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Abstract
The purpose of this paper is to investigate to what extent cooperativity, that is, the
absence of negative interactions, in Boolean networks with synchronous updating,
imposes limits on chaos-like properties that are possible in such systems. Our focus is
on notions of sensitive dependence on initial conditions, or a combination of sensitive
dependence and large basins of attraction of exponentially long attractors, both of
which are well-recognized hallmarks of chaotic dynamics in the Boolean context.
We prove that a strong notion of sensitive dependence on initial conditions that

formalizes decoherence along the attractor is precluded by cooperativity. Weaker
notions of sensitive dependence that formalize decoherence at some time during the
trajectory and sensitive dependence of the basin of attraction on initial conditions,
respectively, are shown to be consistent with cooperativity, but if each regulatory
function is binary AND or binary OR, in N-dimensional networks they impose an

upper bound of ≈ √
3
N
on the lengths of attractors that can be reached from a

fraction p ≈ 1 of initial conditions. The upper bound is shown to be optimal. These
results indicate that the transfer of analogous results for differential equations models
crucially depends on the precise conceptualization of chaos in the Boolean context.
MSC: 34C12; 39A33; 94C10

Keywords: Boolean networks; cooperative dynamical systems; exponentially long
attractors; chaotic dynamics

1 Introduction
Many natural systems can be modeled with several types of dynamical systems, and it is
of interest to study which properties of differential equations models carry over to certain
types of difference equationmodels. This paper is a continuation of the investigation in []
of the question to what extent the absence of negative feedback interactions precludes
genericity of chaos for Boolean systems with synchronous updating, as it does for ODE
models.
Understanding the role of feedback is crucial in the study of dynamical systems; see, e.g.,

[, ] for relevant surveys. The absence of negative feedback loops tends to favor steady
state attractors. For example, continuous flowswithout negative feedback loops are known
asmonotone systems. In these systems trajectories converge generically towards an equi-
librium under mild regularity hypotheses; see, e.g., [–]. In particular, this implies that
chaotic trajectories are not generic in cooperative continuous flows. Similarly, [, ] show
that in Boolean networks with asynchronous updating, negative feedback loops are nec-
essary for the existence of attracting limit cycles.
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Cooperativity is the absence of any negative interactions whatsoever. Thus cooperativ-
ity is a more stringent condition than monotonicity, which only requires the absence of
negative feedback loops. In other words, the regulatory functions in cooperative Boolean
networks have Boolean expressions that use only AND- and OR-operators with one or
more inputs. Such networks have been proposed as a tool for understanding gene regu-
latory networks []. Cooperative networks that use only one type of these operators have
also been studied []. Empirical investigations indicate that cooperativity favors ordered
dynamics in Boolean networks [, ]. While empirical investigations can give us some
idea about the average dynamics of Boolean networks from a given class, this paper will
focus on the problem to what extent cooperativity already implies certain properties of
ordered dynamics. Thus we will investigate under which conditions cooperativity does or
does not preclude certain hallmarks of chaotic dynamics in Boolean networks.
Chaotic dynamics of Boolean networks is characterized by very long attractors, very few

eventually frozen nodes, and high sensitivity to perturbations of initial conditions [].
These three hallmarks usually, but not always, go together. Our focus in [] was on very
long attractors. Since the state space of anN-dimensional Boolean network has size N , we
were interested in upper bounds of the form cN for constants c < . As in [, ], we call an
N-dimensional Boolean network c-chaotic if it has an attractor of length > cN . If attractors
of this length are reached with probability > p from a randomly chosen initial condition,
then we say that the network is p-c-chaotic. Thus p-c-chaos is a notion of genericity of
chaos in terms of very long attractors, and it also implies genericity of chaos in terms of
very few eventually frozen nodes (Proposition .. of []).
Expected dynamics of so-called randomBoolean networks (RBNs) tends to becomemore

chaotic as the number of inputs per node increases (see, e.g., the surveys [, , ]). The
most stringent limitation of this kind is the assumption that the Boolean network is bi-
quadratic, that is, such that both the number of in- and outputs per node is bounded from
above by . The main result of [] (reproduced below as Theorem ) is that cooperative bi-
quadratic Boolean networks can still be p-c-chaotic. However, if we require that the system
is strictly bi-quadratic, that is, all nodes have exactly two inputs and two outputs, then
even c-chaos is possible only for c < /, and the bound is optimal [, , ]. Here we
will show that the same bound is optimal for strictly bi-quadratic p-c-chaotic cooperative
networks (Theorem ).
The main focus of the present paper is the question whether cooperativity limits, to

some extent, the sensitivity to perturbations of initial conditions in Boolean networks.
All by itself, p-c-chaos does not imply high sensitivity to initial conditions. In particular,
p-c-chaos can coexist in cooperative Boolean networks, for every  < p <  < c < , with
p-coalescence, which is the property that for two randomly chosen initial conditions �s(),
�s∗() that differ by a single-bit flip (have Hamming distance ) with probability > p, there
will be some t >  with �s(t) = �s∗(t) []. Note that the dynamics of such networks is highly
chaotic in one sense (a very long attractorwill be reached frommost initial conditions) and
highly ordered in another (the particular attractor that will be reached is not significantly
sensitive to the initial condition).Whether or not such networks should be called ‘chaotic’
is a question of judgment and may depend on the context. For this reason, we generally
use phrases like ‘hallmarks of chaos’ or ‘chaos-like property’ instead of the unqualified
adjective ‘chaotic.’
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There are several plausible ways of formalizing the notion of sensitive dependence on
initial conditions, and we will study three such notions: p-instability, which in cooperative
Boolean networks is equivalent to the negation of p-coalescence, p-D-decoherence, and
p-α-q-decoherence. Intuitively, the latter two notions mean that a single-bit perturbation
to a randomly chosen initial condition will with high probability lead to trajectories that
have a relatively large Hamming distance infinitely often. It turns out that the strongest
of these notions, p-α-q-decoherence, does occur in some p-c-chaotic Boolean networks
(Proposition ), but is precluded by cooperativity (Theorem ). Thus an analogue of the
above-mentioned theorem for monotone flows holds for this particular formalization of
the notion of chaos in Boolean networks.
For p-instability and p-D-decoherence, the situation is more subtle. We will show that

for every  < p <  < c < , there are bi-quadratic cooperative Boolean networks that are si-
multaneously p-unstable and p-c-chaotic (Theorem ). But strictly bi-quadratic networks
that are also p-unstable and p-c-chaotic can exist only if c <

√
 (see Section .), and we

show that this bound is again optimal (Theorem ). In general, cooperative p-c-chaotic
Boolean networks can exhibit arbitrarily strong forms of p-D-decoherence (Theorem ).
We prove that some versions of this property can occur under the additional assumptions
that the network is bi-quadratic (Theorem ) or even strictly bi-quadratic (Theorem ). It
remains an open problem to determine the maximal amount of p-D-decoherence that is
possible under these additional assumptions.

