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Abstract

Background: Quantification of protein expression by means of mass spectrometry (MS) has been introduced in
various proteomics studies. In particular, two label-free quantification methods, such as spectral counting and
spectra feature analysis have been extensively investigated in a wide variety of proteomic studies. The cornerstone
of both methods is peptide identification based on a proteomic database search and subsequent estimation of
peptide retention time. However, they often suffer from restrictive database search and inaccurate estimation of
the liquid chromatography (LC) retention time. Furthermore, conventional peptide identification methods based on
the spectral library search algorithms such as SEQUEST or SpectraST have been found to provide neither the best
match nor high-scored matches. Lastly, these methods are limited in the sense that target peptides cannot be
identified unless they have been previously generated and stored into the database or spectral libraries.
To overcome these limitations, we propose a novel method, namely Quantification method based on Finding the
Identical Spectral set for a Homogenous peptide (Q-FISH) to estimate the peptide’s abundance from its tandem mass
spectrometry (MS/MS) spectra through the direct comparison of experimental spectra. Intuitively, our Q-FISH
method compares all possible pairs of experimental spectra in order to identify both known and novel proteins,
significantly enhancing identification accuracy by grouping replicated spectra from the same peptide targets.

Results: We applied Q-FISH to Nano-LC-MS/MS data obtained from human hepatocellular carcinoma (HCC) and normal
liver tissue samples to identify differentially expressed peptides between the normal and disease samples. For a total of
44,318 spectra obtained through MS/MS analysis, Q-FISH yielded 14,747 clusters. Among these, 5,777 clusters were
identified only in the HCC sample, 6,648 clusters only in the normal tissue sample, and 2,323 clusters both in the HCC
and normal tissue samples. While it will be interesting to investigate peptide clusters only found from one sample,
further examined spectral clusters identified both in the HCC and normal samples since our goal is to identify and assess
differentially expressed peptides quantitatively. The next step was to perform a beta-binomial test to isolate differentially
expressed peptides between the HCC and normal tissue samples. This test resulted in 84 peptides with significantly
differential spectral counts between the HCC and normal tissue samples. We independently identified 50 and 95
peptides by SEQUEST, of which 24 and 56 peptides, respectively, were found to be known biomarkers for the human
liver cancer. Comparing Q-FISH and SEQUEST results, we found 22 of the differentially expressed 84 peptides by Q-FISH
were also identified by SEQUEST. Remarkably, of these 22 peptides discovered both by Q-FISH and SEQUEST, 13 peptides
are known for human liver cancer and the remaining 9 peptides are known to be associated with other cancers.

Conclusions: We proposed a novel statistical method, Q-FISH, for accurately identifying protein species and
simultaneously quantifying the expression levels of identified peptides from mass spectrometry data. Q-FISH analysis on
human HCC and liver tissue samples identified many protein biomarkers that are highly relevant to HCC. Q-FISH can be
a useful tool both for peptide identification and quantification on mass spectrometry data analysis. It may also prove to
be more effective in discovering novel protein biomarkers than SEQUEST and other standard methods.
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Background
The main objective of functional proteomics analysis is
often to estimate changes in the amount of proteins found
in complex biological systems, in response to physiological
and clinical factors such as cell development, disease pro-
gression, or drug treatment. In particular, one of the key
issues in proteomics research based on tandem mass spec-
trometry (MS/MS) is the identification of protein species
and the characterization of their expression changes in
normal and disease samples. Three analysis techniques are
often required in an MS/MS study: expressed peptide
identification, target protein characterization, and quantifi-
cation [1]. For hundreds to tens of thousands of fragment
ion spectra generated, the assignment of the fragment ion
spectra to peptide sequences, the identification of proteins
represented by each peptide, and the estimation of their
abundances in the analyzed sample require complex com-
putations and still remain as high statistical challenges [2].
Quantification of protein expression using mass spectro-

metry (MS) is often required for the discovery of protein
biomarkers associated with cancer, their response to sti-
muli, cell signalling cascades and the function of cell
cycle-promoting proteins, and various biomedical investi-
gations [3]. Two categories of quantification methods for
MS data have been used: stable isotope labelling quantifi-
cation and label-free quantification [2].
Several stable isotope-based quantification methods

have been introduced based on different labelling
reagents that can be chemically bound to peptides [4]. It
is, however, difficult to simultaneously quantify the
amount of proteins/peptides in multiple samples because
of the limited number of labelling reagents available [5].
Moreover, current practical applications can typically
quantify, at most, a few hundreds of peptides, measuring
relative expression values of each pair of contrasting sam-
ples. Furthermore, the high costs of labelling reagents
make these quantification methods difficult to be com-
monly applied for the characterization of the global
proteome.
On the other hand, label-free quantification, which does

not require the use of a stable isotope labeling, has the
advantages of low cost and simplicity. Currently, two
label-free methods are available to measure expression
levels of peptides: spectra counting and spectra feature
analysis. The spectral counting method can estimate the
peptide expression levels by means of spectrum counting
(from MS/MS data) or through the estimation of the inte-
grated ion intensities [6,7]. The spectral feature analysis
method quantitatively determines the peptide expression
levels by comparing three-dimensional patterns (retention
time, m/z and intensity) between different samples [8-13].
However, these label-free quantitative methods have

two main shortcomings. The first limitation is due to
numerous false-positive discriminative peptides, which

are the result of the chromatographic variability between
LC-MS experiments. In the analysis of the spectra
features, after finding two candidates with same MS1
retention time and m/z, the difference in their MS1
intensities is used to define the peptide levels. Therefore,
spectra feature analysis requires stringent reproducibility
[3,8] and additional pre-processing of the LC normaliza-
tion or retention time alignment [14,15].
The second limitation is that spectra counting cannot be

performed without peptide identification because the rela-
tive peptide levels can be quantified only after peptide
identification. In peptide identification, MS/MS spectra
are verified using a database searching algorithm or
spectral library searching algorithm such as SEQUEST,
MASCOT, or SpectraST. Specifically, database search
algorithms calculate score functions to compare the
experimental MS/MS spectra with theoretical MS/MS
spectra of peptides derived from protein sequence data-
bases. The pool of theoretical MS/MS spectra is restricted
by user-specified criteria such as mass tolerance, proteoly-
tic enzymes, and the types of post-translational modifica-
tion [2,16]. A number of spectra may not be assigned
tothe correct peptides for diverse reasons, including
deficiencies of the scoring scheme implemented in the
database search tools, sequence variations (e.g., single
nucleotide polymorphisms, SNPs), omissions in the data-
base searched, post-translational or chemical modifica-
tions of the peptide analyzed, and the observation of
genomic sequences that are not anticipated (e.g., splice
forms, somatic rearrangement, and processed proteins)
[17]. For all these reasons, a large number of important
peptides may be lost during the database search.
Instead of matching acquired MS/MS spectra against

theoretically predicted spectra, MS/MS spectra can also be
assigned to peptides by matching those in a spectral
library. The spectral library is compiled from a large col-
lection of experimentally observed MS/MS spectra identi-
fied in previous experiments [18]. Generally, a set of
spectra of known peptide sequences is collected into a
library and used as a reference. The experimental spec-
trum may be identified by a similar match in the library.
However, this method can only be identified when spectra
were observed previously and entered into the library. So,
these library searching methods are well suited for tar-
geted proteomics, in which one seeks not to discover pre-
viously unseen peptides, but rather limited to finding and
quantifying expected peptides of interest in the sample
[19].
To overcome these limitations of label-free quantifica-

tion methods, we propose a novel spectral counting
method to estimate a peptide’s abundance by counting
MS/MS spectra, comparing and clustering all experimen-
tally observed spectra. This approach has several advan-
tages. First, because the same peptide may be fragmented
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multiple times or repeatedly observed at different time
points from an MS/MS run, multiple spectra may be
extracted for the same peptides. In other words, dupli-
cated spectra are ubiquitous in large-scale proteomics
data [20]. Our method thus attempts to identify and
group all the duplicate spectra, which allows us to quan-
tify the amount of peptide found in complex biological
systems without searching through the databases or
using LC normalization.
For the given spectra, our method, referred to as the

Quantification method derived by Finding the Identical
Spectra set for a Homogenous peptide (Q-FISH) employs a
two-stage clustering algorithm to determine whether they
are from the same peptides with homogeneous spectral
patterns. The Q-FISH algorithm employs two similarity
measures: the difference between two precursor ions and
the correlation coefficient of moving window averages.
Subsequently, the algorithm clusters spectra from the
same peptide through all plausible pair-wise comparisons.
By counting the spectra of each cluster set of peptides, we
can estimate the amount of peptides. Figure 1 summarizes
the workflow of the proposed Q-FISH algorithm.
Our proposed algorithm was applied to identify differ-

entially expressed peptides from a real data obtained
during a Nano-LC-MS/MS experiment performed on
human HCC and normal liver tissue samples.

