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Abstract
By the help of power series f (z) =

∑∞
n=0 anz

n, we can naturally construct another
power series that has as coefficients the absolute values of the coefficients of f ,
namely, fa(z) :=

∑∞
n=0 |an|zn. Utilizing these functions, we show among others that

w
[
f (T )

] ≤ fa
[
w(T )

]
and

w
[
f (T )

] ≤ 1
2

[
fa(‖T‖) + fa(

∥∥T2∥∥1/2
)
]
,

where w(T ) denotes the numerical radius of the bounded linear operator T on a
complex Hilbert space, while ‖T‖ is its norm.
MSC: 47A63; 47A99
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1 Introduction
The numerical radius w(T) of an operator T on H is given by [, p.]

w(T) = sup
{|λ|,λ ∈ W (T)

}
= sup

{∣∣〈Tx,x〉∣∣,‖x‖ = 
}
. (.)

Obviously, by (.), for any x ∈H , one has

∣∣〈Tx,x〉∣∣ ≤ w(T)‖x‖. (.)

It is well known that w(·) is a norm on the Banach algebra B(H) of all bounded linear
operators T :H →H , i.e.,

(i) w(T)≥  for any T ∈ B(H) and w(T) =  if and only if T = ;
(ii) w(λT) = |λ|w(T) for any λ ∈C and T ∈ B(H);
(iii) w(T +V ) ≤ w(T) +w(V ) for any T ,V ∈ B(H).
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This norm is equivalent with the operator norm. In fact, the following more precise
result holds [, p.].

Theorem  (Equivalent norm) For any T ∈ B(H), one has

w(T) ≤ ‖T‖ ≤ w(T). (.)

Some improvements of (.) are as follows.

Theorem  (Kittaneh,  []) For any operator T ∈ B(H), we have the following refine-
ment of the first inequality in (.):

w(T) ≤ 

(‖T‖ + ∥∥T∥∥/). (.)

Utilizing the Cartesian decomposition for operators, Kittaneh improved the inequality
(.) as follows.

Theorem  (Kittaneh,  []) For any operator T ∈ B(H), we have




∥∥T∗T + TT∗∥∥ ≤ w(T)≤ 

∥∥T∗T + TT∗∥∥. (.)

From a different perspective, we have the following result as well.

Theorem  (Dragomir,  []) For any operator T ∈ B(H), we have

w(T) ≤ 

[
w

(
T) + ‖T‖]. (.)

The following general result for the product of two operators holds [, p.].

Theorem  (Holbrook,  []) If A, B are two bounded linear operators on the Hilbert
space (H , 〈·, ·〉), then w(AB) ≤ w(A)w(B). In the case that AB = BA, then w(AB) ≤
w(A)w(B). The constant  is best possible here.

The following results are also well known [, p.].

Theorem  (Holbrook,  []) If A is a unitary operator that commutes with another
operator B, then

w(AB) ≤ w(B). (.)

If A is an isometry and AB = BA, then (.) also holds true.

We say that A and B double commute if AB = BA and AB∗ = B∗A. The following result
holds [, p.].

Theorem  (Holbrook,  []) If the operators A and B double commute, then

w(AB) ≤ w(B)‖A‖. (.)

http://www.journalofinequalitiesandapplications.com/content/2013/1/298
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As a consequence of the above, we have the following [, p.].

Corollary  Let A be a normal operator commuting with B. Then

w(AB) ≤ w(A)w(B). (.)

A related problem with the inequality (.) is to find the best constant c for which the
inequality

w(AB) ≤ cw(A)‖B‖

holds for any two commuting operators A,B ∈ B(H). It is known that . < c < .; see
[, ] and [].
Motivated by the above results, we establish in this paper some inequalities for the nu-

merical radius of functions of operators defined by power series, which incorporate many
fundamental functions of interest such as the exponential function, some trigonometric
functions, the functions f (z) = (± z)–, g(z) = log(± z)– and others. Some examples of
interest are also provided.

2 Some inequalities for one operator
Now, by the help of power series f (z) =

∑∞
n= anzn, we can naturally construct another

power series which will have as coefficients the absolute values of the coefficients of the
original series, namely, fa(z) :=

∑∞
n= |an|zn. It is obvious that this new power series will

have the same radius of convergence as the original series. We also notice that if all coef-
ficients an ≥ , then fa = f .
The following simple result provides some nice inequalities for operator functions de-

fined by power series.