2 Terminology
Our terminology will be the same as in [], where the reader can find all relevant defi-
nitions. Here we will only clarify some key points that are crucial for understanding the
formulation of our results.
The symbol [N] denotes the set {, . . . ,N}, which is also the domain of N-dimensional

Boolean vectors �s ∈ [N]. Each such �s = (s, . . . , sN ) is the characteristic function of the set
A�s ⊆ [N] = {i ∈ [N] : si = }. It will sometimes be convenient to work with sets A�s instead
of Boolean vectors �s. Note that in this interpretation a Boolean function f is cooperative,
which can be defined as preserving the coordinatewise partial order, if and only if it pre-
serves the subset relation, that is,A�s ⊆ A�s∗ impliesAf (�s) ⊆ Af (�s∗). It follows that every partial
Boolean function on a set of pairwise incomparable Boolean vectors can be extended to
a cooperative total Boolean function (see Proposition . of []), a fact that we will use
several times.
The symbol |�s| denotes the number of coordinates i with si = ; equivalently, |�s| = |A�s|.
The Hamming distance H(�s,�s∗) between two Boolean vectors �s = (s, . . . , sN ) and �s∗ =

(s∗ , . . . , s∗N ) with the same domain is the number of i with si �= s∗i . Vectors with a Hamming
of  are said to differ by a single-bit flip.
As in [] and elsewhere in the literature, we will use the terms ‘Boolean system’ and

‘Boolean network’ interchangeably. But we will carefully distinguish these dynamical
systems from ‘Boolean circuits’ and ‘Boolean input-output systems’ which are layered
arrangements of Boolean gates that calculate certain Boolean functions. Boolean input-
output systems, as opposed to Boolean circuits, allow feedback loops between the vari-
ables; both structures can be incorporated as building blocks into Boolean networks to
achieve desired dynamics.
Boolean input-output systems will form the building blocks for several of our examples.

A Boolean input-output system is (bi-)quadratic if every of its variables has indegree (and

http://www.advancesindifferenceequations.com/content/2013/1/268
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outdegree) at most , where the indegree of a variable is the number of variables its regu-
latory function takes input from, and the outdegree is the number of variables for which
it serves as input. Cooperative quadratic Boolean input-output systems can use only bi-
nary AND, binary OR, and unary COPY gates; the latter type of gates is not allowed in
strictly quadratic input-output systems. A bi-quadratic system is strictly bi-quadratic if,
in addition, every of its variables except the input variables has indegree exactly . Note
that for Boolean networks the latter requirement already implies that each variable must
have outdegree exactly  as well (since the sum of indegrees in any directed graph is equal
to the sum of outdegrees), but due to external inputs and outputs, this implication is in
general false for Boolean input-output systems.

3 Statement of the results
For easier reference, we state the main result of part I [].

Theorem  Given any  < p <  and  < c < , for all sufficiently large N , there exist p-c-
chaotic, p-coalescent, N-dimensional bi-quadratic cooperative Boolean networks.

3.1 Sensitivity to initial conditions
Our first formal definition of high sensitivity to initial conditions is the notion of p-
instability that was introduced in []. A Boolean system is p-unstable if a random single-
bit flip in a randomly chosen initial state moves the trajectory into the basin of attraction
of a different attractor with probability at least p. Note that for cooperative Boolean net-
works, p-instability is the same as the negation of ( –p)-coalescence: If �s(), �s∗() are two
initial conditions that differ in exactly one variable, then we must have either �s() < �s∗()
or �s() > �s∗(); wlog assume the former. Then cooperativity implies that �s(t) ≤�s∗(t) for all
times t. If the inequality is strict for all t, then the two trajectories must reach different
attractors, since in cooperative Boolean networks every two states in a given attractor are
incomparable (see, e.g., []). If equality holds for some t, then the two trajectories coa-
lesce.
We will prove the following.

Theorem  Given any  < p <  and  < c < , for all sufficiently large N , there exist p-c-
chaotic and p-unstable N-dimensional bi-quadratic cooperative Boolean networks.

Another hallmark of chaotic dynamics in Boolean networks is extensive damage propa-
gation, which means that a small perturbation (such as a single-bit flip in an initial condi-
tion) tends to spread to a significant proportion of the nodes. The definition of p-instability
does not account for this phenomenon. There are a number of possible ways to formally
define extensive damage propagation; we will study here two such notions that require a
significant proportion of nodes to be affected when the trajectories already have reached
their attractors.

Definition  Let D(N) be a function on the set of positive integers. An N-dimensional
Boolean network exhibits p-D-decoherence if with probability ≥ p a random one-bit flip
�s∗() in a randomly chosen initial condition �s() results in trajectories with the property
that H(�s(t),�s∗(t)) ≥ D(N) for infinitely many times t > . In particular, if D(N) = αN for
some constant α > , then we will refer to p-D-decoherence as p-α-decoherence.

http://www.advancesindifferenceequations.com/content/2013/1/268
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Note that p-α-decoherence means that for infinitely many t, the Hamming distance will
be at least a fraction of α of the size of the state space. Our next definition requires this to
happen also sufficiently frequently.

Definition  ABoolean network exhibits p-α-q-decoherence if with probability≥ p a ran-
dom one-bit flip �s∗() in a randomly chosen initial condition �s() results in trajectories
with the property that for all sufficiently large t∗ > , the proportion of times t ∈ [, t∗], for
which the Hamming distance satisfies H(�s(t),�s∗(t))≥ αN , is at least q.

Note that p-α-q-decoherence implies p-α-decoherence, which in turn implies the nega-
tion of (–p)-coalescence, that is, p-instability. Thus, in a sense, p-α-q-decoherence is the
strongest possible form of sensitivity to initial conditions. It turns out that this notion is
still consistent with p-c-chaos in general, but not with cooperativity.

Proposition  Let  < α,p,q <  and  < c < . For all sufficiently large N , there exist N-
dimensional p-c-chaotic Boolean networks that are p-α-q-decoherent.

Theorem  For every α >  and  < p < , there exists Nα,p such that no cooperative
Boolean network of dimension N ≥ Nα,p can have the property that for some fixed time
t >  with probability ≥ p, a single-bit flip in a randomly chosen initial condition leads to
trajectories with H(�s(t),�s∗(t)) ≥ αN . In particular, for any q > , no cooperative Boolean
network of sufficiently large dimension can exhibit p-α-q-decoherence.

Thus p-α-q-decoherence is a chaos-like property of the dynamics that is precluded by
cooperativity. In contrast, the weaker property of p-α-decoherence is consistent with co-
operativity and p-c-chaos at the same time.

Theorem  Let  < α,p <  < c < . Then, for all sufficiently large N , there exist
N-dimensional cooperative Boolean networks that are p-c-chaotic and exhibit p-α-
decoherence.

The networks constructed in our proof of Theorem  are not subject to any limitations
on the number of inputs or outputs per variable, and it is of interest to investigate how
much damage propagation is possible in bi-quadratic cooperative Boolean networks. We
will give a proof of the following result.

Theorem  Let  < α < . and  < p <  – α <  < c < /(–α). Then, for all sufficiently
large N , there exist N-dimensional cooperative bi-quadratic Boolean networks that are
p-c-chaotic and exhibit p-α-decoherence.

While we do not know whether the bounds on α, p, and c in Theorem  are optimal,
we conjecture that there are some nontrivial bounds on these parameters in bi-quadratic
cooperative networks, that is, we conjecture that the analogue of Theorem  fails for this
class of Boolean networks.

3.2 Strictly bi-quadratic networks
The theorems in [] give upper bounds on c <  for c-chaotic, cooperative bi-quadratic
Boolean networks that have a fixed positive proportion of strictly quadratic regulatory

http://www.advancesindifferenceequations.com/content/2013/1/268
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functions. In particular, if a network is strictly bi-quadratic, the bound is /, and it can
be attained. The question is whether a similar result holds for p-instability. Here we will
prove that the same bound is optimal for p-c-chaotic Boolean networks, that is, we will
prove the following.

Theorem  Let  < p <  and  < c < /. Then, for all sufficiently large N , there exist p-c-
chaotic, p-coalescent N-dimensional strictly bi-quadratic cooperative Boolean networks.

The question arises howmuch p-c-chaos and p-instability one can have simultaneously
in a strictly bi-quadratic cooperative Boolean network.We will prove the following result.

Theorem  Let  < p <  < c <
√
. Then, for all sufficiently large N , there exist p-c-chaotic

and p-unstable N-dimensional strictly bi-quadratic cooperative Boolean networks.

