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Abstract

Background: Much research has been devoted to the determination of optimal vaccination strategies for seasonal
influenza epidemics. However, less attention has been paid to whether this optimization can be achieved within
the context of viral drift.

Methods: We developed a mathematical model that links different intra-seasonal dynamics of vaccination and
infection to investigate the effect of viral drift on optimal vaccination for minimizing the total number of infections.
The model was computationally implemented using a seasonal force of infection, with estimated parameters from
the published literature.

Results: Simulation results show that the pattern of large seasonal epidemics is strongly correlated with the duration
of specific cross-protection immunity induced by natural infection. Considering a random vaccination, our simulations
suggest that the effect of vaccination on epidemic patterns is largely influenced by the duration of protection induced
by strain-specific vaccination. We found that the protection efficacy (i.e., reduction of susceptibility to infection) of
vaccine is a parameter that could influence these patterns, particularly when the duration of vaccine-induced
cross-protection is lengthened.

Conclusions: Given the uncertainty in the timing and nature of antigenically drifted variants, the findings
highlight the difficulty in determining optimal vaccination dynamics for seasonal epidemics. Our study suggests
that the short- and long-term impacts of vaccination on seasonal epidemics should be evaluated within the
context of population-pathogen landscape for influenza evolution.

Background
The presence of host immunity is essential for the gener-
ation and maintenance of population protection, referred
to as ‘herd immunity’ [1]. This immunity can be influenced
by natural infection, vaccination, and the immunological
status of individuals in the population. In the epidemio-
logical context, waning immunity (post infection or vac-
cination) can lead to vastly different outcomes compared
to the lack of ‘pathogen-specific immunity’ (in the absence
of prior exposure or vaccination) [2]. For slow-mutating
pathogens (i.e., timelines for their evolution is longer than
the average life-span of the host population), waning im-
munity can be parameterized in epidemic models to repre-
sent an increased susceptibility of the hosts [3]. However,
for fast-mutating pathogens (e.g., influenza), both waning
and the lack of pre-existing immunity play important roles

in determining disease dynamics [1,2]. For these types of
infection, prior immunity caused by exposure to, or vac-
cination against, predecessor strains may not confer pro-
tective functional activity against newly emerged strains of
the same pathogen [2,4,5].
The concept of herd immunity has two important impli-

cations: (i) theoretically, it means that the vaccine need
not be 100% effective; (ii) practically, not every susceptible
individual needs to be vaccinated, implying that a vaccin-
ation coverage (fraction of susceptible individuals to be
vaccinated) below 100% may suffice for epidemic control
[6]. However, the level of herd immunity is affected by
several key parameters governing the transmission dy-
namics, including the duration of vaccine-induced im-
munity that wanes over time; pathogen evolution that can
lead to antigenically distant variants for which pre-existing
immunity has little or no protective effects [7,8]; and the
circulation of pathogen strains, which decelerates the de-
cline of herd immunity by boosting the host immune-level
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through re-exposure [1,8]. These could influence both
short- and long-term epidemiological outcomes of vaccin-
ation, and may lead to unintended consequences (e.g.,
generation of immune-escape variants) [9], as a result of
changes in the patterns of evolutionary responses and the
fitness landscape of the pathogen [10]. This underscores
the importance of considering transmission dynamics and
pathogen evolution simultaneously in order to formulate
effective vaccination strategies [11].
Despite the existence of a large body of literature on

vaccination against seasonal influenza epidemics, optimiz-
ing the impact of vaccine-induced protection remains
elusive [12]. This is partly due to the abovementioned fac-
tors, which influence herd immunity, rendering its effect
too short-lived for any lasting epidemiological impact.
However, previous work has highlighted the importance
of three interrelated mechanisms that portray the land-
scape for host-pathogen interactions, namely disease evo-
lution, invasion, and prevention [13]. In this study, we
made a systematic attempt to include the effect of these
mechanisms in a population dynamical model to link the
dynamics of disease transmission within an influenza
season to the epidemiological patterns between seasonal
epidemics. Our objectives were to: (i) illustrate how vaccine-
related parameters (i.e., protection efficacy and duration of
vaccine-induced protection) influence the dynamics of in-
fection in a season; and (ii) determine the effect of vaccine
distribution on changing the patterns of epidemics between
distinct seasons caused by immunologically-related strains.
While the conceptual modelling framework relies on a sim-
ple deterministic model of susceptible-infected-recovered
(SIR) structure, we applied pulse theory for the inclusion
of seasonal vaccination [14].