Results & Discussion
We introduced and tested the so-called Q-FISH algorithm
to identify and quantify the amount of all expressed pep-
tides from an MS/MS dataset by clustering and counting
spectra with homogeneous spectral patterns. In order to
test our algorithm, we performed a Nano-LC MS/MS
experiment with triplicated human hepatocellular carci-
noma and normal liver tissue samples. For a total of
44,318 MS/MS spectra obtained through three MS/MS
analysis for two samples, Q-FISH yielded 14,748 clusters.
More specifically, 5,777 clusters were identified only in the
hepatocellular carcinoma (HCC) sample, 6,648 clusters
only in the normal sample, and 2,323 clusters in both
HCC and normal samples. For the purpose of comparison,
we also implemented SEQUEST and SpectraST to identify
peptides. However, only 4,824 of 44,318 spectra were iden-
tified using SEQUEST, and a total of 1,326 peptides from
the experimental spectra. Generally, most database search
algorithms including SEQUEST assign specific experimen-
tal spectra to peptides by comparing the experimental data
with theoretical spectra generated from the peptide
sequence. It should be noted that neither the best match
nor a high search score may not be a true match, espe-
cially for novel protein targets. Therefore, many peptides
could be misidentified, or not be identified, unless
they were previously generated and stored into the data-
base sequence. In our experiments, a large number of

experimental spectra (89.12%, namely 39,494 of a total of
44,318 spectra) could not be used for the peptide identifi-
cation using SEQUEST. On the other hands, 5,549 spectra
and 3,295 peptides could be identified using SpectraST.
That is, a large number of spectra still could not be used
for the peptide identification by SpectraST (87.48%,
namely 38,769 of a total of 44,318 spectra). On the other
hand, our proposed method directly compares all observed
experimental spectra to discover differentially expressed
peptides without a loss of observed spectra.
The standardized intensities of the experimental spectra

plotted in Figure 2 are characterized by positive intensity
values (upper part) and the reference spectrum plotted
using negative intensity values (lower part). Specifically,
Figure 2(a), which illustrates an example of one cluster
with nine similar spectra, shows spectral patterns of the

MS/MS Data

Scale Standardization

Moving Average

Correlation index for moving 
average-based peak patterns

Spectral Count-based 
Quantification Method using 

Two-Stage Clustering

Identification of DEPs

Figure 1 Work flow chart. This figure shows a flow schematic of
the analysis process performed by Q-FISH algorithm
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MS/MS spectra as well as the reference spectrum for clus-
tered spectral set. The overall patterns look quite similar
and all nine spectra pairs seem to have almost identical
patterns. Table 1 shows the search results returned by
SEQUEST and SpectraST. Subsequently, in the case of
spectral set S366006, nine spectra were identified by
means of the same peptide sequence, “SIFSAVLDELK” in
the SEQUEST and SpectraST with XCorr above 1.97. In
addition, a reference spectrum for the clustered spectral
set was identified as the peptide sequence, “SIFSAVL-
DELK” with a SEQUEST score, XCorr = 2.96. This analy-
sis reveals that these spectra can be regarded as the
spectra of a homogenous peptide. In other words, each

cluster could be expected to be composed of spectra from
the same peptide.
Similarly, Figures 2(b) and 2(c) show spectral patterns

for the reference spectrum and the experimental spectra
of a single cluster. It should be noted that the overall pat-
terns look quite similar and all spectra pairs are character-
ized by high correlation coefficients. However, while all
spectra in S1157004 could be identified by SpectraST, two
out of the eleven spectra could not be identified by
SEQUEST, as shown Table 1. On the contrary, all spectra
in S65002 are identified by SEQUEST with high scores,
while three spectra could not be identified by SpectraST.
In other words, if we relied only on the conventional
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Figure 2 Pattern-plots of reference spectrum and experimental MS/MS spectra in clustered spectral sets. This figure shows pattern-plots
the of the experimental MS/MS spectra with plotted using positive intensities (upper part) and the reference spectrum using negative intensities
(lower part). Then, (a) all of nine spectra were identified as a same peptide, while (b) two of the eleven spectra are not identified by SEQUEST
and (c) four of the seven spectra were only identified by SpectraST, although pattern-plots are very similar.
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peptide identification such as SEQUEST or SpectraST,
these spectra would have been excluded despite the similar
peak patterns. On the other hand, our Q-FISH algorithm
was able to include these spectra without a loss of
information.
In this study, we were interested in identifying proteins

and characterizing their differential expressions in normal
and HCC samples. Hence, we first focused on the 2,323
clusters, which were observed in both samples. Figure 3
and Table 2 show a scatter plot and a correlation matrix
with the number of spectra in the same cluster, which
were obtained through the replicated experiments on
HCC and normal tissue samples, respectively. It is worth
noting that the number of spectra in the same cluster
showed high correlations (0.7178~0.8315), while the num-
ber of spectra for different samples showed weak correla-
tions (0.0654~0.1549). For a given spectral set, the
reference spectrum was estimated by averaging the relative
intensities of the spectra. Consequently, the reference
spectrum corresponds to the number of expressed spectra

in the normal and HCC samples. We computed the false
clustering rate (FCR) on the 2,323 clusters shared by the
HCC and normal samples. Among these clusters, 1,571
clusters had FCRs smaller than 0.05. Our next step was to
perform a beta-binomial test to isolate differentially
expressed peptides (DEPs) [21]. The result showed that
only 84 out of the 1,571 reference spectra were character-
ized by different spectral counts between the HCC and
normal tissue samples. Also, 5,777 clusters were observed
only in the HCC sample and 6,648 clusters only in the
normal sample by Q-FISH. Among these clusters, 1,571
and 1,556 clusters, respectively, had FCRs smaller than
0.05.
In order to compare the performance of Q-FISH with

the spectral counting method by SEQUEST, we used the
human liver data and validated the results through litera-
ture search. For the human liver data, Q-FISH provided
1571 differentially expressed clusters for HCC sample and
1556 for normal sample, among which 57 and 99 clusters
were identified by SEQUEST in HCC and normal samples,

Table 1 Results of SEQUEST & SpectraST for spectra in clustered spectral sets

Spectral Set ID Sample Sequence XCorr RT precursor ion precursor intensity SpectraST