Note that
√
 < /. It turns out that Theorem  is optimal. In order to formally prove

this, let us introduce some new terminology. Define
qb(c,p) as the supremum of all q such that for all sufficiently large N , there exists a
strictly bi-quadratic cooperative p-c-chaotic N-dimensional q-unstable Boolean
network.
q(c) as the supremum of all q such that for all sufficiently large N , there exists a
cooperative c-chaotic N-dimensional q-unstable Boolean network, in which all
variables have indegree exactly .

Since p-c-chaotic networks are automatically c-chaotic, for every p > , the inequality
qb(c,p) ≤ q(c) holds. In this terminology, Theorem  simply says that qb(c,p) =  for all
c <

√
 and p < .

On the other hand, Theorem  of [] says that for all c ≤ ,

√
 < c < → q(c) ≤ . +

ln(.c)
 ln.

. ()

Notice that on the interval [
√
, ], the right-hand side of () is a function that strictly

decreases from  to .. Since qb(c,p) ≤ q(c), it follows that Theorem  is in some sense
optimal.
It may be of interest to investigate optimal bounds for qb(c,p) and related functions if√
 < c < . We wish to leave this as an open problem.
We also do not know whether p-α-decoherence is possible at all, for any p,α > , in

strictly bi-quadratic Boolean networks. However, a very slight weakening of it is still con-
sistent in such networks, even in the presence of p-c-chaos.

Theorem  Let  < p <  < c <
√
. Then there exists a constant � = �(p, c) >  such

that for all sufficiently large N , there exist N-dimensional cooperative strictly bi-quadratic
Boolean networks that are p-c-chaotic and exhibit p- N

� log(N) -decoherence.

4 Damage propagation and p-instability
Here we prove all results that were announced in the previous section that do not require
any knowledge of the proof of Theorem . The proofs of Theorems  and - rely to some
extent on the construction that was used in [] and will be given in the next section.

http://www.advancesindifferenceequations.com/content/2013/1/268
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Proof of Proposition  Fix α, p, q, c as in the assumption. Let N be sufficiently large such
that

cN +  <
 – p
N – 

N–. ()

It will be convenient for this proof to treat the states of B as subsets of [N] instead of
Boolean vectors. Let L be the integer that satisfies cN < L ≤ cN + . Choose an indexed set
A = {A� : � ∈ [L]} with A� ⊆ [N – ] and define an updating function f for B as follows:

f (A�) = A�+ for � ∈ [L – ];

f (AL) = A;

f
(
[N]\A�

)
= [N]\A�+ for � ∈ [L – ];

f
(
[N]\AL

)
= [N]\A;

f (B) = A if B∩ [N – ], [N – ]\B /∈A and |B| is odd;
f (B) = [N]\A if B∩ [N – ], [N – ]\B /∈A and |B| is even.

()

Note that A� �= [N]\A�′ for all �, �′.
Now consider initial conditions �s(), �s∗(), where �s() is randomly chosen and �s∗() is

obtained by a random single-bit flip, and let B, B∗ be the sets of indices in [N – ] with
si() =  and s∗i () = , respectively. By (), with probability > p, neither of the sets B∩ [N –
], [N–]\B,B∗∩[N–], [N–]\B∗ will be inA, and the last two clauses of the definition of
the updating function f apply. Hencewlog f (B) = A and f (B∗) = [N]\A. Thus at time  the
systemwill have entered two different attractors of length > cN for these initial conditions,
and we will have H(�s(t),�s∗(t)) =N for all t > . �

Proof of Theorem  Let α, p be as in the assumptions, and letNα,p be the smallest positive
integer N such that for all k ∈ [N],

(N
k
)

N
<
pα

. ()

Let B be a cooperative Boolean system of dimension N ≥ Nα,p. By symmetry, we may
focus in this argument on the case where a single bit is flipped from  to . Fix t >  and let
r be the probability that a single-bit flip from  to  in a randomly chosen initial condition
leads to trajectories with H(�s(t),�s∗(t)) ≥ αN . Assume towards a contradiction that r ≥ p.
For each k ∈ {, . . . ,N –}, let pk be the conditional probability that a single-bit flip from 
to  in a randomly chosen initial state �s() given that |�s()| = k results in trajectories with

H
(�s(t),�s∗(t)) ≥ αN . ()

Note that in this case |�s∗()| = k +  and �s() < �s∗(). Cooperativity implies that

�s(t) < �s∗(t). ()

http://www.advancesindifferenceequations.com/content/2013/1/268
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Let L = {k : pk ≥ r
 } and let K = {k : pk < r

 }. By (),

r ≤
N–∑
k=

pk
(N
k
)

N
=

∑
k∈L

pk
(N
k
)

N
+

∑
k∈K

pk
(N
k
)

N
<

|L|pα


+
r

. ()

Under the assumption r ≥ p, this implies

|L| =
∣∣∣∣
{
k : pk ≥ r



}∣∣∣∣ > 
α
. ()

Now consider a randomly chosen permutation π of [N], and let �sk,π () be the character-
istic function of the set {j : π (j) < k}. Define random variables Xk such that Xk(π ) takes the
value  ifH(�sk,π (t),�sk+,π (t)) ≥ αN and takes the value  otherwise. Let X =

∑N–
k= Xk . Then

E(Xk) = pk for all k, and henceE(X) =
∑N–

k= pk . By (),E(X) > 
α
, and it follows that there ex-

ists at least one permutation π with X(π ) > 
α
. But existence of such a permutation would

require in view of () and () that there exist initial states �s,π () < �s,π () < · · · < �sJ ,π ()
with J > 

α
such that �s,π (t) < �s,π (t) < · · · < �sJ ,π (t) are characteristic functions of sets Aj

with Aj ⊂ Aj+ ⊆ [N] and |Aj+\Aj| ≥ αN , which leads to a contradiction.
It remains to show how the first part of the theorem implies the second one. Fix α, p, q

as in the definition of p-α-q-decoherence. For each t ≥ , consider the random variable ξt

on the space of all pairs (�s(),�s∗()) that result from a random bit flip in an initial condition
that takes the value  if H(�s(t),�s∗(t)) ≥ αN and takes the value  otherwise. The first part
of the proof shows that as long as N ≥ Nα,pq, we will have

E(ξt) = P(ξt = ) < pq. ()

Now fix t∗ ≥  and let η =
∑t∗

t= ξt . If () holds, then

qt∗P
(
η ≥ qt∗

) ≤ E(η) < pqt∗,

and it follows that

P
(
η ≥ qt∗

)
< p,

which contradicts p-α-q-decoherence. �

Proof of Theorem  Let α, p, c be as in the assumptions. Fix the smallest positive integer
z with p <  – –z+, and fix γ >  and Nγ > z such that the following inequality holds for
all N >Nγ :

k=�N/+γ
√
N�–∑

k=�N/–γ
√
N�+

(N
k
)

N
> p + –z+. ()

For N >Nγ , let w := �N/ – γ
√
N� and u := �N/ + γ

√
N�. We will assume for the sake

of simplicity that u –w is even.
By assumption, [z] ⊂ [N]. The Boolean variables si with i ∈ [z] will play a special role

in controlling cooperativity of the Boolean system that we are going to construct.

http://www.advancesindifferenceequations.com/content/2013/1/268
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Let Z be the set of all states �s that satisfy the following conditions:

∃i ∈ [z],∃j ∈ [z]\[z], si =  & sj = ,

w ≤ |�s| ≤ u.
()

Let N > Nγ and consider a randomly chosen initial condition �s() and any condition
�s∗() obtained from it by a single-bit flip. The probability that the first line of () fails for
�s() or �s∗() is less than –z+, and () implies that P(w +  ≤ |�s()| ≤ u – ) > p + –z+. It
follows that with probability > p both �s(),�s∗() ∈ Z.
We will construct systems B of dimension N > Nγ as follows. Let J = u – w. For each

j ∈ J , we will specify a periodic orbit Aj = {�sj(i) : i ∈ [L]} of length L > cN , where �sj(i + ) is
the successor state in B of �sj(i) for all i < L, in such a way that