Methods
To include the effect of genetic drift on transmission dy-
namics and prevention in our model, we considered two
main factors: (i) the gradual reduction in effective pro-
tection of pre-existing immunity conferred by vaccin-
ation against, or natural infection caused by, a similar
genetic subtype of one influenza strain (and this reduc-
tion is largely caused by viral drift which lessens the
neutralizing effect of pre-existing antibody-mediated im-
munity); and (ii) the duration of pre-existing immunity
(and this corresponds to genetic distance of successor
variants which depends on frequency and strength of
viral drift between seasonal epidemics).
We included vaccine efficacy in the model as a param-

eter that reduces the susceptibility of vaccinated individ-
uals to acquire infection during the upcoming season for
which vaccination is administered. We assumed that the
duration of cross-protective immunity resulted from
vaccination (and before it becomes fully ineffective), is
less or equal to that conferred by natural infection. This

also confers partial protection following vaccination or
exposure to infection with gradual decrease in its effect-
iveness against successor strains. During the partial pro-
tection era, if individuals are vaccinated or exposed to
an immunologically related strain, their level of protect-
ive immunity is boosted, thereby reducing their suscepti-
bility for a longer period of time. However, without
vaccination or re-exposure, the reduction in protective
levels of pre-existing immunity will result in a continu-
ous increase in susceptibility to infection.

Model structure and assumptions
To develop a population dynamical model, we divided
the population into four main compartments comprising
of susceptible, vaccinated, infected, and recovered indi-
viduals. For the dynamics of a seasonal epidemic (with a
relatively short duration), we excluded demographic fac-
tors, such as birth and natural death. We assumed that
the buildup immunity with recovery from infection will
prevent re-infection with the circulating strain in the
same season. The immunity against circulating strains of
influenza in each season is generated through natural in-
fection during the season or vaccination before the start
of season. We assumed that immunity induced by infec-
tion or vaccination in each season will provide partial
protection against circulating strains in the subsequent
influenza seasons, and this (cross-protection) immunity
becomes gradually less effective due to the continual
drift of influenza viruses [1]. We also assumed an imper-
fect vaccine-induced protection, and therefore vacci-
nated individuals may become infected with an average
transmission rate that is lower than that of susceptible
individuals. Furthermore, as the level of (cross-protec-
tion) immunity conferred by natural infection or vaccin-
ation decreases over time, the corresponding risk of
acquiring infection increases. While re-infection does
not occur in the same season, recovered individuals
from previous seasons or previously vaccinated individ-
uals can acquire infection with a transmission rate,
which depends on the level of cross-protection at the
time of exposure, and is a function of age since previous
infection or vaccination. The level of immunity gener-
ated by natural infection is assumed to be higher, with
cross-protection effects that last longer than vaccination.
Given the normal practice for vaccination, we assumed

that vaccines are deployed before the start of a seasonal
epidemic. Vaccination was assumed to reduce suscepti-
bility to infection by generating some level of immunity
in vaccinated individuals. The duration and protection
efficacy of naturally-acquired and vaccine-induced im-
munity for subsequent seasonal epidemics were varied
as key parameters in the model simulations. We devel-
oped the epidemic model formulated by a system of im-
pulsive delay differential equations with age structures
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(i.e., age since last infection or vaccination) to capture a
pulse-like vaccination strategy. We assumed that all vac-
cines are distributed prior to the start of each season
(see Additional file 1). The dynamics of within and be-
tween seasonal epidemics are schematically represented
in Figures 1 and 2.