S366006 HCC-3 SIFSAVLDELK 2.35 6096.18 1223.4 25828.2 1

Normal-1 SIFSAVLDELK 2.38 6144.00 1222.6 12823.4 1

Normal-1 SIFSAVLDELK 2.12 6197.20 1224.2 385800.0 1

Normal-1 SIFSAVLDELK 2.30 6248.89 1224.2 145284.0 1

Normal-2 SIFSAVLDELK 1.99 6278.55 1223.4 6218.5 1

Normal-2 SIFSAVLDELK 2.35 6341.52 1222.3 14101.8 1

Normal-2 SIFSAVLDELK 1.98 6441.91 1223.1 2800.2 1

Normal-3 SIFSAVLDELK 2.56 6149.98 1224.4 421560.0 1

Normal-3 SIFSAVLDELK 2.37 6154.65 1222.3 23456.6 1

S1157004 Normal-1 VDFPQDQLTALTGR 2.77 3724.74 1565.1 106099.0 1

Normal-2 VDFPQDQLTALTGR 2.33 3647.59 1562.4 143286.0 1

Normal-1 VDFPQDQLTALTGR 2.46 3779.98 1562.2 75465.1 1

HCC-3 VDFPQDQLTALTGR 2.10 3854.18 1562.3 34323.8 1

Normal-2 VDFPQDQLTALTGR 2.07 3695.20 1562.7 159244.0 1

Normal-3 VDFPQDQLTALTGR 2.07 3825.73 1562.4 69159.3 1

Normal-3 VDFPQDQLTALTGR 2.24 3775.23 1562.9 71196.3 1

HCC-1 VDFPQDQLTALTGR 2.02 3930.66 1562.2 25175.7 1

HCC-2 VDFPQDQLTALTGR 1.95 3977.91 1562.2 12849.6 1

Normal-2 M#WLSSMCSMRSAR 1.29 3629.94 1564.7 86816.8 1

HCC-1 VDFPQDQLTALTGR 2.20 3907.36 1564.2 19403.5 1

S65002 HCC-1 EILVGDVGQTVDDPYATFVK 3.81 4619.64 1084.4 21166.7 1

HCC-3 EILVGDVGQTVDDPYATFVK 3.70 4573.01 1084.7 46939.4 X

HCC-3 EILVGDVGQTVDDPYATFVK 2.32 4579.55 1083.5 22077.0 1

Normal-1 EILVGDVGQTVDDPYATFVK 2.87 4516.45 1084.0 26598.5 1

Normal-2 EILVGDVGQTVDDPYATFVK 4.08 4461.41 1084.5 19416.7 X

Normal-2 EILVGDVGQTVDDPYATFVK 3.49 4514.74 1084.7 91100.7 X

Normal-3 EILVGDVGQTVDDPYATFVK 3.37 4548.32 1084.5 23254.4 1

These spectra were clustered by the proposed Q-FISH algorithm. In the case of spectral set S366006, all spectra in spectral set were identified as a same peptide
sequence “SIFSAVLDELK” by both of SEQUEST and SpectraST, while two spectra in S1157004 are not identified by SEQUEST (XCorr < 2.11). Also, all spectra in
S65002 are identified by SEQUEST with high scores, while four spectra were only identified by SpectraST. If we relied only on SEQUEST or SpectraST, these
spectra in S1157004 or S65002 would be excluded.
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respectively. On the other hand, SEQUEST provided 93
and 145 peptides for HCC and normal tissue samples,
respectively. Among the 57 identified clusters in HCC
samples, 37 clusters were found to be over-expressed by
Q-FISH; 20 peptides/clusters were overlapped by Q-FISH
and SEQUEST. On the other hands, 73 peptides were
identified only by SEQUEST. 49 peptides/clusters were
identified as over-expressed by both Q-FISH and
SEQUEST in normal sample. Also, 50 and 96 peptides/

clusters were identified as over-expressed only by Q-FISH
and SEQUEST, respectively.
We compared two results through literature search. We

assumed that it is a true match if a peptide was reported
in a previous literature in cancer. While there is a certain
degree of uncertainty for reported protein biomarkers, this
assumption is not biased to any of the two methods and
allowed us to statistically compare their performance. For
examples, alpha-2-macroglobulin (A2M) annotated by

Figure 3 Scatter plot between different samples and within replicated samples. This figure represents the scatter plot with the number of
spectra in clustered sets obtained through the replicated experiments on HCC and normal tissue samples, respectively. Then, two black boxes
show the relationships of the number of spectra in replicated each HCC and normal samples, while a gray box represents the relationships of
the number of spectra in clustered sets between HCC and normal samples.
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“VSVQLEASPAFLAVPVEK” was reported to be over-
expressed in HCC sample [22]. This peptide was found to
be over-expressed by Q-FISH, but under-expressed by
spectral counting analysis by SEQUEST. The full list of
peptides is given in Additional file 1. Based on this report,
the 2 × 2 confusion tables can be constructed as shown in
Table 3.
For Q-FISH result, 65 peptides were found in the literature:
31 for HCC sample and 34 for normal sample. Among 31
peptides for HCC sample, 25 are reported as over-
expressed in the literature, and are assumed to be correctly
identified. Among 17 peptides for normal sample, 17 are
reported as under-expressed in the literature, and thus are
assumed to be correctly identified. The remaining 17 and 6
peptides are assumed incorrectly identified.
For SEQUEST result, 93 peptides were reported in the

literature: 43 for HCC sample and 50 for normal sample.

Among them, 34 and 24 peptides were correctly identi-
fied, while 26 and 9 peptides were incorrectly identified.
Based on these numbers, accuracy measure was com-
puted showing that Q-FISH (accuracy = 64.62%) has
slightly higher accuracy than SEQUEST (accuracy =
62.37%). This comparison showed that Q-FISH per-
formed as reliably as SEQUEST, despite the comparison
giving SEQUEST a natural advantage.
Table 4 provides a list of potential protein biomarkers. Q

scores were calculated by averaging the correlation coeffi-
cient between moving averages over the reference spec-
trum and experimental spectra of the clustered spectral
set. If it has a relatively high value, then the reference
spectrum is well represented in the clustered spectral set.
To find the potential biomarkers in each sample, we

searched the reference spectra of clusters using SEQUEST.
Consequently, we could find 50 and 95 peptides as the
candidate biomarkers from HCC sample and normal sam-
ple, respectively, as shown Table 4. Among them, 24 pep-
tides in HCC sample and 56 peptides in normal samples
are known biomarkers for the human liver cancer. Also,
22 reference spectra among 84 DEPs were identified by
SEQUEST. Among them, 13 peptides are known markers
for the human liver cancer, too.
As shown in Table 4, carbamoyl-phosphate synthetase

1 (CPS1) are annotated by various sequences such as
“MEYDGILIAGGPGNPALAEPLIQNVR” “SIFSAVL-
DELK”, “TAVDSGIPLLTNFQVTK” and “GLNSESM-
TEETLK”. These sequences are underexpressed in the
HCC sample. Kinoshita et al. [23] performed differential
gene display analysis (DGDA) to compare the intensities
of polymerase chain reaction (PCR) products and evalu-
ated the degrees of mRNA expression in HCC tissue
samples and noncancerous hepatitis tissues. Sub-
sequently, they confirmed that CPS1 is underexpressed.
Specifically, CPS1 synthesizes carbamyl phosphate
from bicarbonate, adenosine triphosphate (ATP) and
ammmonia. A genetic mutation of CPS1 was identified
as the source of hyperammonemia. In HCC tissue sam-
ples, underexpression of the CPS1 gene had been
reported in rats, but the scientists’ study was the first to
result in such a finding for humans [23]. Heterogeneous
nuclear ribonucleoprotein C (HNRNPC) annotated as
“MIAGQVLDINLAAEPK” and actin, cytoplasmic 1
(ACTB) annotated as “DLYANTVLSGGTTMYPGIADR”
were found to be over-expressed in the HCC sample
[24,25]. On the contrary, glutathione S-transferase
(GSTA1) annotated as “NDGYLMFQQVPMVEIDGMK”
has been down-regulated in the human HCC sample
[26]. Moreover, fatty acid-binding protein (FABP1) anno-
tated as “SVTELNGDIITNTMTLGDIVFK”, and Isoform
1 of Liver carboxylesterase 1 (CES1) annotated as “EGYL-
QIGANTQAAQK” are all characteristic of the HCC
sample [27,28].

Table 2 Correlation matrix and the number of shared
spectral clusters between different samples and within
replicated samples

HCC1 HCC2 HCC3 Normal1 Normal2 Normal3

HCC1 1.0000a

(4,319)b
0.8315
(2,117)c

0.8125
(2,142)c

0.1549
(1,108)c

0.0828
(929)c

0.1088
(1,022)c

HCC2 1.0000
(4,144)b

0.8048
(2,032)c

0.1232
(1,025)c

0.0654
(894)c

0.0899
(947)c

HCC3 1.0000
(4,461)b

0.1394
(1,144)c

0.0654
(947)c

0.0911
(1,061)c

Normal1 1.0000
(4,710)b

0.7178
(2,280)c

0.7449
(2,286)c

Normal2 1.0000
(4,863)b

0.7302
(2,128)c

Normal3 1.0000
(4,560)b

a: correlation coefficient, b: # of spectral clusters, and c: # of shared spectral
clusters,

This table shows correlation matrix with number of spectra in same cluster
between different samples and within replicated samples. The number of
spectra in the same cluster within replicated samples showed high
correlations, while the number of spectra between different samples showed
weak correlations.

