
Li et al. Journal of Inequalities and Applications 2014, 2014:316
http://www.journalofinequalitiesandapplications.com/content/2014/1/316

RESEARCH Open Access

Bounds on normalized Laplacian eigenvalues
of graphs
Jianxi Li1,2*, Ji-Ming Guo3 and Wai Chee Shiu4

*Correspondence:
ptjxli@hotmail.com
1School of Mathematics and
Statistics, Minnan Normal University,
Zhangzhou, Fujian, P.R. China
2Center for Discrete Mathematics,
Fuzhou University, Fuzhou, Fujian,
P.R. China
Full list of author information is
available at the end of the article

Abstract
Let G be a simple connected graph of order n, where n ≥ 2. Its normalized Laplacian
eigenvalues are 0 = λ1 ≤ λ2 ≤ · · · ≤ λn ≤ 2. In this paper, some new upper and lower
bounds on λn are obtained, respectively. Moreover, connected graphs with λ2 = 1 (or
λn–1 = 1) are also characterized.
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1 Introduction
Let G be a graph with vertex set V (G) and edge set E(G). Its order is |V (G)|, denoted
by n, and its size is |E(G)|, denoted by m. In this paper, all graphs are simple connected
of order n ≥ . For v ∈ V (G), let d(v) and N(v) be the degree and the set of neighbors
of v, respectively. The maximum and minimum degrees of G are denoted by � and δ,
respectively.
Let A(G) and D(G) be the adjacency matrix and the diagonal matrix of vertex degrees

of G, respectively. The Laplacian and normalized Laplacianmatrices of G are defined as
L(G) =D(G) –A(G) and L(G) =D(G)–/L(G)D(G)–/, respectively. When only one graph
G is under consideration, we sometimes use A, D, L and L instead of A(G), D(G), L(G)
and L(G), respectively. It is easy to see that L(G) is a symmetric positive semidefinite
matrix and D(G)/ is an eigenvector of L(G) with eigenvalue , where  is the vector
with all ones. Thus, the eigenvalues λi(G) (≤ i ≤ n) ofL(G) (or the normalized Laplacian
eigenvalues of G) satisfy

λn(G) ≥ · · · ≥ λ(G) ≥ λ(G) = .

Some of them may be repeated according to their multiplicities. We call λk(G) the kth
smallest normalized Laplacian eigenvalue of G. When only one graph G is under consid-
eration, we sometimes write λk instead of λk(G), for  ≤ k ≤ n.
The normalized Laplacian is mentioned briefly in the recent monograph by Cvetković

et al. []; however, the standard reference for it is the monograph by Chung [], which
deals almost entirely with this matrix. The normalized Laplacian eigenvalues can be used
to give useful information about a graph []. For example, one can obtain the number of
connected components from the multiplicity of the eigenvalue , the bipartiteness from
its λn (which is at most ), as well as the connectivity from its λ. Moreover, λ is also
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closely related to the discrete Cheeger’s constant, isoperimetric problems, etc. (see []).
Chen and Jost [] established the relationship between minimum vertex covers and the
eigenvalues of the normalized Laplacian on trees. Some upper bounds for λn have been
introduced by Rojo and Soto [] and Banerjee [], respectively. For more results on the
normalized Laplacian eigenvalues of graphs can be found in [, , ].
In this paper, some new upper and lower bounds on λn of a graph in terms of its

maximum degree, covering number etc., are deduced, respectively. Moreover, connected
graphs with λ =  (or λn– = ) are also characterized.

2 Preliminaries
Here we recall some basic properties of the eigenvalues and eigenfunctions of the normal-
ized Laplacian matrix of a graph G.
Let g : V (G) → R

n which assigns to each vertex v of G a real value g(v), the coordinate
of g according to v. Let f =D–/g. Then we have

gTLg
gTg

=
fTD/LD/f
(D/f)TD/f

=
fTLf
fTDf

=
∑

uv∈E(G)(f (u) – f (v))∑
v∈V (G) d(v)f (v)

.