Within-season dynamics
For the dynamics of a seasonal epidemic, we divided the
total population into five compartments (See Figure 1):
susceptible individuals (S), previously vaccinated individ-
uals (Vi, i = 1, 2,..,m2 − 1), newly vaccinated individuals
for the upcoming season (V0,Vv, Rv), infected individuals
(I), and recovered (R, Rc) individuals. We further classi-
fied newly vaccinated individuals based on their prior
status as being part of a susceptible, vaccinated, or re-
covered class in the previous season. For those from a
recovered class, we considered two subgroups of individ-
uals, consisting of recovery from infection in the current
season (Rc) and recovery from infection in a previous
season (R). Except for individuals who recovered during
the current season (with no possibility of re-infection),
all the other groups can become infected through con-
tacts with infectious individuals. During each season,
those who are in the recovery group and whose age
post-recovery reaches m1, where m1 represents the

maximum time that cross-protection from natural in-
fection lasts, will become fully susceptible and move to
the S compartment.
The transmission rates for different compartments de-

pend on time (for seasonality) and age since the last in-
fection or vaccination. The infection dynamics are
governed by a seasonally-force Pj(t), j = s,v,r where s,v,r
correspond to the classes of susceptible, vaccinated, and
recovered individuals. The corresponding baselines of
transmission rates are given by βs; β

i
v tð Þ; �βv; βr að Þ and �βr ,

where i is the number of seasons following the last vac-
cination, and varies from 1 to m2 − 1. Since the level of
immunity will be further boosted by vaccination at the
beginning of each season for previously recovered or
vaccinated individuals, the baselines transmission rates
for those compartments are reduced and expressed by:

β
�

v ¼ β0v 0ð Þ⋅ 1−σð Þ;
β
�

r ¼ βr 0ð Þ⋅ 1−σð Þ;

where σ represents the vaccine efficacy against infection.
The relations between βr(a), β

i
v tð Þ, and βs is discussed in

Additional file 1, where α represents the age since last
infection. For seasonality of influenza epidemics [15], we
considered Pj(t) = 1 + εj cos(2πt/T), where T is the period

Figure 1 The transitions between model compartments for season n. In this model, S (t) is the number of fully susceptible individuals at the
beginning of the current season; V0 (t) is number of individuals who received vaccines for the current season; Vi (t) is the number of individuals
whose last vaccination was given i seasons ago; Vv (t) is the number of previously vaccinated individuals who also received vaccination for the
current season; r(t, α) is the number of individuals who were recovered from infection at time α (0 < α <m1); R (t) is the total number of
recovered individuals at time t; Rv (t) is the number of previously recovered individuals who received vaccination for the current season; I (t) is the
number of infections at time t during the current season; and γ is the rate of recovery from infection.
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of seasonality (i.e., 1 year in our model), and εj is the
amplitude of seasonal fluctuation. We defined the corre-
sponding seasonal transmission coefficient for each class
by κs(t), κiv tð Þ , �κ v tð Þ , κr(t, a), �κ r tð Þ as given in Table 1.
The within-season dynamics of infection is schematically
presented in Figure 1.

Between-season dynamics
For the dynamics of between seasons, we regroup the
compartments of within-season dynamics to three main
classes: susceptible (S), vaccinated (V), and recovered (R)
individuals. Before the current season starts, a fraction
of individuals in each of these classes are vaccinated with
a total number of qsS + qvV + qrR = μN vaccine doses
distributed, where N is the total population size (and
therefore μ represents the fraction of population vacci-
nated), and qs, qv, qr are the fraction of individuals vacci-
nated in the corresponding classes. After vaccination,
we considered the dynamics of within-season with the

corresponding classes as defined in the previous section.
The schematic diagram for the model of between-
seasons is presented in Figure 2, and further details of
the model structure and system equations are provided
in Additional file 1.