Table 3 2 × 2 tables for literature search results of
Q-FISH and SEQUEST

Q-FISH SEQUEST

HCC Normal Total HCC Normal Total

Literature Over-
Expressed

25 17 42 34 26 60

Under-
Expressed

6 17 23 9 24 33

Total 31 34 65 43 50 93

Accuracy 64.62% 62.37%

We assume that if a peptide is reported in a previous literature, it is assumed
to be correctly identified. We compared two results (Q-FISH and SEQUEST)
through literature search. Based on this report, the following 2 × 2 tables can
be constructed
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Table 4 Lists of differentially expressed peptides in HCC and normal sample.

HCC sample

Related
Cancer

Gene
Name

Shogun Sequence #(HCC)a XCorr Q
Score

Protein Name PMIDc

HCC AKR1B10 IVENIQVFDFK 2 2.04 0.95 Aldo-keto reductase family 1 member
B10

20388846

ALB DVFLGMFLYEYAR 2 2.04 0.96 Putative uncharacterized protein ALB 20658536

ECHDC3 VIIISAEGPVFSSGHDLK 2 2.14 0.95 Isoform 1 of Enoyl-CoA hydratase
domain-containing protein 3,
mitochondrial

21495032

EEF1A2 THINIVVIGHVDSGK 3 2.29 0.83 Elongation factor 1-alpha 2 18161050

EEF2 AYLPVNESFGFTADLR 3 3.30 0.96 Elongation factor 2 18161940

ENO1 FTASAGIQVVGDDLTVTNPK 33 2.51 0.61 Isoform alpha-enolase of Alpha-
enolase

18813785

FGG EGFGHLSPTGTTEFWLGNEK 2 3.16 0,95 Isoform Gamma-B of Fibrinogen
gamma chain

19596924

FN1 SSPVVIDASTAIDAPSNLR 2 2.45 0.96 Isoform 1 of Fibronectin 16820872

FTCD EAQELSLPVVGSQLVGLVPLK 2 2.98 0.99 Isoform A of Formimidoyltransferase-
cyclodeaminase

18571811

GAPDH WGDAGAEYVVESTGVFTTMEK 5 3.57 0.96 Glyceraldehyde-3-phosphate
dehydrogenase

20714864

HBD FFESFGDLSSPDAVMGNPK 2 2.37 0.96 Hemoglobin subunit delta 9214599

HMOX1 ALDLPSSGEGLAFFTFPNIASATK 2 2.82 0.90 Heme oxygenase 1 20664735

HRSP12 IEIEAVAIQGPLTTASL 2 2.31 0.98 Ribonuclease UK114 18349270

HSPA5 NQLTSNPENTVFDAK 4 2.51 0.97 HSPA5 protein 19445531

HSPA9 VINEPTAAALAYGLDK 2 2.04 0.93 Stress-70 protein, mitochondrial 18334731

DIVMTQSPDSLAVSLGER 2 2.52 0.99

HSPD1 ALMLQGVDLLADAVAVTMGPK 3 2.66 0.95 60 kDa heat shock protein,
mitochondrial

21533669

NME1 VMLGETNPADSKPGTIR 2 2.57 0.97 Isoform 1 of Nucleoside diphosphate
kinase A

17594820

EISLWFKPEELVDYK 2 2.27 0.95

P4HB VDATEESDLAQQYGVR 2 2.38 0.81 Protein disulfide-isomerase 21207424

PRDX6 LIALSIDSVEDHLAWSK 3 3.48 0.93 Peroxiredoxin-6 19893992

TKT ILATPPQEDAPSVDIANIR 3 2.16 0.98 cDNA FLJ54957, highly similar to
Transketolase

17321041

VCP LIVDEAINEDNSVVSLSQPK 2 2.49 0.98 Transitional endoplasmic reticulum
ATPase

12560433

VIM EMEENFAVEAANYQDTIGR 3 3.28 0.99 Vimentin 19843643

breast cancer EEF1D SLAGSSGPGASSGTSGDHGELVVR 2 3.17 0.93 Elongation factor 1-delta 17997862

HBB GTFATLSELHCDK 2 2.09 0.97 Hemoglobin subunit beta 20097481

colon cancer ACTN1 GYEEWLLNEIR 3 2.03 0.99 Alpha-actinin-1 17898132

ACLISLGYDVENDR 2 2.09 0.94

ATP5B DQEGQDVLLFIDNIFR 2 2.58 0.98 ATP synthase subunit beta,
mitochondrial

20080835

HMGCS2 LMFNDFLSASSDTQTSLYK 3 2.87 0.93 Hydroxymethylglutaryl-CoA synthase,
mitochondrial

16940161

colorectral cancer ATP5A1 NVQAEEMVEFSSGLK 2 2.65 0.95 ATP synthase subunit alpha,
mitochondrial

9261598

EVAAFAQFGSDLDAATQQLLSR 3 2.88 0.87

Leukemia IDH1 SIEDFAHSSFQMALSK 2 2.53 0.97 Isocitrate dehydrogenase [NADP]
cytoplasmic

21205756

pancreatic cancer EPPK1 LLEAQIATGGVIDPVHSHR 2 2.64 0.97 epiplakin 1 18498355

lung cancer FGB DNENVVNEYSSELEK 3 2.57 0.97 Fibrinogen beta chain 20142248

cell migration. FLNB YAPTEVGLHEMHIK 2 2.02 0.97 Isoform 1 of Filamin-B 20110358

XRCC5 YAPTEAQLNAVDALIDSMSLAK 5 3.60 0.94 ATP-dependent DNA helicase 2
subunit 2

Lee et al. BMC Bioinformatics 2011, 12:423
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Table 4 Lists of differentially expressed peptides in HCC and normal sample. (Continued)

AP1B1 LAPPLVTLLSAEPELQYVALR 2 2.81 0.99 Isoform A of AP-1 complex subunit
beta-1

PLEC AGTLSITEFADMLSGNAGGFR 2 2.16 0.89 Isoform 1 of Plectin-1

SDHAF2 PAPEIFENEVMALLR 3 2.41 0.93 Protein EMI5 homolog, mitochondrial

TUBA4A AFVHWYVGEGMEEGEFSEAR 2 2.40 0.98 Tubulin alpha-4A chain

AVFVDLEPTVIDEVR 2 2.23 0.98

TYMP DVTATVDSLPLITASILSK 3 2.84 0.93 Thymidine phosphorylase

UGP2 TLDGGLNVIQLETAVGAAIK 2 2.98 0.94 Isoform 1 of UTP–glucose-1-
phosphate uridylyltransferase

TUBB AILVDLEPGTMDSVR 2 1.97 0.95 Tubulin beta chain

TPI VTNGAFTGEISPGMIK 2 2.52 0.95 Triosephosphate isomerase
(Fragment)

Unknown LFIGGLSFETTEESLR 2 2.64 0.97 Putative uncharacterized protein
HNRNPA2B1

SVPTSTVFYPSDGVATEK 3 2.77 0.93 cDNA FLJ54957, highly similar to
Transketolase

RHVFGESDELIGQK 2 2.09 0.96

VFSNGADLSGVTEEAPLK 2 2.24 0.90 PRO2275

Normal sample

Related Cancer Gene
Name

Shogun Sequence #(normal)
b

XCorr Q
Score

Protein Name PMIDc

HCC A2M VSVQLEASPAFLAVPVEK 2 2.36 0.93 Alpha-2-macroglobulin 18959789

LLLQQVSLPELPGEYSMK 3 2.25 0.96

ACTA2 YPIEHGIITNWDDMEK 3 2.42 0.96 Actin, aortic smooth muscle 21214675

ALB RPCFSALEVDETYVPK 2 2.18 0.90 Putative uncharacterized protein ALB 20658536

ALDH2 VAEQTPLTALYVANLIK 2 2.55 0.86 Aldehyde dehydrogenase,
mitochondrial

20186752

ALDH6A1 ENTLNQLVGAAFGAAGQR 2 2.46 0.89 Methylmalonate-semialdehyde
dehydrogenase [acylating],
mitochondrial