Thus, the following formula for λn is clear:

λn = sup
f⊥D

∑
uv∈E(G)(f (u) – f (v))∑

v∈V (G) d(v)f (v)
. (.)

A vector f that satisfies equality in Eq. (.) is called a harmonic eigenfunction of L as-
sociated with λn(G).

Proposition . ([]) Let G be a graph and f be a harmonic eigenfunction of L associated
with λn(G). Then for any v ∈ V (G), we have

f (v) –


d(v)
∑

uv∈E(G)
f (u) = λn(G)f (v).

3 Main result
We call G a triangulation, if every pair of adjacent vertices of G have at least one com-
mon adjacent vertex. A planar graph is called amaximal planar graph if for every pair of
nonadjacent vertices u and v of G, the graph G + uv is nonplanar. Lu et al. [] and Guo
et al. [] gave the upper bounds for the Laplacian spectral radius of a triangulation and a
maximal planar graph, respectively. For the normalized Laplacian spectral radius, we have
the following somewhat similar result.

Theorem . Let G = (V ,E) be a triangulation of order n. Then

λn ≤max

{
d(vi) –  +

√
d(vi)m(vi) – d(vi) + 
d(vi)

: vi ∈ V
}
,

where m(vi) =
∑

vj∈N(vi) d(vj)/d(vi) is the average -degree of the vertex vi. Moreover, the
equality holds if G ∼= K.
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Proof Let V = {v, . . . , vn}, and let f = (f (v), . . . , f (vn))T be the harmonic eigenfunction of
L(G) corresponding to λn. Then by Proposition ., we have for each vi ∈ V ,

d(vi)( – λn)f (vi) =
∑
vivj∈E

f (vj).

Hence by the Lagrange identity, we have for each vi,

d(vi)( – λn)f (vi) = d(vi)
∑
vivj∈E

f (vj) –
∑

≤j<k≤n
vj ,vk∈N(vi)

(
f (vj) – f (vk)

).

Sum over vi to obtain

n∑
i=

d(vi)( – λn)f (vi)

=
n∑
i=

d(vi)
∑
vivj∈E

f (vj) –
n∑
i=

∑
≤j<k≤n

vj ,vk∈N(vi)

(
f (vj) – f (vk)

)

=
n∑
i=

d(vi)m(vi)f (vi) –
n∑
i=

∑
≤j<k≤n

vj ,vk∈N(vi)

(
f (vj) – f (vk)

), (.)

wherem(vi) =
∑

vj∈N(vi) d(vj)/d(vi).
Note that G is a triangulation. Then by Eq. (.), we have

n∑
i=

∑
≤j<k≤n

vj ,vk∈N(vi)

(
f (vj) – f (vk)

) ≥
∑

≤j<k≤n
vjvk∈E(G)

(
f (vj) – f (vk)

) = λn

n∑
i=

d(vi)f (vi). (.)

Thus, combining Eqs. (.) and (.), we have

n∑
i=

[
d(vi)( – λn) – d(vi)m(vi) + λnd(vi)

]
f (vi) ≤ .

This implies that there exists at least one vertex vi such that

d(vi)( – λn) – d(vi)m(vi) + λnd(vi) ≤ .

That is,

λn ≤max

{
d(vi) –  +

√
d(vi)m(vi) – d(vi) + 
d(vi)

: vi ∈ V
}
.

For G = K, it is easy to check that the equality holds. �

Furthermore, we have the following more general result.
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Theorem . Let G = (V ,E) be a simple connected graph of order n with m edges. If each
edge of G belongs to at least t triangles (t ≥ ), then

λn ≤max

{
d(vi) – t +

√
d(vi)m(vi) – td(vi) + t

d(vi)
: vi ∈ V

}
, (.)

the equality occurs if G is the complete graph Kt+.