Theorem  Let f (z) =
∑∞

n= anzn be a function defined by power series with complex coef-
ficients and convergent on the open disk D(,R)⊂ C, R > . For any T ∈ B(H), we have the
inequality

w
[
f (T)

] ≤ fa
[
w(T)

]
(.)

provided w(T) < R, and the inequality

w
[
f (T)

] ≤ 

[
fa

(‖T‖) + fa
(∥∥T∥∥/)] (.)

provided ‖T‖ < R.

Proof Let m ∈N with m ≥ . Utilizing the properties of the numerical radius, we have

w

[ m∑
n=

anTn

]
≤

m∑
n=

|an|w
(
Tn) ≤

m∑
n=

|an|wn(T). (.)
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Since the series
∑∞

n= |an|wn(T) is convergent on R, the series
∑∞

n= anTn is convergent
in B(H), and by the continuity of the numerical radius, we have

lim
m→∞w

[ m∑
n=

anTn

]
= w

[ ∞∑
n=

anTn

]
.

Then, by letting m → ∞ in the inequality (.), we deduce the desired result (.).
Utilizing the properties of the numerical radius and the Kittaneh inequality (.), we also

have

w

[ m∑
n=

anTn

]
≤

m∑
n=

|an|w
(
Tn) ≤ 



m∑
n=

|an|
(∥∥Tn∥∥ +

∥∥Tn∥∥/)

≤ 


m∑
n=

|an|
(‖T‖n + ∥∥T∥∥n/)

=



[ m∑
n=

|an|‖T‖n +
m∑
n=

|an|
(∥∥T∥∥/)n]. (.)

Since the series
∑∞

n= |an|‖T‖n, ∑m
n= |an|(‖T‖/)n are convergent on R, the series∑∞

n= anTn is convergent in B(H). Then, by letting m → ∞ in the inequality (.), we
deduce the desired result (.). �

Corollary  Let f (z) =
∑∞

n= anzn be a function defined by power series with nonnegative
coefficients and convergent on the open disk D(,R)⊂C, R > . For any T ∈ B(H), we have
the inequality

w
[
f (T)

] ≤ f
[
w(T)

]
(.)

if w(T) < R, and the inequality

w
[
f (T)

] ≤ 

[
f
(‖T‖) + f

(∥∥T∥∥/)] (.)

if ‖T‖ < R.

From a different perspective, we have the following.

Theorem Let f (z) =
∑∞

n= anzn be a function defined by power series with complex coeffi-
cients and convergent on the open disk D(,R)⊂C, R > . For any T ∈ B(H) with ‖T‖ < R
and z ∈C with |z| < r, we have the inequality

w[f (zT)] ≤ 

fa

(|z|)[fa(w(
T)) + fa

(‖T‖)] (.)

and the inequality

w[f (zT)] ≤ fa
(|z|)fa

(∥∥∥∥T∗T + TT∗



∥∥∥∥
)
. (.)
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Proof Let m ∈N with m ≥ . Utilizing the properties of the numerical radius, we have

w

[ m∑
n=

anznTn

]
≤

( m∑
n=

|an||z|nw
(
Tn))

. (.)

By the weighted Cauchy-Bunyakovsky-Schwarz discrete inequality, we have

( m∑
n=

|an||z|nw
(
Tn))

≤
m∑
n=

|an||z|n
m∑
n=

|an|w(Tn). (.)

Now, on writing the inequality (.) for the operators Tn, we have

w(Tn) ≤ 

[
w

(
Tn) + ∥∥Tn∥∥] ≤ 


[
wn(T) + ‖T‖n]

for any n ∈ N, which implies that

m∑
n=

|an|w(Tn) ≤ 


[ m∑
n=

|an|wn(T) + m∑
n=

|an|‖T‖n
]
. (.)

On making use of the inequalities (.)-(.), we get

w

[ m∑
n=

anznTn

]

≤ 


m∑
n=

|an||z|n
[ m∑

n=

|an|wn(T) + m∑
n=

|an|‖T‖n
]
. (.)

