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Abstract
In this paper, the mean value formula depends on the Bessel-generalized shift
operator corresponding to the solutions of the boundary value problem related to the
multidimensional Bessel operator are studied. In addition, Riesz transforms RB related
to the multidimensional Bessel operators are studied. Since a Bessel-generalized shift
operator is a translation operator corresponding to the multidimensional Bessel
operator, we construct a family of RB by using a Bessel-generalized shift operator.
Finally, we analyze weighted inequalities involving RB.
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1 Introduction
Singular integral operators are playing an important role in harmonic analysis, the theory
of functions and partial differential equations. Singular integrals are associated with the
�Bn Laplace-Bessel differential operator, which is known as an important operator in anal-
ysis and its applications; these have been the research areas of many mathematicians such
as Muckenhoupt and Stein [, ], Kipriyanov and Klyuchantsev [, ], Aliev and Gadjiev
[], Guliev [], Gadjiev. Also, singular integral operators related to the generalized shift
operator were studied by [] and [–] and others.
The Bessel-generalized shift operator is one of the most important generalized shift

operator on the half line R+, [, ]. The Bessel-generalized translation is used, while
studying various problems connected with Bessel operators []. Fourier-Bessel harmonic
analysis, i.e. the part of harmonic analysis addressing various problems on Bessel (Hankel)
integral transforms, is closely connected with Bessel-generalized shift operator.
It is well known that the fundamental solutions of the classical stationary of mathemati-

cal physics (the harmonic equation, polyharmonic equation, and Helmholtz equation) are
radial functions. Therefore, it is natural to seek these solutions as solutions of ordinary dif-
ferential equations. However, since the spherical coordinate transformation transforms an
equation with the Laplace operator in R

n into an ordinary differential equation with the
singular Bessel differential operator, interest arose (probably, a long time ago) in study-
ing methods for constructing the fundamental solutions of singular ordinary differential
equations with the Bessel operator in place of the second derivative. In this connection, it
might be very useful to prove a theorem on the fundamental solution of an ordinary dif-
ferential equation involving the Bessel operator with constant coefficients, similar to the
well-known theorem on the fundamental solution of an ordinary differential equation.
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The result obtained on the fundamental solution of an ordinary differential operator
with the Bessel operator has allowed us to analyze equations with the singular differential
operator �Bγ =

∑n
i= Bγi +

∑N
i=n+

∂

∂xi
where the different indices γi act with respect to

part of the variables and these indices may take negative values. The latter fact is essential
because the tools used in problems of this kind (the Poisson operator and generalized shift
operator of integral nature) are defined only for γi > . To find the fundamental solution
with a singularity at an arbitrary point, we use the generalized shift operator that acts with
respect to the radial variable. Note also that the mixed-type generalized shift operator,
which is conventionally used in such problems, coincides with the radial shift operator on
radial functions provided that γi > . The fundamental solutions (of the B-harmonic and
B-polyharmonic equations and of the singular Helmholtz equation) found coincide with
the known solutions when γi >  and with the classical solutions when γi = .
It is well known that harmonic functions satisfy various mean value theorems, which

may be considered as generalizations of the Gauss mean value theorem. There have been
a number of studies on mean value theorems. Cheng [] obtained a converse for a dif-
ferent mean value expression. Nicolesco [] gave an expression in terms of certain it-
erated means and showed that a converse was also true. The mean value theorems for
harmonic functions have also been studied by Pizetti [], Picone [], Ekincioglu [], and
Kipriyanova [] and [].
The solutions of the boundary value problems for Laplace operator are related to the or-

dinary shift operator. Also, the solutions of boundary value problems for Laplace-Bessel
and Bessel operators are corresponding to the generalized shift operator and Bessel-
generalized shift operator, respectively.
In this paper, singular integral operators generated by a Bessel-generalized shift operator

are studied. In addition, the mean value formulas related to the Bessel-generalized shift
operator are given.
Riesz-Bessel singular integral operators related to generalized shift operator for Laplace-

Bessel operator were showed in [] and []. The authors used the mean value theo-
rem related to the generalized shift operator. The mean value formula for the equa-
tions �Bxn u =  and �Bxn u + λu =  were obtained by [] and [], respectively, where
�Bxn =

∑n
i=

∂

∂xi
+ γn

xn
∂

∂xn .
In this study, we introduce the mean value formula for the equation Bu =  and the high

order Riesz-Bessel transform associated with the Bessel-generalized shift operator for the
B Bessel differential operator

B =
n∑
i=

Bi, Bi =
∂

∂xi
+
γi
xi

∂

∂xi
,γ > , . . . ,γn > .