Proof For G = Kt+, it is easy to check that the equality in Eq. (.) holds. If we replace Eq.
(.) in the proof of Theorem . by

n∑
i=

∑
≤j<k≤n

vj ,vk∈N(vi)

(
f (vj) – f (vk)

) ≥ t
∑

≤j<k≤n
vjvk∈E

(
f (vj) – f (vk)

) = tλn

n∑
i=

d(vi)f (vi),

then the result follows. �

For the maximal planar graphs, we have the following upper bound.

Theorem . Let G be a maximal planar graph of order n ≥  with m edges. Then

λn ≤max

{
d(vi) –  +

√
d(vi)m(vi) – d(vi) + 
d(vi)

: vi ∈ V (G)
}
. (.)

Proof Note that for any maximal planar graph G, each edge of G belongs to at least 
triangles. Then the result follows from Theorem .. �

In what follows, we turn to some lower bounds on λn. The following result due to Chung
[] concerns the lower bound on λn(G).

Lemma . ([]) Let G be a connected graph of order n. Then λn(G) ≥ n
n– , the equality

holds if and only if G ∼= Kn, where Kn is the complete graph of order n.

Let G = (V ,E) be a graph and X ⊆ V be a subset of the vertices. Let X = V \ X be the
complement of the set X. The volume of X is defined to be the sum of the degrees of the
vertices in G, that is,

vol(X) =
∑
v∈X

d(v).

Note that vol(V ) is equal to twice the number of edges in the graph.

Theorem. Let G be a connected graph of order n withm edges. For any nonempty subset
X ⊆ V , we have

λn ≥ m|EX |
vol(X)(m – vol(X))

,

where EX is the set of all edges with one end in X and the other end in X. Moreover, if the
equality holds, then

∑
u∈N(v) f (u)
d(v) = x for each v ∈ X and

∑
u∈N(v) f (u)
d(v) = y for each v ∈ X , where

x and y are constant such that x
y = – vol(X)

vol(X) .
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Proof Let X ⊆ V and f be a vector such that

f (u) =

⎧⎨
⎩
–vol(X) if u ∈ X,

vol(X) if u /∈ X.

Clearly,
∑

u∈V d(u)f (u) = –vol(X)vol(X) + vol(X)vol(X) = . Moreover, note that vol(X) +
vol(X) = vol(V ) = m. Then, by Eq. (.), we have

λn ≥
∑

uv∈E(G)(f (u) – f (v))∑
v∈V (G) d(v)f (v)

=
|EX |(vol(X) + vol(X))

vol(X)vol(X)(vol(X) + vol(X))

=
m|EX |

vol(X)(m – vol(X))
.

Moreover, if the equality holds, then f is the harmonic eigenfunction of L associated with
λn(G). Hence Proposition . implies that

⎧⎨
⎩
(λn – )vol(X) =

∑
u∈N(v) f (u)
d(v) for each v ∈ X,

( – λn)vol(X) =
∑

u∈N(v) f (u)
d(v) for each v ∈ X.

Let x = (λn – )vol(X) and y = ( – λn)vol(X). Then x
y = – vol(X)

vol(X) . This completes the proof.
�

Let X = {u} in Theorem .. Note that vol(X) = d(u) = |EX |. Then we have the following.

Corollary . Let G be a graph of order n with m edges. Then

λn ≥ m
m –�

, (.)

where � is the maximum degree of G.

Remark . Note that m ≤ n� holds for any graph of order n with m edges and max-
imum degree �. Thus the lower bound in Corollary . is always better than that in
Lemma .. Moreover, if G is a complete graph Kn or a star Sn, then it is easy to check
that the equality holds in Eq. (.).

Similarly, let X = {u, v} in Theorem .. Then we have:

Corollary . Let G be a graph of order n with m edges. Let a = maxuv∈E(G){d(u) + d(v)}
and b =maxuv /∈E(G){d(u) + d(v)}. Then:
() λn ≥ m(a–)

a(m–a) , and the equality holds if G ∼= Kn.
() λn ≥ m

m–b , and the equality holds if G ∼= K,n–, where G ∼= K,n– is the complete
bipartite graph with parts of cardinalities  and n – .
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Proof Let X = {u, v} in Theorem .. If uv ∈ E(G), then |EX | = d(u) + d(v) –  and vol(X) =
d(u) + d(v). Theorem . implies that

λn ≥ m[(d(u) + d(v)) – ]
(d(u) + d(v))[m – (d(u) + d(v))]

.