Since the series
∑m

n= |an||z|n, ∑m
n= |an|wn(T) and

∑m
n= |an|‖T‖n are convergent on

R and
∑m

n= anznTn is convergent on B(H), then by lettingm → ∞ in the inequality (.),
we deduce the desired result (.).
Now, on making use of the Kittaneh inequality (.), we also have

w(Tn) ≤ [
w(T)

]n ≤
∥∥∥∥T∗T + TT∗



∥∥∥∥
n

for any n ∈ N, which implies

m∑
n=

|an|w(Tn) ≤
m∑
n=

|an|
∥∥∥∥T∗T + TT∗



∥∥∥∥
n

.

By the inequalities (.) and (.), we then get

w

[ m∑
n=

anznTn

]
≤

m∑
n=

|an||z|n
m∑
n=

|an|
∥∥∥∥T∗T + TT∗



∥∥∥∥
n

for anym ∈N with m≥ .
The proof follows now as above and we get the desired inequality (.). �
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Corollary  Let f (z) =
∑∞

n= anzn be a function defined by power series with nonnegative
coefficients and convergent on the open disk D(,R) ⊂ C, R > . For any T ∈ B(H) with
‖T‖ < R and z ∈C with |z| < r, we have the inequality

w[f (zT)] ≤ 

f
(|z|)[f (w(

T)) + f
(‖T‖)] (.)

and the inequality

w[f (zT)] ≤ f
(|z|)f(∥∥∥∥T∗T + TT∗



∥∥∥∥
)
. (.)

3 Some inequalities for two operators
We start with the following result.

Theorem  Let A,B ∈ B(H) and k >  such that

w(AB) ≤ kw(A)w(B). (.)

If f (z) =
∑∞

n= anzn is a function defined by power series with complex coefficients and con-
vergent on the open disk D(,R) ⊂ C, R >  and kpwp(A),kqwq(B) < R, for p > , 

p +

q = ,

then we have the inequalities

w
(
f (AB)

) ≤ min{M,M}, (.)

where

M := f /pa
(
kpwp(A)

)
f /qa

(
kqwq(B)

)
and

M :=
fa(kpwp(A))fa(kqwq(B))

fa(k(p+q–)wp–(A)wq–(B))
.

Proof By the properties of the numerical radius and by (.), we have

w
[
(AB)n

] ≤ wn(AB)≤ knwn(A)wn(B) (.)

for any n ∈ N.
Let m ∈N withm ≥ . We have, by the above inequality,

w

[ m∑
n=

an(AB)n
]

≤
m∑
n=

|an|w
[
(AB)n

] ≤
m∑
n=

|an|knwn(A)wn(B). (.)

By Hölder’s weighted inequality, we have

m∑
n=

|an|knwn(A)wn(B) ≤
( m∑

n=

|an|kpnwpn(A)

)/p( m∑
n=

|an|kqnwqn(B)

)/q

. (.)

http://www.journalofinequalitiesandapplications.com/content/2013/1/298
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Then, by (.) and by (.), we get

w

[ m∑
n=

an(AB)n
]

≤
( m∑

n=

|an|kpnwpn(A)

)/p( m∑
n=

|an|kqnwqn(B)

)/q

(.)

for anym ∈N with m≥ .
Since the series whose partial sums are involved in (.) are convergent, then by taking

m → ∞ in (.), we deduce the first inequality in (.).
Further, by utilizing the following Hölder-type inequality obtained by Dragomir and

Sándor in  [] (see also [, Corollary .]):

n∑
k=

mk|xk|p
n∑

k=

mk|yk|q ≥
n∑

k=

mk|xkyk|
n∑

k=

mk|xk|p–|yk|q– (.)

that holds for nonnegative numbersmk and complex numbers xk , yk , where k ∈ {, . . . ,n},
we observe that the convergence of the series

∑∞
k=mk|xk|p and

∑∞
k=mk|yk|q imply the

convergence of the series
∑∞

k=mk|xk|p–|yk|q–.
Utilizing (.), we can state that

m∑
n=

|an|knwn(A)wn(B) ≤
∑m

n= |an|kpnwpn(A)
∑m

n= |an|kqnwqn(B)∑m
n= |an|k(p+q–)nw(p–)n(A)w(q–)n(B)

for anym ∈N with m≥ .
This together with (.) provides

w

[ m∑
n=

an(AB)n
]

≤
∑m

n= |an|kpnwpn(A)
∑m

n= |an|kqnwqn(B)∑m
n= |an|k(p+q–)nw(p–)n(A)w(q–)n(B)

(.)

for anym ∈N with m≥ .
Since all the serieswhose partial sums are involved in (.) are convergent, then by taking

n→ ∞ in (.), we deduce the second inequality in (.). �

Remark  If we take p = q =  in the first inequality in (.), we have

w(f (AB)) ≤ fa
(
kw(A)

)
fa

(
kw(B)

)
(.)

provided kw(A),kw(B) < R.