Let Rn be n-dimensional Euclidean space and x = (x, . . . ,xn), ξ = (ξ, . . . , ξn) be vectors
in R

n, then x · ξ = xξ + · · · + xnξn, |x| = (x · x)/. Denote Rn
+ = {x ∈ R

n : x > , . . . ,xn > },
Sn+ = {x ∈ R

n
+ : |x| = }, γ = (γ, . . . ,γn), γ > , . . . ,γn > , |γ | = γ + · · · + γn and dμγ (x) =∏n

i= x
γi
i dx. We shall denote by Lp,γ (Rn,dμγ (x))-spaces (the Lebesgue space with respect

to the measure μγ ), the set of all measurable functions f on R
n
+ such that the norm

‖f ‖Lp,γ ≡ ‖f ‖p,γ =
(∫

R
n
+

∣∣f (x)∣∣p dμγ (x)
)/p

, ≤ p < ∞,
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is finite. We determine the Bessel-generalized translation Tyϕ(x) = u(x), x, y ∈ R
n
+ of a

function ϕ(x) ∈ C()(Rn
+) as the solution to the following initial value problem:

Bxu(x, y) = Byu(x, y),
u(x, ) = ϕ(x), uy(x, ) = ,

}
(.)

where B is themultidimensional Bessel differential operator []. The solution of the initial
value problem (.) exists, is unique, and can be written explicitly as

Tyϕ(x) := cγ
∫ π


· · ·

∫ π


ϕ
(
(x, y)α , . . . , (xn, yn)αn

)

×
( n∏

i=

sinγi– αi

)
dα · · ·dαn, (.)

where cγ =
∏n

i= 
(γi +

 )[
(


 )
(γi)]

– and (xi, yi)αi =
√
xi + yi – xiyi cosαi,  ≤ i ≤ n. By

(.), the operator Ty can be extended to all functions Lp,γ (Rn
+). The operator Ty satisfying

(.) may be regarded as a Bessel-generalized shift operator Bessel-generalized shift oper-
ator (see [, ] and []). We remark that this shift operator is closely connected with the
Bessel differential operator. The convolution operator determined by Ty is as follows:

(f ∗ ϕ)(x) =
∫
R
n
+

f (y)Tyϕ(x)dμγ (y). (.)

The convolution (.) is known as a B-convolution. We note some properties for the B-
convolution and the Bessel-generalized shift operator:
• If f (x),ϕ(x) ∈ C(Rn

+), ϕ(x) is a bounded function, x > , and

∫ ∞



∣∣f (x)∣∣dμγ (x) <∞,

then
∫
R
n
+

Tyf (x)ϕ(y)dμγ (y) =
∫
R
n
+

f (y)Tyϕ(x)dμγ (y).

• From the above result, we have the following equality for ϕ(x) = :

∫
R
n
+

Tyf (x)dμγ (y) =
∫
R
n
+

f (y)dμγ (y).

• (f ∗ ϕ)(x) = (ϕ ∗ f )(x).
The Fourier-Bessel transform is defined and invertible on functions ϕ ∈ S(Rn

+),

[FBϕ](y) = cγ
∫
R+n

ϕ(x)
n∏
i=

jγi– 

(xiyi)dμγ (x),

[
F–
B ϕ

]
(x) =

∫
R+n

ϕ(y)
n∏
i=

jγi– 

(xiyi)dμγ (y),

http://www.journalofinequalitiesandapplications.com/content/2014/1/148
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where cγ =
∏n

i=[γi– 
 
(γi+ 

 )]
– and jγi– 


is the normalized Bessel function related to the

Bessel function of the first kind by the formula jγ (r) = γ 
(γ + )Jγ (r)r–γ []. However,
the following equality for a Fourier-Bessel transformation is true:

FB(f ∗ ϕ)(x) = FBf (x)FBϕ(x)

(see [–]).

2 The high order Riesz-Bessel transforms RB associated with
Bessel-generalized shift operator

In this section, we consider a Bessel-generalized shift operator related to the multidimen-
sional Bessel differential operator. Then we give the Fourier-Bessel transformation of a
homogeneous polynomial which obeys the Bessel equations. Finally, we define the high
order Riesz-Bessel transforms related to Bessel-generalized shift operator and so we show
that high order Riesz-Bessel transforms obey the condition of classical Riesz transforms,
that is, these operators extend to high order Riesz-Bessel transforms [].
It follows from the general theory of singular integrals that Riesz transforms are bounded

on Lp,γ (Rn,dμγ (x)) for all  < p < ∞. In this paper we extend this result to the context
of Bessel theory where a similar operator is already defined. It has been noted that the
difficulty arises in the application of the classical Lp-theory of Calderon-Zygmund, since
Riesz transforms are singular integral operators. In this paper we describe how this theory
can be adapted in a Bessel setting and give an Lp,γ -result for high order Riesz transforms
for all  < p <∞.
We have �(y) = Pk(y)|y|–k , K (y) = �(y)|x|–n–|γ |, the Pk range over the homogeneous

harmonic polynomials the latter arise in special case k = . Those for k > , we call the
high order Riesz-Bessel transformwhere we refer to k as the degree of the high order Riesz
Bessel transform []. They can also be characterized by their invariance properties.
Let Pk be homogeneous polynomial of degree k in R

n
+. We shall say that P is elliptic if

P(x) vanishes only at the origin. For any polynomial P we consider also its corresponding
differential polynomial. Thus if P(x) =

