [31], and could be ex-
plained by reductions in the level of immunity (and
hence increasing numbers of susceptible individuals) fol-
lowing a prolonged period of reducing P. falciparum
transmission. We included the possibility of interactions
between calendar time and site, and between calendar
time and age, and discarded these because they were not
significant.

Conclusion
We might expect that children of the same age and liv-
ing with the same amount of exposure to malaria or the
in the same geographical location would be similarly
susceptible to clinical malaria. However, this study indi-
cates that there may be a skewed distribution, with some
children experiencing excessive numbers of episodes,
perhaps indicating that these children fail to acquire nat-
ural immunity to malaria. However, there may be other
inter-individual variations in exposure or behaviour pat-
terns between children or their parents that are poorly
accounted for by the model and could also explain the
skewed distribution of children with excess episodes.
Further studies of immunological parameters will be re-
quired to provide further evidence for the hypothesis
that host immunity contributes to the variation ob-
served. Furthermore, such studies will also reveal bio-
markers for identifying such children with EM, which
could in theory be used for targeting interventions to a
small group of children that are responsible for a dispro-
portionate amount of malaria-driven morbidity and mor-
tality. Moreover, if these children represent the 20 %
predicted to be responsible for the majority of malaria
transmission [25], targeting them with interventions and
control methods would be more cost effective at re-
ducing the overall transmission than targeting whole
populations.
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Additional file 2: A comparison of the numbers of excess malaria
as classified by simple cut-offs or by the negative binomial model.
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