(i) �sj(i) < �sj+(i) for all j ∈ [J] and i ∈ [L],
(ii) �sj(i) � [z] = � and �sj(i) � [z]\[z] = � for all j ∈ [J] and i ∈ [L],
(iii) H(�sj(j),�sj+(j)) ≥ αN for all j ∈ [J], and
(iv) for i �= i′ and any j, j′ ∈ J , the states �sj(i) and �sj′ (i′) are incomparable with respect to

the coordinatewise partial order.
This part of the construction defines a partial Boolean updating function f of B on the

set A =
⋃

j∈[J]Aj. By (i), (ii) and (iv), this function is cooperative.
Note that by (ii), all states in A are incomparable with all states in Z. Thus if we define

the restriction of the Boolean updating function f to Z so that it is cooperative, then auto-
matically f � (A∪Z) will be cooperative. Now consider �s ∈ Z. Then, for a unique j ∈ [J], we
have |�s| = w + j, and we define f (�s) = �sj(). By (i), this construction results in a cooperative
Boolean function on Z. Having defined a cooperative partial Boolean function f � (A∪Z),
we can extend it by Proposition . of [] to a cooperative updating function f on thewhole
state space N of B.
Now consider a random initial condition �s(), and let �s∗() be obtained by some one-

bit flip in �s(). Then with probability > p both �s(),�s∗() ∈ Z, and it follows that there are
j, j′ ∈ [J] with |j – j′| =  such that �s() = �sj() and �s∗() = �sj′ (). Wlog j′ = j +  and condition
(iii) implies that H(�s(t),�s∗(t))≥ αN for infinitely many t, which gives p-α-decoherence.
Note that when �s() ∈ Z, the trajectory of �s() will reach one of the attractors Aj. In

particular, (iv) implies that all sj(i) are pairwise distinct for different i and fixed j, thus Aj

has length L > cn, and we get p-c-chaos as well.
It remains to prove that for sufficiently large N , we can construct a family A = {Aj : j ∈

[J]} that satisfies conditions (i)-(iv).
We need N >Nγ sufficiently large so that for N >N, we have

cN <

(
N – (z + u –w)

�N/� – (z + u –w)

)
, ()

(
u –w

(u –w)/

)
> u –w, and ()

N – (z + u –w)
N

> α. ()
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Figure 1 A schematic view of the construction.

Conditions () and () will be quite obviously satisfied for all sufficiently large N ; con-
dition () follows from the fact that we can make N–(z+u–w) larger than dN for any d < 
and that

(K
K

) ∼ K√
K as K → ∞.

FixN >N. LetU ,W be disjoint subsets of [N]\[z] such that |U| = |W | = u–w, and let
{aj : j ∈ {} ∪ [u–w]} be a family of pairwise incomparable subsets of U . We can form this
family from subsets of U of size (u – v)/ each; condition () implies that there will be
enough such sets to choose from. Similarly, by () we can choose a family C = {ci : i ∈ [L]}
of size L > cN of subsets of [N]\([z]∪U ∪W ) that have size �N/�– (z + u–w) each and
thus are pairwise incomparable. Let Wj for j ∈ [u – w] be subsets of W such that Wj is a
proper subset ofWj+ for all relevant j.
Then define �sj(i) as the characteristic function of the set
• ai ∪Wj ∪ ([N]\([z]∪U ∪W )) if i < j ≤ u –w,
• ai ∪Wj ∪ [z]\[z] if j ≤ i≤ u –w, and
• a ∪Wj ∪ ci ∪ [z]\[z] if i > u –w.
It is straightforward to verify that conditions (i)-(iv) hold, with the all-important condi-

tion (iii) following from (). �

5 Proofs of Theorems 2 and 6-9
The proofs of these theorems are based on the construction that was used in [] for the
proof of Theorem , and we will need to review it here to some extent.
Let  < p <  < c <  be as in the assumptions of Theorem . In the proof we constructed,

for sufficiently large N , a suitable updating function f for Boolean systems B = (N , f )
such that f was cooperative, bi-quadratic, and worked as required. The set of Boolean
variables [N] was partitioned into a disjoint union [N] = X ∪ Y , where the set X in turn
was a union of pairwise disjoint sets Xi, indexed by i ∈ I = {, , . . . , |I| – }, and all of the
same size m ≤ |I|. Both m and |I| scale like √

N . We singled out some i > i > i ∈ I and
conceptualized the collection of all sets Xi as a circular data tape, with f simply copying
the vector sXi+ (t) to sXi (t + ) for all indices i with the exception of i ∈ {i, i}, and also
copying sX (t) to sX|I|– (t + ). The vectors sXi (t + ), sXi (t + ) were outputs of special
Boolean circuitsB,B, which also took a second input fromanother Boolean input-output
system B.
A schematic view of the construction is given in Figure .
Although the figure suggests  /∈ Q, it will be convenient here to assume that i – t +

 = , so that Q = {, , . . . , i}. This amounts to a circular shift in the indexing and does
not alter the construction in any way.
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Our proofs will rely on the following facts:
(P) For sufficiently large N , it is possible to construct these objects so that the resulting

Boolean system will be cooperative, bi-quadratic, and will exhibit p-c-chaos.
(P) For all i ∈ I\{i, i} and all t, we will have |sXi+ (t)| = |sXi (t + )|.
(P) Each variable in Xi+ has exactly one output variable in the system.
(P) With probability > p, the trajectory of a randomly chosen initial condition will have

the property that for every time t = k|I| such that k is a positive integer, we have
|sXi (t)| = |Xi|/ for all i ∈ {i + , i + , . . . , |I| – }. This follows from the choice of
coding vectors in [] and the workings of B, B, B.

(P) The ratio |Y ∪ ⋃
i≤i Xi|/N approaches zero as N → ∞.

The key requirement that makes this construction work for obtaining p-c-chaos is the
following:
(P) With probability > p, the following will hold for a randomly chosen initial

condition: if t is any time of the form k|I|, where k is a positive integer, then with
the possible exception of indices i ∈Q, each vector sXi (t) will be a coding vector,
that is, will code an integer vi(t) ∈ {, . . . ,n – } for some suitable value of n that
depends on N . Moreover, again with the possible exception of i ∈Q, the function f
computes addition of  modulo n – i on input Xi and writes the output to Xi after
|I| steps. Formally, the latter means that for times t as above,

∀i ∈ I\Q, vi
(
t + |I|) = vi(t) +  mod (n – i). ()

In order to make (P) work, we will need a suitable n and, for each Xi, a set of coding
vectors Ci ⊆ Xi . The choice of the sets Ci will be restricted (in the sense of (Pa) below)
by the particular coding scheme that we adopt in a given proof. For technical reasons, the
construction in [] needs

m = |Xi| = ( + ε) logn and |I| = β log(n), ()

where ε >  and β is a positive integer that does not depend on n. Note that () implies
the scaling lawsm =O(

√
N) and |I| =O(

√
N). Only the following additional properties of

the coding are needed to obtain p-c-chaotic systems:
(P) There are positive integers k, � with k depending only on c such that

(Pa) Ci ⊂ (Ck)�, where Ck is a set of Boolean vectors from k , called the coding
scheme, such that exactly half of their coordinates are ’s (so the other half
are ’s).