∑
aαxα we write P( ∂

∂x ) =
∑

aα( ∂
∂x )

α , where ( ∂
∂x )

α =
( ∂
∂x

)α · · · ( ∂
∂xn )

αn and with the monomials xα = xα
 · · ·xαn

n (see []).

Theorem. Suppose that Pk(x) is a homogeneous polynomial of degree k and satisfies for
Bessel operator B[Pk(x)] =  then we have

FB
[
Pk(x)e–|x|](y) = –(|γ |+k+ n

 )ikPk(y)e
–|y|
 .

Lemma . Let θ = (θ, θ, . . . , θn). Suppose that

∫
Sn+
f (θ )dμγ (θ )dS = 

and ϕ is of Schwartz class S(Rn
+) then we have the identity

lim
ε→

∫
Rn

f ( x
|x| )

|x|n+|γ |–ε
ϕ(x)dμγ (x) = lim

ε→

∫
|x|>ε

f ( x
|x| )

|x|n+|γ | ϕ(x)dμγ (x).
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Proof The proof follows immediately from the representation

∫
R
n
+

f ( x
|x| )

|x|n+|γ |–ε
ϕ(x)dμγ (x) =

∫
|x|≤

f ( x
|x| )

|x|n+|γ |–ε

[
ϕ(x) – ϕ()

]
dμγ (x)

+
∫

|x|>

f ( x
|x| )

|x|n+|γ |–ε
ϕ(x)dμγ (x). �

The mean value theorem for multidimensional Bessel differential operators is very con-
venient for obtaining multidimensional singular integral operators generated by a Bessel-
generalized shift operator. Therefore, we studied the mean value formula related to the
Bessel-generalized shift operator for the solutions of the boundary value problem for the
multidimensional Bessel operator Bu = .
The Bessel-generalized shift operator is one of the most important generalized shift op-

erator on the half line R+ = [,+∞) [–]. The Bessel-generalized translation is used
while studying various problems connected with Bessel operators. Fourier-Bessel har-
monic analysis, i.e. the part of harmonic analysis addressing various problems on Bessel
(Hankel) integral transforms, is closely connected with the Bessel-generalized shift oper-
ator.

3 Themean value formula
In this section, we determine the mean value formula for the Bessel-generalized shift op-
erator. LetRn be an n-dimensional Euclidian space and x = (x,x, . . . ,xn), ξ = (ξ, ξ, . . . , ξn)
be vectors in R

n. Then x · ξ = xξ + · · · + xnξn. Denote Rn
+ = {x ∈R

n : xi > ,  ≤ i≤ n} and
Sn–+ = {x ∈ R

n
+ : |x| = }, |γ | = γ + · · ·+γn.We assume thatD+ ⊂R

n
+ and�+ is its boundary.

In this paper, we are mainly concerned with the mean value theorem. Now, we relate this
concept in the following theorem.

Theorem . Let Sn–+ be a unit sphere centered at the origin, contained in R
n
+ and u be an

even regular solution with respect to x, . . . ,xn of Bu = . Then the following formula holds:

∫
Sn–+

u(rθ, . . . , rθn)
n∏
i=

θ
γi
i dS =

∏n
i= 
(γi +


 )

n–
(|γ | + n
 )
u(). (.)

Let Ty be the multidimensional Bessel-generalized shift operator and u be an even regular
solution of Bu =  at any interior point of the region D+ ⊆ R

n
+. Also, the following formula

is valid:

∫
Sn–+

Tyu(rθ, rθ, . . . , rθn)
n∏
i=

θ
γi
i dS =

∏n
i= 
(γi +


 )

n–
(|γ | + n
 )
u(y). (.)

Proof We assume that the continuity of u and v in the closed region �+ ∪D+, continuity
of the first and second derivatives of u and v in D+, together with continuity of the first
derivatives of u in�+ ∪D+ and the second derivatives of u inD+. In addition, the existence
of the integrals over D+ are assumed in Green’s formula. The most important tool for the
potential theory is provided by this formula in n-dimensional bounded region D+ with
volume element dg = dx · · ·dxn and its boundary �+, which we assume to be piecewise

http://www.journalofinequalitiesandapplications.com/content/2014/1/148
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smooth; the two functions u and v are related by Green’s formula,

∫
�+

(
u

∂v
∂n

– v
∂u
∂n

) n∏
i=

xγii d� =
∫ ∫

D+
[uBv – vBu]

n∏
i=

xγii dg. (.)