Parameterization and initial conditions
We parameterized the model with estimated values from
published literature [15-17]. Several parameters were
varied in simulations to identify possible changes to the
dynamics of between-seasons. Parameter values and
their associated ranges are summarized in Table 1. The
initial conditions used in our simulations are: S(0) = 106,
I(0) = 1, Vv(0) = 0, Rv(0) = 0, Vi(0) = 0, i = 1, 2,…,m2 − 1,
r(0, a) = 0.

Computational implementation
We implemented the model using C++ in Matlab to per-
form simulations. The impulsive delay differential equations
were solved numerically using forward-time central-space

Figure 2 The structure of between-season model with vaccination.
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algorithm and midpoint method using four recursive steps
described in Additional file 1. At the beginning of each
simulation run, we assigned initial values to different
population compartments. Based on these initial condi-
tions, qs and qv were varied in the feasible region given
by Ω = {(qs, qv)| 0 ≤ qs, qv ≤ 1, qsS

0 + qvV
0 ≤ μN} to seed

the simulations for season n, where S0 and V0 are the
total numbers of susceptible and previously vaccinated
individuals before the start of vaccination for season n.
Depending on the values of S0 and V0, and the size of vac-
cine stockpile, qs and qv may be less than 1. For each pair
of (qs, qv) in Ω, the model governed by the integro-
differential equations system (see Additional file 1) was
simulated to determine the final size of epidemic (i.e., total
number of infections throughout the epidemic) in each
season. For each season, we discretized the parameter
space Ω, and stored data of the final sizes for all popula-
tion compartments to proceed with the random or opti-
mal selection of the initial conditions for the next season,
given all possible pairs of (qs, qv).
For the random vaccination, a pair of (qs, qv) was ran-

domly selected in the current Ω space, and the associ-
ated simulation results were adopted as the initial
conditions for the next season. For the optimal selection,

we searched the entire parameter space Ω to determine
pairs of (qs, qv) that minimized the epidemic final size
(for the current season n), given by

Jnmin ¼ min
qs;qvð Þ∈Ω

∫ nþ1ð ÞT
nT γI ηð Þ dη:

The simulated populations at the end of each season
were used as the initial conditions for the next season.
In each scenario, qr was determined using the relation
qsS + qvV + qrR = μN.

Results
We considered a susceptible population of 106 individ-
uals for season 1, and seeded simulations with an in-
fected individual in each season. We chose μ = 0.1, 0.2
corresponding to 10% and 20% vaccination coverage of
the total population. Simulations were run for vaccine
efficacies of σ = 0.6, 0.8 (corresponding to an average of
60% and 80% reduction in susceptibility to infection post
vaccination [16,17]) with different durations of cross-
protective immunity induced by natural infection (m1)
and vaccination (m2) [15,18].

Table 1 Description of model parameters and their associated values and ranges [15-17]

Parameter Description Value (range)

qs,qv,qr Fraction of individuals receiving vaccination 0 − 1

σ Vaccine efficacy 0.6 – 0.95

μ Fraction of population vaccinated Variable

m1 Number of seasons that the protection acquired
from natural infection lasts

2 − 8 seasons

m2 Number of seasons that the protection acquired
from vaccination lasts

2 − 4 seasons

γ Recovery rate from infection 0.2 day -1

εj Amplitude of seasonal fluctuation 0.85

α Age since last infection Variable

βs; β
i
v tð Þ; βr að Þ

i = 0, 1,⋯,m2 − 1
Baseline transmission rates of infection for susceptible,
vaccinated, and recovered individuals, respectively

βs = 150/N year -1

(N: total population size)

�βv tð Þ; �β r Baseline transmission rates of infection for previously
vaccinated and recovered individuals, respectively, who
also received vaccine for the current season

Variable

κs(t) = βs ⋅ Ps(t) Transmission rate of infection for susceptible class Variable

κ0v tð Þ ¼ β0v tð ÞPs tð Þ Transmission rate of infection for newly vaccinated from
susceptible class

Variable

κiv tð Þ ¼ βiv tð ÞPv tð Þ Transmission rate of infection for previously vaccinated
individuals who received their last vaccine i seasons ago