Corollary  Let f (z) =
∑∞

n= anzn be a function defined by power series with complex coef-
ficients and convergent on the open disk D(,R) ⊂ C, R > . Then for any A,B ∈ B(H) with
pwp(A), qwq(B) < R, for p > , 

p +

q = , we have the inequalities

w
(
f (AB)

) ≤ min{N,N}, (.)

where

N := f /pa
(
pwp(A)

)
f /qa

(
qwq(B)

)

http://www.journalofinequalitiesandapplications.com/content/2013/1/298
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and

N :=
fa(pwp(A))fA(qwq(B))

fa((p+q–)wp–(A)wq–(B))
.

If A,B ∈ B(H) are commutative with p/wp(A), q/wq(B) < R, for p > , 
p +


q = , then we

have the inequalities

w
(
f (AB)

) ≤ min{P,P}, (.)

where

P := f /pa
(
p/wp(A)

)
f /qa

(
q/wq(B)

)
and

P :=
fa(p/wp(A))fa(q/wq(B))
fa((p+q–)/wp–(A)wq–(B))

.

The proof of the inequality (.) follows by Theorem  since in this case, we can take
k =  in (.), while the inequality (.) follows by the commutative case, in which case
we can take k =

√
 in (.).

The case of commuting operators can be treated in a different way as well.

Proposition  Let f (z) =
∑∞

n= anzn be a function defined by power series with complex
coefficients and convergent on the open disk D(,R) ⊂C, R > . If A,B ∈ B(H) are commu-
tative with wp(A),wq(B) < R, for p > , 

p +

q = , then we have the inequalities

w
(
f (AB)

) ≤ min{Q,Q}, (.)

where

Q := f /pa
(
wp(A)

)
f /qa

(
wq(B)

)
and

Q :=
fa(wp(A))fa(wq(B))
fa(wp–(A)wq–(B))

.

Proof Since A,B ∈ B(H) are commutative, then for any n ∈N, the operators An and Bn are
commutative and AnBn = (AB)n.
Applying Theorem  for the commutative case, we have

w
(
(AB)n

)
= w

(
AnBn) ≤ w

(
An)w(

Bn) ≤ wn(A)wn(B)

for any n ∈ N.
Let m ∈N withm ≥ . We have, by the above inequality,

w

[ m∑
n=

an(AB)n
]

≤
m∑
n=

|an|w
[
(AB)n

] ≤ 
m∑
n=

|an|wn(A)wn(B).

http://www.journalofinequalitiesandapplications.com/content/2013/1/298
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Now, onmaking use of a similar approach to the one employed in the proof of Theorem ,
we deduce the desired result (.). �

Remark  If we take p = q =  in the first inequality in (.), we get

w(f (AB)) ≤ fa
(
w(A)

)
fa

(
w(B)

)
(.)

provided w(A),w(B) < R.

As pointed out in the introduction, the inequality

w(AB) ≤ cw(A)‖B‖ (.)

holds for any two commuting operators A,B ∈ B(H) and for some c > . It is known that
. < c < .; see [, ] and [].

Proposition  Let f (z) =
∑∞

n= anzn be a function defined by power series with complex
coefficients and convergent on the open disk D(,R) ⊂C, R > . If A,B ∈ B(H) are commu-
tative with wp(A),‖B‖q < R, for p > , 

p +

q = , then we have the inequalities

w
(
f (AB)

) ≤ cmin{Q,Q}, (.)

where

S := f /pa
(
wp(A)

)
f /qa

(‖B‖q)

and

S :=
fa(wp(A))fa(‖B‖q)
fa(wp–(A)‖B‖q–) .