Let P′ = (, . . . , ) be a boundary point of �+. We set

v =
[(
n + |γ | – 

)
rn+|γ |–]– +w(r)

such that r = x +x + · · ·+xn andw ∈ C(D+) denotes the set of twice continuously differ-
entiable functions on D+, also an even function with respect to all xi-variables. We apply
formula (.) to the region D+ \D+

ε ⊂D+, where D+
ε is an upper half sphere centered at P′

of radius ε. Letting ε →  and considering [(n + |γ | – )rn+|γ |–]– for the fundamental
solution of B, we deduce that

∫ ∫
D+\D+

ε

[uBv – vBu]
n∏
i=

xγii dx

=
∫

�

(
u

∂v
∂n

– v
∂u
∂n

) n∏
i=

xγii d� –
∫

�ε

(
u

∂v
∂n

– v
∂u
∂n

) n∏
i=

xγii d�. (.)

Hence, let us write the function v in (.), then we have

∫ ∫
D+
[uBv – vBu]

n∏
i=

xγii dx –
∫ ∫

D+
ε

[uBw –wBu]
n∏
i=

xγii dx

–
∫ ∫

D+
ε

[(
n + |γ | – 

)
rn+|γ |–]–Bu n∏

i=

xγii dx

=
∫

�

(
u

∂v
∂n

– v
∂u
∂n

) n∏
i=

xγii d� +
∫

�ε

u


rn+|γ |–

n∏
i=

xγii d�

–
∫

�ε

(
u

∂w
∂n

–w
∂u
∂n

) n∏
i=

xγii d�

–
∫

�ε

[(
n + |γ | – 

)
rn+|γ |–]– ∂u

∂n

n∏
i=

xγii d� (.)

and

∫ ∫
D+
[uBv – vBu]

n∏
i=

xγii dg

=
∫

�

(
u

∂v
∂n

– v
∂u
∂n

) n∏
i=

xγii d�

+
[(
n + |γ | – 

)
rn+|γ |–]–∫ ∫

D+
ε

Bu
n∏
i=

xγii dg

–
[(
n + |γ | – 

)
rn+|γ |–]–∫

�ε

∂u
∂n

n∏
i=

xγii d� +
∫

�ε

u


rn+|γ |–

n∏
i=

xγii d�.

http://www.journalofinequalitiesandapplications.com/content/2014/1/148
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Therefore, we get

∫ ∫
D+
[uBv – vBu]

n∏
i=

xγii dg =
∫

�

(
u

∂v
∂n

– v
∂u
∂n

) n∏
i=

xγii d�

+
∫

�ε

u


rn+|γ |–

n∏
i=

xγii d�.

Considering Bv = Bw, consequently, we have

∫ ∫
D+
[uBv – vBu]

n∏
i=

xγii dg =
∏n

i= 
(γi +

 )

n–
(|γ | + n
 )
u()

+
∫

�

(
u

∂v
∂n

– v
∂u
∂n

) n∏
i=

xγii d�. (.)

Here,

∫
�ε


rn+|γ |–

n∏
i=

xγii d� =
∏n

i= 
(γi +

 )

n–
(|γ | + n
 )

=m(�ε)

and

lim
ε→

[∫
�ε

u


rn+|γ |–

n∏
i=

xγii d�

]
=m(�ε)u().

Let K+
R be a half sphere of radius R centered at P′ contained in D+ and W+

R be the surface
of K+

R . Suppose that

v =
(
n + |γ | – 

)–[r–(n+|γ |–) – R–(n+|γ |–)]. (.)

Under our assumptions, we can rewrite the equality (.) as

∫
K+
R

{
uB

(
n + |γ | – 

)–[r–(n+|γ |–) – R–(n+|γ |–)] – vBu
} n∏

i=

xγii dg

=
∫
W+

R

(
u

∂v
∂n

– v
∂u
∂n

) n∏
i=

xγii dw +
∏n

i= 
(γi +

 )

n–
(|γ | + n
 )
u().

Since R is constant and [(n + |γ |– )rn+|γ |–]– for the fundamental solution of B, hence
we have

–
∫
K+
R

vBu
n∏
i=

xγii dg =
∏n

i= 
(γi +

 )

n–
(|γ | + n
 )
u()

+
∫
W+

R

{[
u

∂(n + |γ | – )–

∂n
–

(
n + |γ | – 

)–]

× [
r–(n+|γ |–) – R–(n+|γ |–)]∂u

∂n

} n∏
i=

xγii dw

http://www.journalofinequalitiesandapplications.com/content/2014/1/148


Ekincioglu et al. Journal of Inequalities and Applications 2014, 2014:148 Page 8 of 18
http://www.journalofinequalitiesandapplications.com/content/2014/1/148