17786358

LFIHESIHDEVVNR 2 2.61 0.96

VNAGDQPGADLGPLITPQAK 2 3.27 0.98

ALDOB GILAADESVGTMGNR 3 2.40 0.85 Fructose-bisphosphate aldolase B 17786358

ELSEIAQSIVANGK 2 2.32 0.96

ASL INVLPLGSGAIAGNPLGVDR 3 3.18 0.76 Argininosuccinate lyase 19138817

ASS1 NPWSMDENLMHISYEAGILENPK 2 2.74 0.96 Argininosuccinate synthase 20104527

BHMT ISGQEVNEAACDIAR 2 2.23 0.62 Betaine–homocysteine S-
methyltransferase 1

19960509

AGPWTPEAAVEHPEAVR 2 2.62 0.93

C5orf33 VATQAVEDVLNIAK 2 2.23 0.97 Isoform 2 of UPF0465 protein
C5orf33

21495032

CAT GAGAFGYFEVTHDITK 2 2.17 0.78 Catalase 21324921

FNTANDDNVTQVR 2 2.40 0.92

FGG AIQLTYNPDESSKPNMIDAATLK 3 3.76 0.92 Fibrinogen gamma chain 17018627

ETFA LEVAPISDIIAIK 5 2.73 0.89 Electron transfer flavoprotein alpha-
subunit

20515076

CPS1 TVLMNPNIASVQTNEVGLK 3 2.42 0.99 Isoform 1 of Carbamoyl-phosphate
synthase [ammonia], mitochondrial

12143053

FLGVAEQLHNEGFK 3 2.67 0.97

AVNTLNEALEFAK 2 2.58 0.96

VLGTSVESIMATEDR 3 2.22 0.88

IEFEGQPVDFVDPNK 2 2.52 0.98

GLNSESMTEETLK 2 2.63 0.95

CYP3A7 EMVPIIAQYGDVLVR 2 2.37 0.80 Cytochrome P450 variant 3A7 17978482
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Table 4 Lists of differentially expressed peptides in HCC and normal sample. (Continued)

DCI DADVQNFVSFISK 3 2.20 0.99 Isoform 1 of 3,2-trans-enoyl-CoA
isomerase, mitochondrial

1903293

ECHS1 ALNALCDGLIDELNQALK 2 3.33 0.98 Enoyl-CoA hydratase, mitochondrial 15492826

EIF5 AMGPLVLTEVLFNEK 5 2.41 0.83 Eukaryotic translation initiation factor
5

19175833

FBP1 LDVLSNDLVMNMLK 7 2.34 0.72 Fructose-1,6-bisphosphatase 1 19637194

FH SGLGELILPENEPGSSIMPGK 3 2.20 0.98 Isoform Mitochondrial of Fumarate
hydratase, mitochondrial

1958270

AAAEVNQDYGLDPK 3 2.23 0.97

IYELAAGGTAVGTGLNTR 2 2.24 0.97

FLNA ASGPGLNTTGVPASLPVEFTIDAK 3 2.68 0.97 Isoform 2 of Filamin-A 21471709

HPD SQIQEYVDYNGGAGVQHIALK 2 2.99 0.98 4-hydroxyphenylpyruvate
dioxygenase

8558370

HSPA5 SQIFSTASDNQPTVTIK 2 2.16 0.97 HSPA5 protein 19445531

KRT8 LKLEAELGNMQGLVEDFK 59 2.08 0.43 Keratin, type II cytoskeletal 8 18932288

PBLD VNTENLLQVENTGK 2 2.33 0.94 Phenazine biosynthesis-like domain-
containing protein

20525558

PDIA4 EVSQPDWTPPPEVTLVLTK 3 2.49 0.98 Protein disulfide-isomerase A4 19016532

PEBP1 GNDISSGTVLSDYVGSGPPK 6 3.51 0.96 Phosphatidylethanolamine-binding
protein 1

20739083

PHB NITYLPAGQSVLLQLPQ 3 2.56 0.86 Prohibitin 21318481

PRDX6 ELAILLGMLDPAEK 4 2.00 0.94 Peroxiredoxin-6 19893992

SELENBP1 NTGTEAPDYLATVDVDPK 2 2.06 0.96 cDNA FLJ55757, highly similar to
Selenium-binding protein 1

21338716

SORBS1 LTPVQVLEYGEAIAK 2 2.64 1.00 Isoform 9 of Sorbin and SH3 domain-
containing protein 1

11374898

SORD LENYPIPEPGPNEVLLR 2 1.99 0.97 Sorbitol dehydrogenase 12848999

STIP1 ALSVGNIDDALQCYSEAIK 2 2.54 0.97 Stress-induced-phosphoprotein 1 17627933

TPI1 VAHALAEGLGVIACIGEK 2 3.35 0.99 Isoform 2 of Triosephosphate
isomerase

18813785

TXNDC5 ALAPTWEQLALGLEHSETVK 3 4.01 0.98 Thioredoxin domain-containing
protein 5

16574106

V�3 EIVLTQSPATLSLSPGER 2 2.97 0.97 Rheumatoid factor D5 light chain
(Fragment)

15207089

ADH1A FSLDALITHVLPFEK 6 2.60 0.92 Alcohol dehydrogenase 1A 16054971

ELGATECINPQDYK 2 2.15 0.94

ADH4 ISEAFDLMNQGK 4 2.95 0.94 Isoform 2 of Alcohol dehydrogenase
4

16054971

GGVDFALDCAGGSETMK 3 3.25 0.96

FNLDALVTHTLPFDK 8 2.76 0.95

AAIAWEAGKPLCIEEVEVAPPK 3 2.71 0.99

DLHKPIQEVIIELTK 5 3.08 0.99

prostate cancer COL6A2 YGGLHFSDQVEVFSPPGSDR 2 2.33 0.86 Isoform 2C2A’ of Collagen alpha-2(VI)
chain

18353764

LLTPITTLTSEQIQK 3 2.57 0.93

VAVVTYNNEVTTEIR 5 2.38 0.67

IEDGVPQHLVLVLGGK 2 2.01 0.86

RPS27A TITLEVEPSDTIENVK 2 2.23 0.98 ubiquitin and ribosomal protein S27a
precursor

15647830

breast cancer EMILIN1 LVGSGLHTVEAAGEAR 2 2.47 0.96 EMILIN-1 16243817

MYH9 NLPIYSEEIVEMYK 2 2.06 0.97 Isoform 1 of Myosin-9 18796164

QLLQANPILEAFGNAK 3 2.80 0.86 Isoform 1 of Myosin-9

IAEFTTNLTEEEEK 13 2.29 0.65 Isoform 1 of Myosin-9

colon cancer ALDH1A1 GYFVQPTVFSNVTDEMR 3 3.18 0.97 Retinal dehydrogenase 1 21435460

ATP5B TVLIMELINNVAK 5 3.18 0.88 ATP synthase subunit beta,
mitochondrial

20080835
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Table 4 Lists of differentially expressed peptides in HCC and normal sample. (Continued)

ETFA AAVDAGFVPNDMQVGQTGK 2 2.13 0.98 Electron transfer flavoprotein subunit
alpha, mitochondrial

16708797

GTSFDAAATSGGSASSEK 6 2.53 0.86

ANXA6 GLGTDEDTIIDIITHR 2 2.48 0.98 annexin VI isoform 2 21137014

Leukemia GLUD1 HGGTIPIVPTAEFQDR 2 2.48 0.98 Glutamate dehydrogenase 1,
mitochondrial

19683518

IDH2 LNEHFLNTTDFLDTIK 3 2.77 0.98 Isocitrate dehydrogenase [NADP],
mitochondrial

21205756

gastic carcinoma HIST4H4 TVTAMDVVYALK 2 2.03 0.96 Histone H4 19139817

colorectal cancer RRBP1 TLQEQLENGPNTQLAR 2 2.74 0.88 Isoform 3 of Ribosome-binding
protein 1

19425502

pancreatic cancer ARG1 TGLLSGLDIMEVNPSLGK 4 2.71 0.91 Isoform 1 of Arginase-1 21347333