Variable

i = 1, 2,⋯,m2 − 1

�κ v tð Þ ¼ �βv⋅Pv tð Þ Transmission rate of infection for previously vaccinated individuals
who also received vaccine for the current season

Variable

κr(t, a) = βr(a) ⋅ Pr(t) Transmission rate of infection for recovered individuals with
the recovery age α since last infection

Variable

�κ r tð Þ ¼ �β r⋅Pr tð Þ Transmission rate of infection for recovered individuals who
received vaccine for the current season

Variable
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Random vaccine distribution
For each randomly selected pair of (qs, qv), we ran 100
independent simulations to explore the effect of dur-
ation of vaccine-induced and natural immunity on the
seasonal patterns of epidemics. Figure 3a-d illustrate the
patterns of epidemic final size over 12 seasons for differ-
ent combinations of (m1,m2), when the vaccine efficacy
is σ = 0.8 and the vaccine coverage is maintained at 10%
of the total population. These simulations indicate that
episodes of high epidemic sizes generally follow a pat-
tern that corresponds to the duration of immunity in-
duced by natural infection. As the duration of vaccine-
induced immunity increases, lower epidemic sizes of
subsequent seasons follow a high epidemic episode. We
observed similar patterns with lower epidemic sizes
when the vaccine coverage was increased to 20% of the
total population (Figure 3e-h). Considering the randomness
in vaccine distribution, these simulations suggest that the
effect of vaccination on seasonal patterns of an epidemic is
largely influenced by the genetic similarity of successor var-
iants resulting from viral drift, which determines the lasting
effects of natural immunity generated through exposure to
predecessor strains.
In order to determine the effect of vaccine efficacy on

seasonal patterns, we also simulated the model for simi-
lar scenarios when σ = 0.6. Simulation results, presented
in Figure 4, demonstrate that the protection efficacy of
vaccine is a parameter that could influence seasonal

patterns, and lead to a large variation in epidemic sizes,
particularly when the duration of vaccine-induced im-
munity increases. However, vaccine coverage has little
impact on changing the seasonal patterns regardless of
the lasting protection of vaccination. We also simulated
the model in the absence of vaccination. As illustrated
in Figure 5, not only do the patterns of seasonal epi-
demics differ, but also the final size of infections in each
season could be substantially different (but not necessar-
ily higher) compared to the corresponding scenarios in
the presence of vaccination. These patterns are affected
by the lack of vaccine-induced immunity, higher inci-
dence of infections in some seasons, and potentially a
higher level of herd immunity due to booster conferred
by re-exposure to natural infection.

Optimal vaccine distribution
For the optimal vaccine distribution, a global minimization
search was applied to determine pairs of (qs, qv) in Ω for
each season, where vaccination leads to the minimum
number of infections throughout the season. Figure 6
shows vaccine distributions in 12 seasons where the vac-
cine efficacy was fixed at σ = 0.8. We observed no specific
patterns for the optimal vaccine distribution, which is
affected by the duration of cross-protection immunity
induced by vaccine and natural infection. In most seasons,
the optimal vaccine distribution corresponds to a high
(or full) coverage of susceptible individuals regardless of

Figure 3 Patterns of seasonal epidemics for 12 seasons with 100 independent simulation runs when vaccines are randomly
distributed. Colorbars represent the total number of infections for each season; and m1 and m2 represent the durations of immunity induced by
natural infection and vaccination, respectively, in the absence of re-exposure or vaccination following priming. Vaccine efficacy in prevention of
infection is 80%, and the total fraction of the population vaccinated is 10% (a,b,c,d) and 20% (e,f,g,h). Other parameter values are given in Table 1.
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the fraction of population vaccinated. When vaccine ef-
ficacy is lower (σ = 0.6), similar results were obtained for
the optimal vaccine distribution (Figure 7a-h). Our sim-
ulations indicate that the minimum final size of the epi-
demic could be achieved with different pairs of (qs, qv) in
Ω, suggesting that the optimal vaccine coverage of

different subpopulations may not be unique. Figure 8
shows two possible scenarios for optimal vaccine distri-
bution for different seasons with the vaccine efficacy of
σ = 0.8. This further demonstrates the complexity of
vaccination dynamics, even when the nature of anti-
genic drift is well predicted.