=
∏n

i= 
(γi +

 )

n–
(|γ | + n
 )
u()

+
∫
W+

R

u
∂(n + |γ | – )–r–(n+|γ |–)

∂n

n∏
i=

xγii dw

=
∏n

i= 
(γi +

 )

n–
(|γ | + n
 )
u() –


Rn+|γ |–

∫
W+

R

u
n∏
i=

xγii dw

and

n–
(|γ | + n
 )∏n

i= 
(γi +

 )Rn+|γ |–

∫
W+

R

u(x, . . . ,xn)
n∏
i=

xγii dw

= u() +
n–
(|γ | + n

 )∏n
i= 
(γi +


 )

∫
K+
R

vBu
n∏
i=

xγii dg. (.)

Choose the function v such that

v = c
n–
(|γ | + n

 )∏n
i= 
(γi +


 )

[(
n + |γ | – 

)
rn+|γ |–]– +w(r), (.)

where w(r) ∈ C()(K+
R ), also an even function with respect to all variables and  < r ≤ R.

Then, under the initial conditions

v|W+
R
=

∂v
∂r

∣∣∣
W+

R
= , (.)

we obtain

∫
K+
R

[uBv – vBu]
n∏
i=

xγii dg =
∫
W+

R

(
u

∂v
∂n

– v
∂u
∂n

) n∏
i=

xγii dw

=
∫
W+

R

u
∂v
∂n

n∏
i=

xγii dw

= c
n–
(|γ | + n

 )∏n
i= 
(γi +


 )

∫
W+

R

u


rn+|γ |–

n∏
i=

xγii dw

= cu(). (.)

Since (.) is true for all u, we can take an arbitrary function that is even with respect to
all variables in C()(K+

R ). Therefore, we assume that u ∈ C(m+)(K+
R ). For η ≤ m, we have

the following identity:

cBηu() =
∫
K+
R

[
BηuBv – vBη+u

] n∏
i=

xγii dg, (.)

where Bη denotes the ηth order of B, that is, Bu = Bu, Bu = BBu, etc. Now, let us define
{vη} as a sequence of functions of the type (.). Then the following differential equation

http://www.journalofinequalitiesandapplications.com/content/2014/1/148
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can be written:

Bvη+ = v′′
η+ +

(n + |γ | – )
r

v′
η+ = vη (η = , , , . . . ,m). (.)

By the initial conditions (.) and the function

v =
n–
(|γ | + n

 )∏n
i= 
(γi +


 )

(
n + |γ | – 

)–[r–(n+|γ |–) – R–(n+|γ |–)], (.)

it can be seen that the solution of (.) is as follows:

vη+ =
[(
n + |γ | – 

)
rn+|γ |–]– ∫ R

r
ρvη(ρ)

[
ρn+|γ |– – rn+|γ |–]dρ.

Under the initial conditions, for each η = , , , . . . , the solutions v, v, . . . corresponding
to the constants c, c, . . . can easily be found and obtained as follows:

cη =
(
R


)η 
(|γ | + n
 )

η!
(η + |γ | + n
 )

(η = , , , . . .).

Replacing v by vη in (.), we see that

cηBηu() =
∫
K+
R

[
BηuBvη – vηBη+u

] n∏
i=

xγii dg.

Since Bvη = vη–, we obtain

cηBηu() =
∫
K+
R

[
vη–Bηu – vηBη+u

] n∏
i=

xγii dg.

Summing all the equations corresponding to η = , , . . . ,m, then we conclude

m∑
η=

cηBηu() =
∫
K+
R

[
vBu – vmBm+u

] n∏
i=

xγii dg.

By (.) and the function v, then we get

∫
K+
R

vBu
n∏
i=

xγii dg =
m∑

η=

cηBηu() +
∫
K+
R

vmBm+u
n∏
i=

xγii dg

and

n–
(|γ | + n
 )∏n

i= 
(γi +

 )

∫
K+
R

(
n + |γ | – 

)–[r–(n+|γ |–) – R–(n+|γ |–)]Bu n∏
i=

xγii dg

=
m∑

η=

(
R


)η 
(|γ | + n
 )

η!
(η + |γ | + n
 )
Bηu() +

∫
K+
R

vmBm+u
n∏
i=

xγii dg.
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By the function v in (.), we get

n–
(|γ | + n
 )∏n

i= 
(γi +

 )

∫
K+
R

vBu
n∏
i=

xγii dg =
m∑

η=

(
R


)η 
(|γ | + n
 )

η!
(η + |γ | + n
 )
Bηu()

+
∫
K+
R

vmBm+u
n∏
i=

xγii dg (.)

and from (.)

[
cn,γRn+|γ |–]–∫

W+
R

u(x)
n∏
i=

xγii dw

= u() +
m∑

η=

(
R


)η 
(|γ | + n
 )

η!
(η + |γ | + n
 )
Bηu() +

∫
K+
R

vmBm+u
n∏
i=

xγii dg.