CALM1 VFDKDGNGYISAAELR 3 2.50 0.93 Calmodulin 18852131

EAFSLFDKDGDGTITTK 2 2.62 0.98

ovarian cancer HAAO TQGSVALSVTQDPACK 2 2.56 0.91 Isoform 1 of 3-hydroxyanthranilate
3,4-dioxygenase

19724865

Lung cancer ACY1 TVQPKPDYGAAVAFFEETAR 2 2.50 0.99 cDNA FLJ60317, highly similar to
Aminoacylase-1

8394326

cell migration. FLNB LVSPGSANETSSILVESVTR 2 3.21 0.99 Isoform 1 of Filamin-B 19915675

UGP2 ILTTASSHEFEHTK 2 3.30 0.93 Isoform 1 of UTP–glucose-1-
phosphate uridylyltransferase

IQRPPEDSIQPYEK 4 2.38 0.95

ALDH4A1 EEIFGPVLSVYVYPDDKYK 3 3.34 0,95 Delta-1-pyrroline-5-carboxylate
dehydrogenase, mitochondrial

COL14A1 HFLENLVTAFDVGSEK 3 2.39 0.77 Isoform 1 of Collagen alpha-1(XIV)
chain

DCTN2 LLGPDAAINLTDPDGALAK 2 2.24 0.94 dynactin 2

EEF1B2 SPAGLQVLNDYLADK 3 2.86 0.84 Elongation factor 1-beta

GRHPR IAAAGLDVTSPEPLPTNHPLLTLK 3 3.11 0.99 Glyoxylate reductase/hydroxypyruvate
reductase

HSD17B10 VMTIAPGLFGTPLLTSLPEK 3 2.80 0.91 Isoform 1 of 3-hydroxyacyl-CoA dehydrogenase
type-2

PCBD1 VHITLSTHECAGLSER 2 2.54 0.96 Pterin-4-alpha-carbinolamine
dehydratase

PDIA6 GSTAPVGGGAFPTIVER 3 2.05 0.87 Isoform 2 of Protein disulfide-
isomerase A6

PTGR1 HFVGYPTNSDFELK 2 2.24 0.93 Prostaglandin reductase 1

TGPLPPGPPPEIVIYQELR 7 2.56 0.96

TF SAGWNIPIGLLYCDLPEPR 3 2.65 0.97 Serotransferrin

EDPQTFYYAVAVVK 4 2.49 0.92

unknown PAHVVVGDVLQAADVDK 2 2.88 0.96 22 kDa protein

HCC and normal sample

Related Cancer Gene
Name

Shogun Sequence #(HCC)a

/#
(normal)b

XCorr Q
Score

Protein Name PMIDc

HCC CPS1 MEYDGILIAGGPGNPALAEPLIQNVR 2/11 3.92 0.91 carbamoyl-phosphate synthetase 1 12143053

SIFSAVLDELK 1/8 3.87 0.92

IAPSFAVESIEDALK 3/13 2.96 0.85

TAVDSGIPLLTNFQVTK 1/10 2.50 0.45

HBA1 VADALTNAVAHVDDMPNALSALSDLHAHK 1/8 3.67 0.93 Hemoglobin subunit alpha 1 20572306

VGAHAGEYGAEALER 4/13 2.05 0.94

P4HB ILFIFIDSDHTDNQR 10/15 2.88 0.49 Protein disulfide-isomerase 21207424

HNRNPC MIAGQVLDINLAAEPK 21/9 2.31 0.46 Heterogeneous nuclear
ribonucleoprotein C (C1/C2), isoform
CRA_b

20572306
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As shown in Table 4 many peptides are also known to
be associated with cancer. Specifically, EMILIN-1 (EMI-
LIN1), elongation factor 1-delta (EEF1D), galectin-7/p53-
induced gene 1 protein (LGALS7), hemoglobin subunit
beta (HBB) and malate dehydrogenase 2 (MDH 2) are dif-
ferentially expressed in breast cancer cells [29-31]. Conse-
quently, the LGALS7 gene is known to be related to over-
expression when compared with control cells. Likewise,
our result was also over-expressed. Table 4 provides a list
of different types cancers associated with specific genes
[28-34]. Figure 4 shows a scatter plot of the spectral
counts of normal and HCC samples. The × axis and y axis
represent the number of expressed spectra in each HCC
and normal sample. Specifically, the symbol “▲” indicates
DEPs identified with the use of SEQUEST, whereas the
symbol “●” indicates unidentified DEPs. However, 62
DEPs were not identified by SEQUEST despite their signif-
icant differences by the beta-binomial test.
We believe there were several reasons why 62 DEPs

were not identified by SEQUEST. First, “one-size-fits-all”
search parameter values of SEQUEST would not have
been chosen appropriately for this protein target. Second,
these unidentified DEPs may have other post-transla-
tional modification, sequence variation (e.g., alternative
splicing) or insufficient peptide ions information.
We re-run SEQUEST with many different parameter

options for allowing phosphorylation modification and
two missed cleavages, and for using other sequence

databases (NCBI nr and EST human). However, even
with these parameter options, SEQUEST did not identify
the remaining 62 DEPs. Next, we tried to identify 62
reference spectra using other searching engines such as
MASCOT and SpectraST. MASCOT identified 2 DEPs,
Alcohol dehydrogenase 1A (ADH1A) and Isoform 2 of
Myosin-9(MYH9) but SpectraST did not identify any
DEPs. The remaining 60 DEPs could not be identified
by these search engines. In order to identify these DEPs,
further experiments may be needed. For example, addi-
tional MS/MS experiments such as MRM (Multiple
Reaction Monitoring) or SRM (Selective Reaction Moni-
toring) can be carried out within the range of the corre-
sponding retention times for all the unidentified spectra
in order to collect more detailed peptide information.

Conclusions
In this paper, we proposed a novel method to estimate
peptide’s abundance by counting MS/MS spectra clus-
tered through the direct comparison of all experimentally
observed spectra. For a given pair of spectra, our method
can be used to answer the question of whether they are
from the same peptide without computationally search-
ing them from a theoretical library of protein spectra.
Examining all possible pair-wise comparisons, our
method results into a set of spectra for the same peptide
and enables us to estimate the amount of peptides found
in biological samples of interest by counting the spectra

Table 4 Lists of differentially expressed peptides in HCC and normal sample. (Continued)

PGK1 VSHVSTGGGASLELLEGK 16/8 3.36 0.46 Phosphoglycerate kinase 1 19200351

ACTB DLYANTVLSGGTTMYPGIADR 10/3 3.25 0.96 Actin, cytoplasmic 1 16493704

GSTA1 NDGYLMFQQVPMVEIDGMK 2/6 2.24 0.83 Glutathione S-transferase 20604928

FABP1 SVTELNGDIITNTMTLGDIVFK 17/6 3.43 0.78 Fatty acid-binding protein 12245374

CES1 EGYLQIGANTQAAQK 13/1 2.21 0.76 Isoform 1 of Liver carboxylesterase 1 19658107

Breast Cancer LGALS7/
LGALS7B

LVEVGGDVQLDSVR 19/1 2.35 0.65 Galectin-7/p53-induced gene 1
protein

20382700

HBB FFESFGDLSTPDAVMGNPK 39/67 2.72 0.74 Hemoglobin subunit beta 20097481

MDH2 VDFPQDQLTALTGR 4/7 2.49 0.93 Malate dehydrogenase 2 19485423

MYH9 LQQELDDLLVDLDHQR 9/15 2.54 0.56 Myosin, heavy polypeptide 9, non-
muscle, isoform CRA_a

18796164

Ovarian cancer PSMA2 YNEDLELEDAIHTAILTLK 3/5 4.48 0.84 Proteasome subunit alpha type-2 14960231

Lung cancer AKR1A1 DPDEPVLLEEPVVLALAEK 3/5 3.16 0.63 Aldo-keto reductase family 1 17114299

Chromophobe
renal cell
carcinomas

ATP5H NLIPFDQMTIEDLNEAFPETK 3/5 2.48 0.95 ATP synthase subunit d,
mitochondrial

20440404

Leukemia IGKC VDNALQSGNSQESVTEQDSK 3/6 3.95 0.92 Ig kappa chain C region 12357370