(Pb) The pair (k, ε) is c-friendly under the given coding scheme, which means that
ε is rational, k

+ε
is an integer,

log(c)( + ε) < , and ()

|Ck| ≥ k/(+ε). ()

A few remarks are in order here. Of course, the sets of variables Xi are pairwise disjoint,
so we cannot literally make eachCi a subset of (Ck)�; formally, we will need disjoint copies
of (Ck)�. However, we suppress the additional parameter to reduce clutter in our notation.
The outputs of the Boolean input-output system B will also code for integers and satisfy
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property (P), so our modifications of the coding scheme will apply to them as well. The
wording chosen in [] suggests that Ck is the set of all Boolean vectors from k such that
exactly half of their coordinates are s, but this property was never actually used in the
proof. Only () and property (P) (which are taken from Section  of []) are ever referred
to in any part of the construction. In fact, since we need exactly n codes for nonnegative
integers, for most N , not all vectors in (Ck)� are used even in [] as actual codes. This
makes it possible for us to alter the definition of Ck to more restrictive coding schemes
that will work for our purposes here.
For the description below, it will be convenient to consider a partition of each Xi into

pairwise disjoint subsets xji of size k each that correspond to the domains of the vectors in
Ck when sXi is coding.
The systemworks as follows:With probability arbitrarily close to , for each i, the vector

sXi () will be crude, which means that there will be j, j′ such that the restriction of sXi ()
to xji will take the constant value , and the restriction of sXi () to x

j′
i will take the constant

value  (Lemma . of []). For i /∈ {i, i + , . . . , i – }, these crude vectors will be eventu-
ally copied to Xi , where they become inputs of the Boolean circuit B, which eventually
outputs a code for  to Xi for each crude input. When given an input that is a coding
vector, B outputs an identical copy of its input. The vector sXi becomes one of the inputs
of the Boolean circuit B, which eventually outputs a code for v + mod(n –w) to Xi if its
input from Xi codes the integer v and the other input that it receives from B codes an
integer w. With probability arbitrarily close to , the Boolean input-output system B will
deliver the correct sequence of inputs to B so that () of property (P) holds. The set Q
indexes those Xi, for which the output of B may not be coding due to the time lag in the
calculations of B, B, B.

Proof of Theorem  We need to turn the networks constructed in [] into strictly bi-
quadratic ones. Themain problem is that in the original construction each vector sXi (t+)
was supposed to be a copy of sXi+ (t+) as long as i /∈ {i, i +, . . . , i –}. This can be easily
accomplished by a Boolean circuit Bc of depth  with input variables Xi+ and Xi as output
variables that uses only COPY functions, but there is no analogous strictly bi-quadratic
cooperative Boolean circuit. Fortunately, as can be seen from the description above, it is
not actually necessary that Bc outputs identical copies of all possible inputs; it suffices
that it does so whenever its input sXi+ is a coding vector. Since we may wlog assume that
|I| is even, it even suffices to require that sXi (t + ) = sXi+ (t) holds for all relevant indices
i whenever sXi+ (t) is coding. It turns out that there are strictly bi-quadratic cooperative
Boolean circuits that work in this way for sets of coding vectors that satisfy property (P)
as long as c < /.
We will also need that Bc outputs crude vectors for crude inputs, so that B will receive

the kind of inputs that are expected for random initial conditions. However, it follows
immediately from the definition of crudeness that this will be automatically satisfied if Bc

is cooperative, strictly quadratic (thus uses only binary AND and OR gates), and such that
all inputs for variables in xji reside in xji+, as will be the case in our constructions.
Let us now present two coding schemes that allow for implementation of this idea. The

first one will only be used in the proofs of some of our other theorems, but it is easier to
understand, and we want to describe it here as an illustration. Let Xi, Xi+ be consecutively
enumerated by κ(i,λ), κ(i+,λ), where λ ∈ [m]. Let Ck be the set of Boolean vectors �s ∈ k
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such that sκ– ≤ sκ for all κ ∈ [k/] and |�s| = k/, and let Ci be the corresponding sets of
codes in the sense of (Pa). Define Bc,r = Bc,r(Xi+,Xi) as the Boolean circuit of depth  with
input Xi+, output Xi, and regulatory functions defined by

sκ(i,λ–)(t + ) = sκ(i+,λ–)(t)∧ sκ(i+,λ)(t) for λ ∈ [m/];

sκ(i,λ)(t + ) = sκ(i+,λ–)(t)∨ sκ(i+,λ)(t) for λ ∈ [m/].
()

Now it is clear from () that the Boolean circuit Bc,r is strictly bi-quadratic and, as long
as the sets xji and xji+ are consecutive intervals in Xi, Xi+, it will copy �s ∈ Ci+ to its coun-
terpart in Ci. Moreover, it will map crude vectors to crude ones. The circuit Bc,r has the
additional useful property of mapping each �s to f (�s) such that |�s| = |f (�s)|, regardless of
whether or not �s is coding. This will allow us to retain property (P). For this reason, we
will call the coding scheme that we just defined robust coding.

Lemma  Suppose  < c <
√
. Then there exist a rational ε = ε(c) >  and a positive even

integer k = k(c) such that the pair (k, ε) is c-friendly under robust coding.

Proof Let ε be rational such that k
+ε

is an integer, and

log(c) <


 + ε
< log(

√
). ()

Such ε exists by our assumption on c, and () implies ().
Fix an even integer k. We can think about the vectors �s ∈ Ck as outcomes of the exper-

iment of randomly and independently drawing (sκ– ≤ sκ ) from the set {(), (), ()}
with the uniform distribution. Then |�s| is a random variable with mean E(�s) = k/, and the
space of all possible outcomes has size k/. The Central Limit Theorem implies that the
probability of obtaining a vector in Ck , that is, an outcome with |�s| = k/, scales like k–..
Thus by () we have for some constant ρ >  and for sufficiently large k,

|Ck| ≥ ρk/–. log(k) > k/(+ε), ()

and () follows. �

The coding scheme that we will actually use in the proof of Theorem  is more compli-
cated, and we will refer to it as subtle coding. The relevant sets Ck and the corresponding
Boolean circuit Bc,s(Xi+,Xi) were implicitly described in detail in Section . of [] and
Section  of [], and we refer the reader to these publications for details. Here we only
want to record the key properties that will be used in our arguments.

Lemma  (a) Suppose  < c < /. Then there exist a rational ε = ε(c) >  and a positive
even integer k = k(c) such that the pair (k, ε) is c-friendly under subtle coding.
(b) There exists a strictly bi-quadratic Boolean circuit Bc,s(Xi+,Xi) of depth  such that if

sXi is a coding vector under the subtle coding scheme, then the concatenation Bc,s(Xi+,Xi) ◦
Bc,s(Xi+,Xi+) outputs an identical copy of sXi+ after two steps and writes it to the variables
in Xi.
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Proof For the proof of part (a), choose c with c < c < /. Lemma . of [] states (in
a slightly different terminology) that for sufficiently large k that are divisible by , we will
have |Ck| > ck . Now let ε be rational such that k

+ε
is an integer, and

log(c) <


 + ε
< log(c). ()

Then

|Ck| ≥ ρck > k/(+ε), ()

as required.
For the proof of part (b), we refer the reader to [] or []. �

Unfortunately, subtle coding does not preserve |�s|. Thus, in the proof of Theorem , we
will use robust coding instead. Moreover, the output vector f (�s) of Bc,s is not usually an
exact copy of �s even if �s is coding. However, applying the operation twice produces a copy
f ◦ f (�s) of �s whenever �s is a subtle code. This is sufficient for our purposes; as we have
already mentioned above, we only need sXi (t + ) to be a copy of sXi+ (t) for all relevant i
and t.
Lemmas  and  imply that instead of straight copying in the construction of [], we

can use the circuits Bc,r with robust coding for all  < p <  < c <
√
 or Bc,s with subtle

coding for all  < p <  < c < /. This will not affect the other technical arguments of
the construction in [] and give us p-c-chaotic systems. Alas, it will not give us all by itself
strictly bi-quadratic networks. We need to alter the construction in such a way that every
variable has exactly two inputs and exactly two outputs. If we use robust or subtle coding,
then this will be true for the variables in the relevant sets Xi, but not automatically for the
variables in the remaining parts of the system, in particular, for the variables in B, B, B.
We need a tool for adding redundant inputs to some variables that will not substantially
alter the long-range dynamics of the whole system. The following lemma gives us such a
tool.