Thus we have

[
cn,γRn+|γ |–]–∫

W+
R

u(x)
n∏
i=

xγii dw

=
m∑

η=

(
R


)η 
(|γ | + n
 )

η!
(η + |γ | + n
 )
Bηu() +

∫
K+
R

vmBm+u
n∏
i=

xγii dg, (.)

where c = , Bu = u and cn,γ =
∏n

i= 
(γi+ 
 )

n–
(|γ |+ n
 )
. This formula is valid for all arbitrary func-

tion u ∈ K+
R ⊆D+ which is a continuously differentiable function of order (m + ). Let us

establish the equality (.) with respect to Tyu(x); we get

n–
(|γ | + n
 )∏n

i= 
(γi +

 )Rn+|γ |–

∫
W+

R

Tyu(x)
n∏
i=

xγii dw

= u(y) +
n–
(|γ | + n

 )∏n
i= 
(γi +


 )

∫
K+
R

vBTyu
n∏
i=

xγii dg. (.)

Setting v = vη and u(x) = Tyu(x) in (.), then we obtain

cBηu(y) =
∫
K+
R

[
BηTyu(x)Bv – vBη+Tyu(x)

] n∏
i=

xγii dg,

cηBηu(y) =
∫
K+
R

[
BηTyu(x)Bvη – vηBη+Tyu(x)

] n∏
i=

xγii dg.

If we sum all the equations corresponding to η = (, , . . . ,m), we conclude

m∑
η=

cηBηu(y) =
∫
K+
R

[
vBTyu – vmBm+Tyu

] n∏
i=

xγii dg.
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By (.) and the function v, we get

∫
K+
R

vBTyu(x)
n∏
i=

xγii dg =
m∑

η=

(
R


)η 
(|γ | + n
 )

η!
(η + |γ | + n
 )
Bηu(y)

+
∫
W+

R

vmBmTyu
n∏
i=

xγii dw (.)

and

n–
(|γ | + n
 )∏n

i= 
(γi +

 )Rn+|γ |–

∫
K+
R

vBTyu(x)
n∏
i=

xγii dg

=
m∑

η=

(
R


)η 
(|γ | + n
 )

η!
(η + |γ | + n
 )
Bηu(y) +

∫
K+
R

vmBm+Tyu(x)
n∏
i=

xγii dg, (.)

[
cn,γRn+|γ |–]–∫

W+
R

Tyu(x)
n∏
i=

xγii dwR

= u(y) +
m∑

η=

(
R


)η 
(|γ | + n
 )

η!
(η + |γ | + n
 )
Bηu(y)

+
∫
K+
R

vmBm+Tyu(x)
n∏
i=

xγii dg, (.)

and

[
cn,γRn+|γ |–]–∫

W+
R

Tyu(x)
n∏
i=

xγii dwR

=
m∑

η=

(
R


)η 
(|γ | + n
 )

η!
(η + |γ | + n
 )
Bηu(y) +

∫
K+
R

vmBm+Tyu(x)
n∏
i=

xγii dg, (.)

where Bu = u and c = .We note that the second integral on the right-hand side in (.)
tends to zero form → ∞; then we have the result

n–
(|γ | + n
 )∏n

i= 
(γi +

 )Rn+|γ |–

∫
S+n–

Tyu(Rθ, . . . ,Rθn)R|γ |
n∏
i=

θ
γi
i Rn– dS

=
∞∑
η=

(
R


)η 
(|γ | + n
 )

η!
(η + |γ | + n
 )
Bηu(y),

where x = Rθ and dwR = Rn– dS. Hence

∫
Sn–+

Tyu(Rθ,Rθ, . . . ,Rθn)
n∏
i=

θ
γi
i dS =

∏n
i= 
(γi +


 )

n–
(|γ | + n
 )
u(y).

Thus the proof is completed. �
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Proof of Theorem . We shall need the Fourier-Bessel transforms of the function e–α|x| .
The identity to be proved can be rewritten as

FB
(
e–α|x|)(y) = cγ

∫
R
n
+

e–α|x|
n∏
i=

jγi– 

(xiyi)dμγ (x). (.)

Let γ > –, α >  and Jγ (br) be a Bessel function. We recall that

∫ ∞


e–αrrγ+Jγ (br)dr = bγ (α)–γ–e

–b
α ,

then we get

Jγ– 

(xy) =

[
γ– 

 


(
γ +




)]–

(xy)γ–

 jγ– 


(xy),

...