RPS7 TLTAVHDAILEDLVFPSEIVGK 5/3 3.92 0.92 40S ribosomal protein S7
a the number of spectral sets in HCC samples
b the number of spectral set in normal samples.
c the PubMed index for MEDLINE

Table 4 shows lists of DEPs in HCC sample, normal sample, and both samples. In HCC sample and normal sample, 57 and 115 reference spectra were identified
by SEQUEST. Among these spectra, 29 and 59 peptides were known biomarkers for the human liver cancer. In both sample, we performed a beta-binomial test
for finding out DEPs. The result shows that only 84 out of 1,571 reference spectra indicate heterogeneity of spectral counts between HCC and normal tissue
samples. Among these 84 reference spectra, only 22 were identified by SEQUEST.
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clusters. Since our proposed method compares all possi-
ble pairs of experimental spectra, it can discover even
modified and unknown peptides, which may not be
searchable from a theoretical spectral library. For practi-
cal MS/MS experimental data, a large proportion of spec-
tra are often misidentified or completely lost during a
computational database search. On the other hand, Q-
FISH can identify these spectra without any loss of infor-
mation. As demonstrated in our practical examples, the
majority of DEPs derived by Q-FISH were found to be
highly related with various cancers, which were not dis-
covered by other methods.
We thus believe our Q-FISH algorithm will be highly

useful in the identification of novel peptides [19]. Also, Q-
FISH has the potential to find applications in many other
practical proteomic studies. For example, it can be used to
discover unknown biomarkers or drug targets through the
comparison of proteins with statistically significant differ-
ence and by quantifying sets of identical peptides in multi-
ple samples. Unknown spectral clusters can often come
from non-peptide contaminants as revealed by a recent
publication [35]. Q-FISH can evaluate the significance of

such unknown clusters, some of which can be novel bio-
markers, requiring further experimental confirmation by
de novo sequencing, unrestricted sequence database
search (using e.g. InsPect [36]) or spectral library search
(using e.g. pMatch [37]).

Methods
Sample Preparation, Nano-LC-ESI-MS/MS
Tissue samples such as hepatocellular carcinoma (HCC)
tumour tissue and adjacent healthy liver tissue were col-
lected under the guidelines of the Institutional Review
Board (IRB) established at Yonsei Medical Center (Seoul,
Korea). All tissues were prepared and subsequently, in-
solution tryptic digestion was performed as previously
described [20]. Nano-LC-MS/MS analysis was performed
on an Agilent Nano HPLC 1100 system using an linear
trap quadruple (LTQ) mass spectrometer (Thermo Elec-
tron, San Jose, US). LC-MS/MS was performed as pre-
viously described [38]. The peptide fractionation was
performed by means of cationic exchange chromatogra-
phy (SCX) at a flow rate of 0.5 mL/min where absorbance
of the column effluent was maintained stable at 280 nm

Figure 4 Scatter plot of spectral counts between normal and HCC samples. This figure plots the number of spectra in clustered sets in
HCC and normal sample, respectively. The × axis and y axis represent the number of expressed spectra in each HCC and normal sample.
Specifically, the grey triangle indicates DEPs identified with the use of SEQUEST, whereas the black circle indicates unidentified DEPs.
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for 40 min. Fractions were automatically transferred
every 0.5 min into a 96-microplate.
Nano-LC MS/MS experiments were carried out three

times on two different samples (human liver cancer and
normal tissues) and 44,318 MS/MS spectra were gener-
ated. These tandem mass spectrometry data were first
analyzed by means of the database search software
SEQUEST (Bioworks 3.2, ThermoFinnigan, San Jose,
US). The sequence database downloaded from European
Bioinformatics Institute (EBI) was the International Pro-
tein Index (IPI) human version 3.61. The next step was
to combine the protein sequence database with its
reverse sequences. The maximum number of missed
cleavage sites was set to 1, and only tryptic cleavage after
arginine and lysine was allowed. The mass tolerance of
the precursor peptide ion was set to 3.0 Da, while the
fragment ion tolerance was set to 0.5 Da. These tolerance
values were chosen to minimize FDR when XCorr > 1.5
[39]. Modification at cysteine with carboxyamidomethy-
lation and methionine with oxidation were allowed [40].
All peptides assigned to reverse sequence were removed
before proceeding to peptide identification to inhibit
false-positive identifications. We chose XCorr as 1.44
(+1), 1.97(+2) and 3.13(+3) which yielded FDR close to
0.05, respectively, and the value of DeltaCn is equal to a
great than 0.1. These score criteria were considered to
ensure high confidence in the results of protein identifi-
cation [41]. The spectra derived by mass spectrometry
were also analyzed by means of the spectral library search
software SpectraST, which was initially developed by the
Institute for Systems Biology (ISB) and National Institute
of Standards and Technology (NIST). SpectraST is inte-
grated with the Trans-Proteomic Pipeline (TPP) software
suite, which provides the supporting functionalities
necessary in a full proteomics data analysis pipeline.
Then, the SpectraST program was validated in the NIST
Human IT Library with the SpectraST’s scores > 0.9
[18,38,42]. The precursor tolerance was set to 1.5 Da/z
(Thomson).

Q-FISH algorithm for direct comparison of experimental
spectra
We assumed that MS/MS spectra from the same pep-
tide would present similar patterns. Under this assump-
tion, the proposed Q-FISH algorithm can be applied to
find DEPs both in normal and disease samples. As
shown in Figure 1, to evaluate the similarities between
two spectra, we use a correlation coefficient of the mov-
ing window averages. The analytical process is summar-
ized as follows:
1. Scale Standardization
Perform scale standardization by dividing the intensity
values by its maximum value.

2. Moving average
Compute the moving window average over the spectra
using a window of fixed size.
3. Correlation index for moving average-based peak
patterns
Calculate a summary statistic based on the correlation
coefficient of the moving averages between two spectra.
4. Spectral count-based quantification using two-stage
clustering
Cluster duplicated peptides with similar peak patterns
and retention time using a two-stage clustering method.
5. Identification of differentially expressed peptides
Employ the beta-binomial test to identify DEPs among
the experimental groups.

Similarity measure between pairs of MS/MS spectra
Scale standardization
Because the intensities of the spectra obtained may be
different for various physical and chemical reasons such
as inconsistencies in the total ion currents, we cannot
use the raw data for the intensity of m/z peaks. In light
of this, we used a scale-standardization method, which
involves the division of the m/z peak values for all ions
by their maximum value. Let x[i] be the intensity of the
ith m/z peak. Then, the scale standardized intensity, y[i],
is defined by

y[i] =
x[i]

max(x[i])
.

Moving window average
To reduce the background noise of the peak intensities,
the moving window average (MWA) is used. The most
simple moving average is the unweighted (or uniformly
weighted) average of n data points within a given win-
dow, and the weighted moving average (WMWA) is the
average calculated using multiplying weight factors to
give different weight to each data point. Among the var-
ious options for the weights of WMWA, we selected the
“Gaussian” kernel, which uses the probability density
function (pdf) of the standard Gaussian distribution
with mean 0 and variance 1 as a weight function.
For a given spectrum, the MWA is calculated by aver-

aging the peak intensities within the sliding window
sequentially for all m/z peaks. In other words, the
MWA is not a single value, but a set of averages. The
next step is to calculate correlation between the MWAs
of two spectra and determine whether there are identi-
cal spectra from the same peptide.
We assume that there are N moving windows of fixed

size K along the entire m/z range. Subsequently, the
WMWA for the ith moving window (i = 1, 2,..., N) is
defined by
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m[i] =
K−1∑
j=0

wjy[i + j] ,

where y[i + j] is the jth scale standardized intensity in the
ith moving window and wj are the weights. For a uniform
kernel wj = 1/K or the Gaussian kernel, wj = F(zj) repre-
sents the pdf of the standard Gaussian distribution, where
zj represents the value of y[i+j] standardized by using
mean and variance of m/z’s in the ith window. Total num-
ber of windows, N can be determined by the fixed window
size K along with the entire m/z range (200-2000 Da). In
order to determine the optimal window size, we randomly
selected some pairs of spectra from the same and different
peptides using target-decoy sequence database. We imple-
mented receiver operating characteristic (ROC) analysis to
determine the window size. Based on ROC analysis, we
chose a window size, K = 30 (3.0Da) and accordingly N =
19,771 (20-2000 Da at interval of 0.1 Da). However, the
areas under the curve (AUC) did not differ much and
were less sensitive to the window size.
Correlation index for moving average-based peak patterns
For peptides p and q, the correlation coefficient is com-
puted as follows:

rpq =

∑N
i=1 (mp[i] − m̄p)(mq[i] − m̄q)√∑N

i=1 (mp[i] − m̄p)
2
√∑N

i=1 (mq[i] − m̄q)
2

,

where m̄pand m̄q are the means of moving window
averages for peptide p and q. The closer the correlation
coefficient is to 1, the stronger is the correlation between
spectra from the same peptides.