Moreover, if the operators A and B double commute, then the constant c can be taken to
be  in (.).

Proof Applying the inequality (.) for the commuting operators An and Bn with n ∈ N,
we have

w
(
(AB)n

)
= w

(
AnBn) ≤ cw

(
An)∥∥Bn∥∥ ≤ cwn(A)‖B‖n

for any n ∈ N.
On making use of a similar argument as in the proof of Theorem , we deduce the

desired inequality (.).
If the operators A and B double commute, then the operators An and Bn also double

commute, and by Theorem  we deduce the second part of the proposition. �

From a different perspective, we have the following result as well.

http://www.journalofinequalitiesandapplications.com/content/2013/1/298
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Proposition  Let f (z) =
∑∞

n= anzn be a function defined by power series with complex
coefficients and convergent on the open disk D(,R) ⊂ C, R > . If A,B ∈ B(H) such that
‖A‖,‖B‖ < R, then

w
(
f (AB)

) ≤
{
fa(‖AA∗+B∗B

 ‖)
fa(‖AA∗+BB∗

 ‖) ≤ fa(‖A‖) + fa(‖B‖)


. (.)

Proof We use the following two inequalities obtained by Kittaneh in []

w(AB) ≤
{

‖AA∗+B∗B
 ‖,

‖AA∗+BB∗
 ‖

for any A,B ∈ B(H).
Let n ∈N. We have, by the above inequalities,

w
[
(AB)n

] ≤ wn(AB)≤
{

‖AA∗+B∗B
 ‖n

‖AA∗+BB∗
 ‖n ≤ 


[‖A‖n + ‖B‖n].

The proof follows now as above and the details are omitted. �

4 Examples
As some natural examples that are useful for applications, we can point out that if

f (z) =
∞∑
n=

(–)n

n
zn = ln


 + z

, z ∈D(, );

g(z) =
∞∑
n=

(–)n

(n)!
zn = cos z, z ∈C;

h(z) =
∞∑
n=

(–)n

(n + )!
zn+ = sin z, z ∈C;

l(z) =
∞∑
n=

(–)nzn =


 + z
, z ∈D(, );

(.)

then the corresponding functions constructed by the use of the absolute values of the
coefficients are

fA(z) =
∞∑
n=


n!
zn = ln


 – z

, z ∈ D(, );

gA(z) =
∞∑
n=


(n)!

zn = cosh z, z ∈ C;

hA(z) =
∞∑
n=


(n + )!

zn+ = sinh z, z ∈C;

lA(z) =
∞∑
n=

zn =


 – z
, z ∈ D(, ).

(.)

http://www.journalofinequalitiesandapplications.com/content/2013/1/298
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Other important examples of functions as power series representations with nonnegative
coefficients are:

exp(z) =
∞∑
n=


n!
zn, z ∈ C;



ln

(
 + z
 – z

)
=

∞∑
n=


n – 

zn–, z ∈D(, );

sin–(z) =
∞∑
n=

�(n + 
 )√

π (n + )n!
zn+, z ∈D(, ); (.)

tanh–(z) =
∞∑
n=


n – 

zn–, z ∈D(, );

F(α,β ,γ , z) =
∞∑
n=

�(n + α)�(n + β)�(γ )
n!�(α)�(β)�(n + γ )

zn, α,β ,γ > , z ∈D(, );

where � is a gamma function.
For any operator T ∈ B(H) with w(T) < , by making use of the inequality (.), we have

the simple inequalities

w
[
(I ± T)–

] ≤ [
 –w(T)

]–,
w

[
ln(I ± T)–

] ≤ ln
[
 –w(T)

]–,
w

[
sin–(T)

] ≤ sin–
[
w(T)

]

and

w
[
F(α,β ,γ ,T)

] ≤ F
(
α,β ,γ ,w(T)

)
.

For any operator T ∈ B(H), we also have

w
[
exp(T)

] ≤ exp
[
w(T)

]
,

w
[
sin(T)

]
,w

[
sinh(T)

] ≤ sinh
(
w(T)

)

and

w
[
cos(T)

]
,w

[
cosh(T)

] ≤ cosh
(
w(T)

)
.

Similar inequalities may be stated by employing the other results obtained for one or two
operators. However, the details are left to the interested reader.
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