Jγn– 

(xnyn) =

[
γn– 

 


(
γn +




)]–

(xnyn)γn–

 jγn– 


(xnyn),

where Jγ (r) = [γ 
(γ + )]–rγ jγ (r). We may now calculate each of the integrals in (.).
We have

I =
∫ ∞


e–αx jγ– 


(xy)xγ dx

=
∫ ∞


e–αr Jγ– 


(rs)rγr–γ+ 

 s–γ+ 
 dr

= γ– 
 


(
γ +




)
(α)–γ– 

 e–
s
α , (.)

where x = r and y = s. In a similar way, we obtain

I =
∫ ∞


e–αx jγ– 


(xy)xγ dx =

γ– 
 
(γ + 

 )

(α)γ+ 


e–
y
α , (.)

In =
∫ ∞


e–αxn jγn– 


(xnyn)xγn dxn =

γn– 
 
(γn + 

 )

(α)γn+ 


e–
yn
α . (.)

If we write the equalities (.)-(.) in (.) then we have

FB
(
e–α|x|)(y) = e–

|y|
α (α)

–|γ |–n
 .

Letting α →  and y → –y, then we get

FB
(
e–α|x|)(y) = e–|y|–n.

So, we can easily obtain the identity

FB
(
e–|x|)(y) = cγ

∫
R
n
+

n∏
i=

jγi– 

(xiyi)e–|x| dμγ (x).
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By similar arguments, we can see that

I ′ =
∫ ∞


e–x


jγ– 


(xy)xγ dx,

I ′ =
∫ ∞


e–r

′
jγ– 



(
r′s′

)
r′γ dr′.

Hence, we get

I ′ = –

(

γ +



)
e–s

′



and

I ′n =
∫ ∞


e–r

′
jγn– 



(
r′s′

)
r′γn dr′ = –e–s

′
n




(
γn +




)
.

Consequently, we deduce

FB
(
e–α|x|)(y) = –n

n∏
i=




(
γi +




)
e–|y| . (.)

When we apply the Bessel differential operator Pk(Bt , Bt , . . . , Btn– , Btn ) to both sides of
the identity (.), then we see

FB
[
Pk(x)e–|x|](t) = ∫ ∞


Pk(x)e–x


jγ– 


(xt)xγ

· · ·
∫ ∞


e–xn


jγn– 


(xntn)xγnn dx

=Q(t)–n
n∏
i=




(
γi +




)
e–|t| ,

whereQ(t) is a polynomial. The problem is therefore to show thatQ(t) = Pk(iy). Now using
the identity

jγ– 

(r) =


(γ + 
 )


(γ )
(  )

∫ π


eir cosα(sinα)γ– dα

we have

Q(t) = c
∫
R
n
+

Pk(x)e|t|–|x|
n∏
i=

jγi– 

(xiti)dμγ (x)

= c
∫
R
n
+

Pk(x)et

 +···+tn–(x+···+xn)

n∏
i=

jγi– 

(xiti)dμγ (x)

= c
∫
R
n
+

Pk(x)e|t|–|x|
(∫ π


eixt cosw sinγ–wdw

· · ·
∫ π


eixntn cosw sinγn–wdw

)
dμγ (x)
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= c
∫
R
n
+

Pk(x)dμγ (x)
∫ π


· · ·

∫ π



(
et


 –x


–ixt cosw sinγ–w

)

· · · (etn–xn–ixntn cosw sinγn–w)
dw = n

∫
R
n
+

Pk(x)
[
T–it(e–|x|)]dμγ (x),

where c = n[
∏n

i= 
(γi +

 )]

– and c =
∏n

i= n
(γi +

 )(π

n
 
(γi))–. Replacing t by –it

and by the properties of Ty, we obtain

Q(–it) = c
∫
R
n
+

T–t[Pk(x)e–|x|]dμγ (x). (.)

Taking the change of variables x → rθ for  < r < ∞ and θ ∈ Sn–
+ and applying the polar

coordinates in (.), this gives the identity

Q(–it) = c
∫ ∞


r|γ |+n–

(∫
Sn–
+

T–t[Pk(rθ )
] n∏

i=

θ
γi
i

)
e–r


dr dθ . (.)

We must calculate the integral
∫ ∞
 r|γ |+n–e–r dr. Letting r = u, then we get

∫ ∞


r|γ |+n–e–r


dr =




∫ ∞


u|γ |+ n

 –e–u dr =





(
|γ | + n



)
.

Applying Theorem . to (.), we deduce Q(–it) = Pk(t) and

FB
[
Pk(x)e–α|x|](t) = cγ

∫
R
n
+

Pk(x)e–|x|
n∏
i=

jγi– 

(xiti)dμγ (x)

= –(|γ |+ n
 )Pk(it)e–|t| .

Since Pk is homogeneous, we have the identity

FB
[
Pk(x)e–|x|](y) = –(|γ |+k+ n

 )ikPk(y)e
–|y|
 ,

and so we obtain the desired conclusion. �

We come now to what has been our main goal in this paper.