Lemma  For every  < q < , there exists a Boolean system Bq of depth d = �log(– log( –
q))� with < �– log( – q)� variables that satisfies the following. Except for one variable iq
whose indegree is , the indegree of every variable is , and, except for one variable oq whose
outdegree is , the outdegree of every variable is .Moreover,with probability≥ q, the value
of oq will be  at all times t ≥ d, regardless of the initial values of all the variables in Bq,
and the trajectory of iq.

Proof Let q be as in the assumption, and let d be as in the statement of the lemma. It will
be convenient to let the variables of the system be binary sequences σ of length at most
d, where oq is the empty sequence, and iq is the zero sequence of length d. The sequences
of length d will constitute the lowest level  of the variables of the system. For σ of length
< d, we let

sσ (t + ) = sσ�(t)∨ sσ�(t). ()
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It is easy to see that the total number of variables on levels >  is d – . Therefore, there
exists a bijection ϕ between all the variables on level  except for iq, and the variables on
higher levels. For variables σ on level  that are distinct from iq, we define

sσ (t + ) = sσ (t)∨ sϕ(σ )(t), ()

and we let siq (t + ) = siq (t).
Thus the variable oq will take the value  at time d only if sσ () =  for all σ of length d,

and the self-input in () assures that the same applies to all t ≥ d, regardless of the tra-
jectory of the variable iq. Now the lemma follows from our choice of d. �

Observe that in bi-quadratic Boolean networks, if there exists a variable x whose outde-
gree is < , then there must exist a variable y whose indegree is < . Therefore, we can add
to our system a copy of Bq by defining new regulatory functions that connect x to iq and oq
to y using the conjunction regulatory functions, and keep repeating this procedure until
there are no variables with outdegree < . If there are no such variables left, then, clearly,
there are no variables with the indegree <  either. Moreover, since with probability ≥ q
any external inputs to any of the copies of Bq will have no effect on the output of Bq, the
arguments in the proof of [] carry over to the modified system.
It remains to check that we will not add too many variables in this way, and that copies

of Bq will start producing value  at oq sufficiently fast (so they do not affect the workings
of B). The total number of variables in the Boolean input-output systems B, B, B can be
made to scale likeO((log(n)).). Unfortunately, this was not explicitly stated in this form in
[], since for the construction to work, we only needed that the total number of variables
in the set Y = [N]\X is bounded from above by a fixed constant times (log(n)) (see ()
of []). But, for B, the stronger scaling law follows from the formulation of Lemma .
of []; for B and B, it follows from the proofs of Lemmas . and . that are given in [].
For a fixed q′ =  – x < , we need to choose q <  such that with probability q′ each of

the copies of Bq will start generating the value  at their variables oq. This will be true for
q ≥ (q′)/(c log(n)). , where c >  is a constant such that |B| + |B| + |B| ≤ (c log(n)).. If we
let q =  – 

(c log(n)). x, then

q(c log(n))
. ≥  – x.

For this choice of q, by Lemma , the number of variables in each copy of Bq is at most

– log( – q) = (.)c log
(
log(n)

)
– log(x) ≤ c′ log

(
log(n)

)
for some constant c′ > , and the total number of new variables will scale like

O
((
log(n)

).
log

(
log(n)

))
,

which is in compliance with () of [].
Now themodified systemwill, with probability > q′, work exactly like the original system

for all times t > d, where d = O(log(log log(n))) is the depth of the circuit Bq. The first d
steps, where B and B may work improperly, have only the effect of slightly increasing
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the size of the set Q, but not by an order of magnitude (recall that Q was the set of those
indices i, for which the corresponding Xi was the output of B before everything started
working properly).
With the input-output system B, we need to proceed somewhat more carefully, since

it needs to work properly right from the beginning. Recall that in the construction of B

given in Section . of [], the regulatory functions at the lowest level were already strictly
quadratic. The next levels were designed to produce an ordered version �so of the output
�s� of the lowest level, with |�so| = |�s�| and all zeros in �so preceding all ones. We quoted a
construction from [], and it is not clear from the quoted result whether this part of the
system is strictly quadratic.
The number of such variables that might take only a single input does not exceed

the overall size of B, which is O((log(n))α) for every α >  by the paragraph preced-
ing Lemma . of []. Thus we can add O(log(n).) copies of the circuits Bq of depth
dq = O(log(N)) with a total of O((log(n)).) variables to give second inputs to these vari-
ables.Moreover, we can add dq levels above the lowest one and use the strictly bi-quadratic
Boolean circuit Bc,r for robust coding to produce a version of the lowest level that will pre-
serve its size and will be available for further processing by the original system once all
the variables oq that are to be used in modifying the subsequent levels have reached their
target value . This again requires adding at most O(|B| log(N)) =O((log(n)).) new vari-
ables and does not violate our restrictions on the size of the set Y of variables outside the
union of the sets Xi.
In order to get systems of size exactly N for all sufficiently large N , we may need to

add also some dummy variables (see [] for an estimate of the size of this set), but these
can simply be connected among themselves with AND gates, and they do not have any
influence on the overall dynamics.
In particular, using subtle coding together with the modifications outlined in the last

few paragraphs gives us networks that satisfy the conclusion of Theorem . �

Proof of Theorems  and  Fix  < p <  < c < , and an auxiliary constant c with c < c < .
For the proof of Theorem , we make the more stringent assumption that c < c <

√
. We

will show that as long as N is sufficiently large, there exists a p-c-chaotic and p-unstable
N-dimensional bi-quadratic cooperative Boolean network. Our strategy will be to first
choose some N < N and an N-dimensional Boolean system B = (N , f ) that is p-c-
chaotic. We can assume that B has been constructed as above and has properties (P)-
(P). For the proof of Theorem , we will assume in addition thatB is strictly bi-quadratic
and uses the robust coding scheme.Wewill construct an extensionB = (N , g) ofB so that
gj = fj for all j ∈ [N] and no variable in [N] takes input from any variable in [N]\[N]. In
the proof of Theorem , we will make an exception for variables iq of some copies of Bq

of Lemma  that will receive a second input from [N]\[N]. This provision will preserve
the property of p-c-chaos in B, in the sense that with probability > p a randomly chosen
trajectory will reach an attractor of length > cN

 . Note that this implies p-c-chaos in B as
long as cN

 ≥ cN , or, equivalently,

N

N
≥ ln c

ln c
. ()
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For a given N , let N = � ln c
ln c

N�. We will first present a construction of the extension
B of B. At the end of the proof, we will argue that for sufficiently large N , the number
of required new variables is sufficiently small so that there is enough room for them in
[N]\[N]. The regulatory functions for the variables in [N]\[N] will be chosen in such a
way that the system detects and keeps a permanent record of a proportion of > p of all
single-bit flips in the initial conditions. Having a ratio N

N ≈  again is very helpful here,
since it assures that most of these single-bit flips will occur at variables inN, and property
(P) in turn implies that we may restrict our attention to those single-bit flips that happen
at some variable j ∈ Xi for i > i. Notice that any such single-bit flip changes |sXi ()| for
some i > i. By property (P), which is preserved under robust coding, and by induction,
we will have |sXi ()| = |sXi+ (i– i – )|, which allows us to construct the extension in such
a way that the only variables in N that send input to any of the variables in [N]\[N] are
the ones in Xi+. If B is based on the original construction in [], property (P) allows
us to copy sXi+ (t) to a Boolean vector sP(t + ) whose set of variables P is contained in
[N]\[N]. For the proof of Theorem , we need to assume that B is strictly bi-quadratic
and has been constructed as in the proof of Theorem , but with robust instead of subtle
coding. Recall that in this construction each variable in Xi+ acts as a second input to
a variable iq at the lowest level of some copy of Bq. We need to change these outputs
to variables in [N]\[N] and reassign new second input variables from [N]\[N] to the
newly orphaned variables iq. As we already know, this operation is not expected to alter
the relevant dynamical properties of B.
Let u = u(p) be a fixed positive integer whose meaning will become apparent shortly.