Figure 4 Patterns of seasonal epidemics for 12 seasons with 100 independent simulation runs when vaccines are randomly
distributed. Colorbars represent the total number of infections for each season; and m1 and m2 represent the durations of immunity
induced by natural infection and vaccination, respectively, in the absence of re-exposure or vaccination following priming. Vaccine efficacy
in prevention of infection is 60%, and the total fraction of the population vaccinated is 10% (a,b,c,d) and 20% (e,f,g,h). Other parameter
values are given in Table 1.

Figure 5 Patterns of seasonal epidemics for 12 seasons in the absence of vaccination. Colorbar represents the total number of infections
for each season, and m1 is the duration of immunity induced by natural infection. Duration of immunity induced by natural infection is
(a) m1 = 4; (b) m1 = 6; and (c) m1 = 8 years. Other parameter values are given in Table 1.
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It is worth noting that the optimal vaccination fractions
(qs, qv, qr) were determined based on the total number of
vaccines (i.e., 10% or 20% of the total population size)
available for each season. Having a large fraction of a sub-
population vaccinated in an optimal scenario does not ne-
cessarily correspond to a large number of vaccinated
individuals. For example, qs = 1 corresponds to 100% vac-
cination of the susceptible population; however, this indi-
cates that the total number of susceptible individuals
(with no cross-protection) for that particular season is
lower than the total number of vaccines. Similarly, high
coverage of vaccine for previously vaccinated or recovered
individuals shows that their population sizes are less than
the total number of vaccines. In contrast, a low coverage
of vaccine in an optimal scenario could correspond to a
low or relatively high subpopulation sizes.

Discussion
Frequent generation of influenza virus mutations is an
important drawback for disease control, as reflected in
the isolation of vaccine-escape viral mutants and in the
antigenic variation of viral populations [19]. The latter
occurs at widely different rates due to the rapid drift of
influenza viruses [14,20]. If the new variant strains

generated by drift are significantly different from prede-
cessor strains, cross-protection conferred by vaccination
or natural infection may diminish, thereby enabling anti-
genically drifted viruses to effectively escape from herd
immunity [21]. This effect appears to be a particular im-
pediment to optimizing vaccination strategies for redu-
cing the transmission and adaptation rates of new
variants in the host population.
This study shows the effect of viral drift on vaccination

dynamics by including two tracking paths in a dynamic
model of seasonal influenza epidemics. First, continual
viral drift lessens the strength of host immunity by redu-
cing the effect of antibody titers for prevention of infec-
tion. This is irrespective of the functionality of the cellular
immunity in clearance of infection and reduction in the
severity of illness. Second, the rate of drift and its antigenic
characteristics can enhance fitness and adaptation of the
virus variants to a point that can cause the full escape of
adaptive immune responses, thereby diminishing the level
of herd immunity. Although adaptive immunity is a self-
protection mechanism, its protective effects often extend
well beyond the individual [22], since the existence of such
immunity greatly influences the transmission dynamics of
the pathogen in the population as a whole.

Figure 6 Optimal vaccine distribution for 12 seasons to achieve the minimum number of infections in each season. Vaccine efficacy in
prevention of infection is 80%, and m1 and m2 represent the durations of immunity induced by natural infection and vaccination, respectively, in
the absence of re-exposure or vaccination following priming. For each season, red circle, blue dot, and plus sign represent a possible scenario for
vaccine distribution to susceptible, previously vaccinated, and previously recovered classes of individuals, respectively. The total fraction of the
population vaccinated is 10% (a,b,c,d) and 20% (e,f,g,h). Other parameter values are given in Table 1.
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Our simulations show that the rise and fall of herd im-
munity by vaccination or natural infection can greatly
influence epidemic patterns. These patterns could be
further affected by the vaccine efficacy and duration of
strain-specific immunity that may provide partial protec-
tion against drifted viruses. The results indicate that op-
timizing vaccine distribution for susceptible, previously
vaccinated, and previously infected individuals, is con-
founded by several factors, most notably by the effect of
viral drift on the pre-existing immune protection and its
duration of partial functionality. The findings suggest
that determining optimal vaccination strategies for sea-
sonal influenza in the presence of viral drift is a challen-
ging task, and may not be achievable given the
uncertainty and variability in the level of pre-existing
immunity in the population. Complicating matters fur-
ther is the unpredictability of patterns of sequence diver-
sity within seasons and the prevalence level of
antigenically drifted viruses in different seasons [23].
Our study has several limitations that come from sim-