Quantification by counting spectra in clustered spectra
set from a homogenous peptide
Two-stage cluster analysis is used to cluster peptide sets
consisting of spectra with similar patterns. As previously
assumed, if the spectra have approximately the same
shape, then the spectra would have come from the same
peptide. Namely, each cluster can be expected to be com-
posed of the spectra obtained from a homogenous peptide.
Two-stage clustering analysis employs two similarity mea-
sures to cluster peptides: the first is the difference between
precursor ions and the second is the correlation coefficient
between two MWAs. It is theoretically predicted that MS/
MS spectra obtained from the same peptide have similar
precursor ions. First, clusters can be defined in terms of
pair-wise differences between the precursor ions. For any
two pair of precursor ions in the same cluster, their differ-
ence is smaller than the threshold value. In our analysis,
we set ± 1 Da as a threshold value. The next step is to per-
form a hierarchical clustering analysis for each of the clus-
ters defined. Specifically, we employ “single linkage,” also

known as the nearest neighbour technique. Here, the cor-
relation coefficient of MWAs is used as a similarity
measure.
Because this two-stage clustering analysis yields clus-

tered spectra sets consisting of MS/MS spectra from the
same peptide, the amount of peptides can be quantified
by counting the spectra included in each clustered set.
Lastly, representative spectra called “reference spectra”
can be defined based on the basic patterns of precursor
ions as the average spectra for a given spectral set.

Validation of the clustering results using retention times
It is well known that the same peptides tend to elute
continuously within a limited liquid chromatography
(LC) interval. Thus, the clustering results can be vali-
dated using the retention time (RT) information.
In order to validate the clustering results, we propose

a new measure to estimate the clustering error rate
using the spectral RT information. Note that the Q-
FISH results provide the list of clusters. If a cluster con-
tains only peptides from the same spectra, the RTs of
peptides would have similar values. If a cluster contains
peptides from the different spectra, the RTs would have
different values. As a measure of similarity, we consider
the measures representing the variability of RTs from
the same cluster such as coefficient of variation (CV)
and standard deviation (SD) of RTs. Since the RT varies
much across of spectra, CV would be a better measure
than SD. Using CV, we propose a new measure called
the false clustering rate (FCR) which is similar in spirit
to that of the false discovery rate (FDR). It measures the
rate how often a cluster is composed of spectra from
the different peptides. We provide a threshold value of
CV, Δ, to determine whether a cluster is well clustered
or not. That is, if the value of CV of a given cluster is
smaller than Δ, then we call it is a good cluster. For the
given value of Δ, FCR can be computed. The detailed
procedure of computing FCR is given as follows:

1) Calculate the coefficient of variation (CV) of spec-
tral RT in the same clusters from the Q-FISH
results.
2) Permute the spectra while maintaining the num-
ber of spectra in each cluster fixed.
3) Calculate CVp for each permuted cluster for the
pth permuted sample.
4) Compute FCR as follows:

FCR =
1
P

∑P
p=1 #{i|CVp(i) ≤ �}
#{i|CV(i) ≤ �} , i = 1, 2, · · · ,C,

where P is the number of permutations, Δ the thresh-
old value, and C the total number of clusters.
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For our HCC data, we computed FCR for various
values of Δ, as summarized in the Table 5. From our
analysis, we chose the value of Δ as 4.4 which yielded
FCR close to 0.05.
We also calculated FCR to determine the cut-off value

of correlation coefficient, r for spectral clustering. For
the given threshold value of r, FCR can be computed in
the similar manner as Δ. We computed FCR for the var-
ious values of the given r, as summarized in the Table 5.
We chose r = 0.6 which yielded FCR close to 0.05.

Differentially expressed peptides (DEPs)
To estimate the peptide’s abundance found in different
samples such as control and disease tissue samples, a
spectral counting method like Q-FISH can be employed.
Pham et al. [21] proposed the use of the beta-binomial
distribution to test the significance of DEPs in spectral
counts in label-free mass spectrometry-based proteomics.
Their results revealed that the beta-binomial test can be
applied to experiments with one or more replicates, as
well as for the comparison of multiple conditions. We
applied the beta-binomial model to test the abundance of
DEPs in the clustered spectral set through three repli-
cated MS/MS experiments.
Let x denote the number of spectral counts in the

clustered spectral set and n, the total number of spectral
counts of all spectral in each sample. Then, assume that
x is distributed with the true proportion π, 0 ≤ π ≤ 1,

x|π ∼ Binomial(n,π)

Differently, π is approximated as a random variable
based on the beta distribution with real parameters a >

0 and b > 0.

π ∼ Beta(α,β), E (π) =
α

α + β
= θ

Var (π) =
αβ

(α + β)2 (α + β + 1)

Subsequently, the marginal distribution of x is the
beta-binomial distribution [21],

p (x|α,β ,n) =
∫ 1

0
p(x|π ,n)p(π |α,β)dπ

=
∫ 1

0

(
n
x

)
π x+α−1(1 − πn−x+β−1)

B (α,β)
dπ ,

=
(
n
x

)
B(α + x,n + β − x)

B (α,β)

where B(·,·) is the beta function.
The following parameterization is used

π =
α

α + β
= h(Xb) = h(η) andφ =

1
α + β + 1

,

where h is the inverse of the link function (logit or
complementary log-log), X a design matrix, b a vector of
fixed effects, h = Xb the linear predictor, and F the
overdispersion parameter. Based on this parameteriza-
tion, the marginal mean and variance are:

E (x) = n · π

Var (x) = n · π · (1 − π) · [1 + (n − 1) · φ]
.

It should be noted that parameters b and j are esti-
mated by maximizing the log-likelihood of the marginal
model. Given the estimated coefficients, the testing
hypothesis is rephrased as to whether the b coefficient is
0 [43]. We also used Benjamini and Hochberg’s method
to correct for multiple comparisons in multiple testing
for DEPs [44].

Additional material

Additional file 1: Lists for identified peptides reported in the
literature. In order to compare the performance of Q-FISH with the
spectral counting method by SEQUEST, we used the human liver data
and validated the results through literature search. For the human liver
data, Q-FISH provided 1571 differentially expressed clusters for HCC
sample and 1556 for normal sample, among which 57 and 99 clusters
were identified by SEQUEST in HCC and normal samples, respectively. On
the other hand, SEQUEST provided 93 and 145 peptides for HCC and
normal tissue samples, respectively.

Table 5 Validation for clustering result using the false
clustering rate (FCR)

FCR using RT information FCR for the cut-off value

Δ FCR r FCR

1 0.0288 0.0 1.0000

2 0.0307 0.1 0.9486

3 0.0380 0.2 0.8060

4 0.0467 0.3 0.6525

4.4 0.0500 0.4 0.4515

5 0.0553 0.5 0.3178

6 0.0639 0.6 0.0251

7 0.0719 0.7 0.0034

8 0.0806 0.8 0.0008

9 0.0895 0.9 0.0003

10 0.0981 1.0 0.0000

In order to validate the clustering results, we propose a new measure to
estimate the clustering error rate using the spectral retention time (RT)
information. We computed the false clustering rate (FCR) for various values of
threshold Δ, as summarized. We also calculated FCR to determine the cut-off
value of correlation coefficient for spectral clustering. We computed FCR for
the various values of the given r, as summarized. We chose r = 0.6 which
yielded FCR close to 0.05.
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