Now we can incorporate a Boolean circuit B into B whose set of variables is contained
in [N]\[N] that takes sP as input, produces u copies of it, andwrites its output to vectors swO
for w ∈ [u] of the same dimension after d steps so that for all w ∈ [u], we have |sXi+ (t)| =
|sP(t + )| = |swO(t +  + d)|, and all zeros in |swO(t +  + d)| precede all ones in this vector.
We already know from Proposition . and the proof of Lemma . of [] that this can be
accomplished by a cooperative bi-quadratic Boolean circuit of depth d ≤ γ log(m) that
contains a total of γm log(m) variables, for some constant γ that is independent of N ,
wherem is on the order of

√
N .

We would like to create and keep a permanent record of the values of swO(t +  + d) for
all times t < |I|– i. If this can be done, then the permanent record will persist throughout
the attractor, which implies that every single-bit flip in an initial condition that happens at
some variable j ∈ Xi for i > i will move the system to a different attractor.Wewould like to
keep this record in circular data tapes of Boolean vectors (sZw

i
: i ∈ I) so that for t ≥ |I|+d

and for all w ∈ [u], we have sZw
i
(t + ) = sZw

i+
(t) and also sZw|I|– (t + ) = sZw


(t), with the tape

holding copies of swO(t +  + d) in sZw
i+t
(|I| + d) at time |I| + d for all  ≤ t ≤ |I|.

There are several technical problems with implementing this idea in its original form.
First of all, in order to not use too many new variables, we will actually record only a part
of the values of variables o, . . . ,om from O. For the time being, let us just say that we will
choose some j, J with  < j <m/ < J <m, and keep track of variables oj, . . . ,oJ only. The
values of j, J will be selected in such a way that the difference between s() and its single-
bit flip s∗() will be visible with sufficiently high probability in the window oj,oj+, . . . ,oJ
after placing all zeros before all ones in s(), s∗().
In order to record anything in a circular data tape, for some i∗, the variables in Zw

i∗ need
to take a second input from variables in O in addition to the input from Zw

i∗+ that will be
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responsible for the copying of the tape. For our accounting to work as specified above, we
need i∗ = i + , but it will be more convenient to write i∗.
This leads to our first technical problem:we need tomake sure that the relevant data that

have been transferred (regardless of how it is done) fromO to Zw
i∗ at times d < t ≤ d + |I|

are not erased at subsequent times. Let us for the time being assume for simplicity that u =
, which allows us to drop confusing superscripts w; the solution to the first problem has
a straightforward generalization to u ≥ . Enumerate the variables in Zi∗ as zj, zj+, . . . , zJ ,
the variables in Zi∗+ as z+j , z+j+, . . . , z+J and define:

szμ (t + ) = sz+μ (t)∨ soμ (t) for j ≤ μ ≤ m/,

szμ (t + ) = sz+μ (t)∧ soμ (t) form/ < μ ≤ J .
()

This definition assures that if |sP| =m/, which is true for all times t ≥ |I|, then the input
from the variables in O has no effect whatsoever, since in this case the first half of the
variables of O evaluate to  and the second half to . In particular, by property (Pa) this
will be the case, with probability > p, whenever O records the size of a vector sXi (k|I|) for
some k >  with i > i.
Unfortunately, this definition does not guarantee that exact copies of sO will be trans-

ferred to Zi∗. Let us focus on the case where j ≤ μ ≤ m/; the argument for the case of
μ > m/ is dual. Each value soμ (t) =  gets faithfully copied to szμ (t + ) = , but the up-
dating as specified by () will also introduce some random occurrences of szμ (t + ) = 
while soμ (t) =  due to sz+μ (t) = . But consider a situation where the sz+μ (t) are random and
we want to use () to record to the data tape the sizes of some sXi (), s∗Xi () for i > i,
as coded by the Boolean variables soμ (t) that differ by a single-bit flip and are such that
j ≤ |sXi ()| = μ < μ +  = |s∗Xi ()| ≤ J .
However, as long as sz+μ (t) = , a  will be copied to szμ (t +) only for the trajectory of the

corresponding �s∗(), but not for the trajectory of �s(). If this happens, the two trajectories
will reach different attractors, and we will say that our recording tape successfully distin-
guishes these two initial conditions. In the proof of Theorem , we can assume that sz+μ (t)
takes the value with probability ., which therefore is the probability that a given record-
ing tape will successfully distinguish the two initial conditions as specified. These events
are independent for the u data tapes, thus by choosing u large enough so that .u <  – p,
we can assure that the probability of success in at least one recording tape is > p, which is
all we need for p-instability.
The third problem we need to take care of is to choose the values of j, J . We need that

with probability > p, the inequalities

j ≤ ∣∣swO(t +  + d)
∣∣ ≤ J ()

will hold as long as swO(t +  + d) records the size of some sXi (), so that a random single-
bit flip in this vector can alter the permanent record. By the Central Limit Theorem and
Chebysheff’s inequality, this can be achieved, for sufficiently large N and hence m, if j ≤
m/ – γ

√
m and J ≥ m/ + γ

√
m for some constant γ that depends on p, but not onm.

Since u does not depend onN andm =O(
√
N), using such j, J , we will be able to construct

recording tapes that altogether use only on the order of u
√
m|I| or N/

 variables. For the
proof of Theorem , we will also need O(N/

 ) copies of the Boolean input-output system
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Bq, where q can be chosen as  – 
N
. This will add another O(N/

 log(N)) variables. By
connecting these as in the proof of Theorem , we achieve a strictly bi-quadratic network.
The modification of all monic regulatory functions of the circuit B and the data record
tapes may result in missing a few single-bit flips in sXi () for i < i < i + d that B detects,
where d is the depth of Bq, but this is no problem since d =O(log(N)) is very small relative
to |I|. In either case, the total numberM of variables inB does not exceedN , provided that
N is sufficiently large. IfM <N , we add to B some dummy variables and connect them as
in the proof of Theorem . These dummy variables will not destroy p-instability of B. �

Proof of Theorems  and  For the proof of Theorem , fix  < α < .,  < p <  – α <
 < c < –α ; for the proof of Theorem , fix  < p <  < c <

√
. We will show that as long

as N is sufficiently large, there exists a p-c-chaotic N-dimensional (strictly) bi-quadratic
cooperative Boolean network with the required decoherence property. Similarly to the
previous proof, our strategy will be to first choose some N < N and an N-dimensional
Boolean system B = (N , f ) that is constructed as in the previous proof and satisfies the
conclusion of Theorem  (in the case of the proof of Theorem ) or Theorem  (in the
case of the proof of Theorem ) for some auxiliary constants p and c. For Theorem 
we will choose p = p

–α and c = c/(–α), and for Theorem  we will choose any p with
p < p <  and c with c < c <

√
.