Let f (x) = m(x–)
x(m–x) for x > . Then it is easy to see that f (x) is increasing on x. Hence, we

have λn ≥ m(a–)
a(m–a) . Moreover, it is easy to check that the equality holds when G ∼= Kn.

If uv /∈ E(G), then |EX | = vol(X) = d(u) + d(v). Theorem . implies that

λn ≥ m
m – (d(u) + d(v))

.

Hence λn ≥ m
m–b . Moreover, it is easy to check that the equality holds when G ∼= K,n–.

�

A set of vertices X ofG is called a cover ofG if every edge ofG is incident to some vertex
in X. The least cardinality of a cover of G is called the covering number of G and denoted
by τ (G). It is clear that if a vertex set X is a vertex cover if and only if X is an independent
set. The following lower bound for λn in terms of τ (G) is obtained.

Theorem . Let G be a graph order n with m edges. Then

λn ≥ m
m – δ(n – τ (G))

,

where δ is the minimum degree of G.Moreover, the equality holds if G ∼= Cn when n is even,
G ∼= Ka,b or G ∼= Kn,where Cn is the cycle of order n and Ka,b is the complete bipartite graph
with parts of cardinalities a and b.

Proof Let X be aminimal covering set ofGwith |X| = τ (G). Then X is an independent set.
Hence vol(X) = |EX | and vol(X) = m – |EX |. Then Theorem . implies that λn ≥ m

m–|EX | .
Moreover, by the definition of covering set, we have |EX | ≥ δ(n – τ (G)). Hence we have
λn ≥ m

m–δ(n–τ (G)) . Moreover, if G ∼= Cn when n is even, then τ (G) = n
 . Hence it is easy to

check that the equality holds. Similarly, if G ∼= Ka,b or G ∼= Kn, then the equality holds.
This completes the proof. �

Chung [] proved that for any graph G of order n, λ ≤ n
n– with equality holding if and

only if G ∼= Kn. Moreover, the following result is also introduced.

Lemma . ([]) Let G (G 
= Kn) be a connected graph of order n. Then λ ≤ .

In what follows, we characterize all connected graphs with λ = . We will make use of
the following lemma.

Lemma . ([]) Let G be a connected graph of order n with maximum degree � and
minimum degree δ. Let ρ ≤ ρ ≤ · · · ≤ ρn are the eigenvalues of A(G). Then for each  ≤
k ≤ n,

|ρn–k+|
�

≤ | – λk| ≤ |ρn–k+|
δ

.
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Theorem . Let G (G 
= Kn) be a connected graph of order n. Then λ =  if and only if
G is a complete multipartite graph.

Proof By Lemma ., if λ = , then ρn– = , where ρn– is the second largest eigenvalue
of A(G). Hence the result follows from the fact that for any simple connected graph G of
order n, ρn– ≤  if and only if G is a complete multipartite graph []. On the other hand,
when G (G 
= Kn) is a complete multipartite graph, ρn–(G) =  []. This together with
Lemma . imply that λ = . The proof is completed. �

Moreover, the following result on λn– is also obtained.

Theorem . Let G be a connected graph of order n. Then λn– ≥ , the equality holds if
and only if G is a complete bipartite graph.

Proof Note that for any connected graph of order n, λ =  and λn ≤ . Since
∑n

i= λi = n,∑n–
i= λi ≥ n– and hence λn– ≥ .Moreover, if λn– = , then λ = · · · = λn– =  and λn = 

since
∑n

i= λi = n. This implies that G is bipartite []. Moreover, since λ = , combining
with Theorem . we find thatG is complete bipartite graph. On the other hand, it is easy
to check that if G is a complete bipartite graph, then λn– = . This completes the proof.

�
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