plifying assumptions and the structure of the model. We
considered a homogeneously mixing population for the
incidence of infection. Realistically, population interac-
tions are heterogeneous with complex networks due to

the variability in population demographic characteristics,
social patterns, behavioural responses, and movements
[24,25]. These heterogeneities have been recognized as
factors that could have immoderate effects on disease
transmission and vaccination dynamics during an emer-
ging pathogen [26]. Extending our model structure to a
network or agent-based framework would enable the in-
corporation of these factors at levels that are computa-
tionally tractable [23,27]. Our model is based on the
assumption of an even distribution of vaccines in different
population compartments. Unevenness in the coverage of
vaccines in different age groups of the population can be
considered by developing an age-structure model, which
will also allow for the consideration of different levels of
vaccine efficacy that may be influenced by age, health sta-
tus, and risk factors of individuals. While we have not
measured age-based outcomes in our model, it has been
recognized that attack rates of influenza infection among
young age groups (e.g., school children) could be consid-
erably higher than adults, due in part to their large num-
ber of contacts [28]. Vaccine prioritization of children has
been suggested as a preventive measure that its effects
could indirectly maximize population wide-benefits of
immunization programs [29].

Figure 7 Optimal vaccine distribution for 12 seasons to achieve the minimum number of infections in each season. Vaccine efficacy in
prevention of infection is 60%, and m1 and m2 represent the durations of immunity induced by natural infection and vaccination, respectively, in
the absence of re-exposure or vaccination following priming. For each season, red circle, blue dot, and plus sign represent a possible scenario for
vaccine distribution to susceptible, previously vaccinated, and previously recovered classes of individuals, respectively. The total fraction of the
population vaccinated is 10% (a,b,c,d) and 20% (e,f,g,h). Other parameter values are given in Table 1.
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In the context of public health, optimization of vaccin-
ation translates to prioritization of different age-groups
with varying degree of risk factors for infection and dis-
ease outcomes. However, immune-pathogen factors dis-
cussed in this study would still play an essential role in the
presence of age-dependent dynamics. Furthermore, we as-
sumed that the efficacy of vaccines remained constant
through simulated seasons for each scenario. However, de-
pending on the dominant strain of drifted viruses, vaccine
efficacy may be different from one season to another. We
also assumed a fixed duration of immunity induced by
vaccination or natural infection in each simulated scenario
for seasonal epidemics. However, such duration will de-
pend on boosting of immunity through re-exposure to in-
fection while having some level of pre-existing immunity,
and the antigenic drift, which cannot be deterministically
studied [30]. Despite these limitations, our study indicates
that the viral drift has a profound impact on the optimal
vaccination and epidemic dynamics, suggesting that the
effect of vaccination should be considered within the
context of population-pathogen landscape for influenza
evolution.

Conclusions
Although vaccination is a key preventive measure to reduce
the burden of seasonal influenza epidemics, identification

of optimal vaccine distribution remains a challenging task.
Viral drift and duration of cross-reactive immunity (in-
duced by vaccination or natural infection) appear to
play a substantial role in vaccination dynamics during
seasonal epidemics. Determining optimal vaccination
strategies may not be achievable due to the unpredict-
ability of the nature of viral drift and unknown protec-
tion levels of pre-existing immunity in the population.
Our findings suggest that the effect of vaccination strat-
egies should be evaluated within the context of evolu-
tionary patterns of influenza viruses.
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