In the proof of Theorem , we will construct an extension B = (N , g) of B so that gj = fj
for all j ∈ [N] and no variable in [N] takes input from any variable in [N]\[N]. This latter
provision will preserve the property of p-c-chaos in B in the sense that with probability
> p a randomly chosen trajectory will reach an attractor of length > cN . Moreover, p-
instability of B will be preserved in the sense that a proportion of > p of single-bit flips
in the initial conditions that occur at variables in [N] will result in trajectories that reach
different attractors. However, in contrast to the proof of Theorem , we will no longer aim
for making the ratio N

N arbitrarily close to ; instead, we will choose N = �( – α)N�,
which gives

N

N
≈  – α. ()

This has two important consequences that are reflected in the statement of Theorem .
First of all, c-chaos in B will guarantee at most c–α -chaos in B, which is the same as c-
chaos by our choice of c. Second, the proportion of single-bit flips in the initial conditions
that occur in variables in N is at most  – α. Thus p-instability in B translates at most
into ( – α)p-instability in B, that is, p-instability.
In the proof of Theorem , we will need to alter some regulatory functions in B for

the variables iq of some copies of Bq, as we did in the proof of Theorem . By the same
argument as in the previous proof, this is not expected to alter the essential features of
the dynamics of B. We will choose N = �max{ ln c

ln c
N , p

p
N}�, which ensures, by the same

argument as in the proofs of Theorems  and , that B will be p-c-chaotic and p-unstable.
Thus, in both constructions, a random single-bit flip in a randomly chosen initial con-

dition will leave a permanent record in at least one of the data record tapes of B. Let Zw
i

be as in the proof of Theorems  and . Let zwμ denote the μth element of Zw
i . By the con-

struction in the proof of Theorems  and  and our choice of the ratios N/N , p/p, we
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can conclude that if �s(), �s∗() are two randomly chosen initial conditions of B, then with
probability > p the following will hold:

∃t,μ ∈ [J – j + ],w ∈ [u],∀k > , szwμ
(
t + k|I|) �= s∗zwμ

(
t + k|I|), ()

where si(t), s∗i (t) denote the values of variable i at time t in the trajectories of �s(), �s∗(),
respectively.
The next step in the construction is to add a Boolean input-output system B to B that

copies the values of the variables zwμ at selected times to a single variable k∗ so that ()
will imply

∀t,∃t+ > t, sk∗
(
t+

) �= s∗k∗
(
t+

)
. ()

Let (J – j + )u < T < |I| be a prime number. Since (J – j + )u = O(
√|I|), by the Prime

Number Theorem, such T exists for sufficiently large N . Let ν : ([J]\[j – ])× [u] → [(J –
j + )u] be a bijection. For each μ ∈ [J – j + ] and w ∈ [u], define a vector �rμ,w ∈ R of
length |R| = (J – j + )u that takes the value  only on its ν(μ,w)th coordinate rν(μ,w) and
takes the value  otherwise. Lemma . of [] implies the existence of a Boolean input-
output system B with output vector �r ∈ R such that with probability arbitrarily close
to ,

∀(μ,w) ∈ (
[J]\[j – ]

) × [u],∃tμ,w,∀k ∈N, �r(tμ,w + kT) = �rμ,w. ()

Moreover, B requires adding only O((J – j + )uT log((J – j + )uT)) = O(N/ log(N))
variables.
Create a new set of variables R∗ with |R∗| = |R| and define regulatory functions for the

Boolean vector r∗ with this domain by

r∗ν(μ,w)(t + ) = rν(μ,w) ∧ szwμ (t). ()

Make k∗ the output of a Boolean circuit B that calculates the conjunction of all the
variables in R∗. Since T is relatively prime with |I|(J – j+)u, this guarantees that the value
of each variable in the union of all data tapes will be copied infinitely often to k∗ and gives
the implication () ⇒ ().
Finally, for the proof of Theorem , we add another Boolean circuit B to B that is

composed of variables in [N]\[N] and copies the value of its single input variable k∗ to
�αN� distinct output variables after d time steps. By Proposition . of [], there exists
a cooperative bi-quadratic Boolean circuit that accomplishes this task and uses at most
�αN� variables. Thus the addition of B does not allow us to achieve a higher ratio N

N
than in (). But since B is the most expensive part of the construction in terms of the
number of necessary additional variables, the ratio can be arbitrarily close to  – α.
Let us recapitulate how this construction ensures p-α-decoherence. A random single-bit

flip �s∗() in a randomly chosen initial condition �s() happens with probability≈ –α at a
variable in [N]. By the proof of Theorem , with probability that can be chosen arbitrarily
close to , it will leave a permanent record in at least one of the data record tapes in N.
This recordwill result in infinitelymany times t+ where the trajectories differ at variable k∗,
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as in (). This difference in turn will be amplified by B to �αN� distinct variables, and
p-α-decoherence follows.
For the proof of Theorem , B will copy k∗ only to N

� log(N) distinct output variables,
where � will be determined shortly. This will ensure p- N

� log(N) -decoherence as in the
previous paragraph and will require adding at most N

� log(N) variables. The resulting sys-
tem will not yet be strictly bi-quadratic; we will need to add copies of the Boolean
circuits Bq where  – q < 

N and connect their respective output variables oq by con-
junctions to variable j ∈ B ∪ B with monic regulatory functions. This requires adding
N
�

+O(N/ log(N) log(log(N))) new variables. By choosing � large enough so that N
�

�
( – α)N , we do not exceed the allotment ofN –N additional variables specified by ().
Finally, we add dummy variables if needed and connect variables that have fewer than 
outputs to variables iq of copies of Bq. The resulting system will have the properties spec-
ified in Theorem . �

6 Conclusion and future directions
In this paper and its prequel [], we studied the problem whether cooperativity, that is,
the total absence of negative interactions, precludes certain types of chaotic dynamics
in Boolean networks with synchronous updating, at least under additional assumptions
on the number of inputs and outputs per node. This is a natural question in view of the
analogous result for continuous flows, the results on Boolean networkswith asynchronous
updating that were mentioned in the introduction, and the well-known fact that Boolean
networks with few inputs per node tend to have ordered dynamics.
Chaotic dynamics of Boolean networks is characterized by very long attractors, very few

eventually frozen nodes, and high sensitivity to perturbations of initial conditions. While
these three hallmarks usually go together, the answer to our question crucially depends on
how chaos in Boolean networks is formalized, in particular, which hallmarks are deemed
necessary for a system to qualify as chaotic.
The notion of p-c-chaos formalizes genericity of very long attractors and also implies

genericity of very few eventually frozen nodes.We showed that cooperativity does not im-
pose any nontrivial bounds on this property, even in bi-quadratic Boolean networks. Sim-
ilarly, in strictly bi-quadratic networks, cooperativity does not imply additional bounds on
p-c-chaos beyond the previously known bound of c < / for c-chaos.
However, the situation changes when one considers notions of high sensitivity to per-

turbations of initial conditions. The strongest of such notions considered here, p-α-q-
decoherence, while still possible in p-c-chaotic Boolean networks in general, is outright
precluded by cooperativity. Theweakest of these three notions, p-instability, is still consis-
tent with p-c-chaos in cooperative bi-quadratic Boolean networks for all  < p <  < c < .
But if in addition it is assumed that the network is strictly bi-quadratic, a stronger bound
c <

√
 applies, and the bound is strict.

The notion of p-D-decoherence comes in many flavors, depending on the parameter D.
While it is consistent with cooperativity and p-c-chaos for all  < p <  < c <  and all
meaningful linear D in general, we were only able to construct bi-quadratic and strictly
bi-quadratic Boolean systems that satisfy this property under some additional restrictions
on p, c, and D. Since any form of p-D-decoherence implies p-instability, there must be
some restrictions, at least under the additional assumption that the system is strictly bi-
quadratic. We conjecture that there are some restrictions for bi-quadratic systems as well.
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However, it remains an open problem to find the optimal upper bounds on the amount of
p-c-chaos and p-D-decoherence that can simultaneously occur in such networks.
Thus cooperativity, by itself and in conjunction with suitable restrictions on the inter-

actions of the variables, does impose restrictions on the extent to which certain combina-
tions of chaos-like properties are possible in a Boolean network. These results can be inter-
preted as counterparts of the corresponding theorem for flows. Our work shows that valid
results of this kind require very specific conceptualization of certain hallmarks of chaotic
dynamics.We believe that these subtleties need to be well understood if researchers are to
make valid inferences from dynamical properties of a Boolean approximation to an ODE
model of a natural system about the ODE dynamics or the behavior of the natural system
itself.
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