Theorem . Let Pk be homogeneous harmonic polynomial of degree k. Then we get

FB
[
p.v

Pk(x)
|x|k+n+|γ |

]
(y) = 

–n–|γ |
 ik


( k )

( k+n+|γ |

 )
Pk(y)
|y|k .

Proof Consider the identity

FB
[
f (αx)

]
(t) = α–n–|γ |FB

[
f (x)

]( t
α

)
. (.)

By (.) and Theorem ., we have

FB
[
Pk(x)e–α|x|](y) = (α)–(k+|γ |+ n

 )ike
–|y|
α Pk(y).
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Assume in addition that ϕ ∈ S(Rn
+). Then

∫
R
n
+

Pk(x)e–α|x|ϕ(x)dμγ (x) = (α)–(k+|γ |+ n
 )ik

∫
R
n
+

Pk(x)e–
|x|
α ϕ(x)dμγ (x).

We now integrate both sides of the above with respect to α havingmultiplied the equation
by a suitable power of α (αβ–, β = k + n + |γ | – ε). We obtain

∫ ∞



[∫
R
n
+

Pk(x)e–α|x|αβ–ϕ(x)dμγ (x)
]
dα =

∫ ∞



[
(α)–(k+|γ |+ n

 )ikαβ–]

×
[∫

R
n
+

Pk(x)e–
|x|
α ϕ(x)dμγ (x)

]
dα.

If we use the fact that

∫ ∞


e–u

(
u

|x|
)β– du

|x| = 
(β)|x|–β

we get

∫ ∞



[∫
R
n
+

Pk(x)e–α|x|αβ–ϕ(x)dμγ (x)
]
dα = 
(β)

∫
R
n
+

Pk(x)
|x|β ϕ(x)dμγ (x). (.)

The corresponding integration for the right side gives

∫ ∞



{
(α)–(k+|γ |+ n

 )ikαβ–
[∫

R
n
+

Pk(x)e–
|x|
α ϕ(x)dμγ (x)

]}
dα

=
∫ ∞


–(k+|γ |+ n

 )ikα–( k+ε
 +)

∫
R
n
+

[
Pk(x)e–

|x|
α ϕ(x)dμγ (x)

]
dα

= –(k+|γ |+ n
 )

∫ ∞



∫
R
n
+

α( –k–ε
 –)Pk(x)e–

|x|
α ikϕ(x)dμγ (x)dα.

Letting α → 
α
, we obtain

∫ ∞



{
(α)–(k+|γ |+ n

 )ikαβ–
[∫

R
n
+

Pk(x)e–
|x|
α ϕ(x)dμγ (x)

]}
dα

= –(|γ |+ n
 –ε)


(
k + ε



)
ik

∫
R
n
+

Pk(x)
|x|k+ε

ϕ(x)dμγ (x). (.)

Thus (.) and (.) lead to the identity

∫
R
n
+

Pk(x)
|x|β ϕ(x)dμγ (x) = –

|γ |+n
 +εik


( k+ε
 )


(β)

∫
R
n
+

Pk(x)
|x|k+ε

ϕ(x)dμγ (x).

By Lemma ., we have therefore concluded the proof of the theorem. We have

FB
[
p.v

Pk(x)
|x|k+n+|γ |–ε

]
(y) = –

|γ |+n
 ik


( k )

( k+n+|γ |

 )
Pk(y)
|y|k . �
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Definition . Let Ty be the Bessel-generalized shift operator and let f be a Schwartz
function on R

n
+. We define the high order Riesz-Bessel transforms R(k)

B of order k with
respect to the Bessel-generalized shift operator as

R(k)
B (f )(x) = ck(n,γ )

[
p.v

Pk(y)
|y|n+k+|γ | ∗ f

]
(x)

= ck(n,γ ) lim
ε→

∫
<ε<|x|

Pk(y)
|y|k+n+|γ |T

yf (x)dμγ (y),

where ck(n,γ ) = 
n+|γ |

 
( n+k+|γ |
 )[
( k )]

– (k = , , . . . ,n) and Pk(x) is a homogeneous
polynomial of degree k in R

n
+ which satisfies BPk = .

By Theorem ., we conclude that

FB
[
R(k)
B (f )

]
(ξ ) = ikPk(ξ )|ξ |–kFB[f ](ξ ). (.)

One of the important applications of the high order Riesz transforms is that they can be
used tomediate between various combinations of partial derivatives of a function.We shall
here content ourselves with two very simple illustrations, which examples have an interest
on their own and have already the characteristic features of a general type of estimate
which can be made in the theory of elliptic differential operators.

Proposition . Suppose f is a class of S(Rn
+) and has compact support. Let Bf be the

Bessel differential operator. Then we have the a priori bound

‖∂xi∂xk f ‖p,γ ≤ Ap‖Bf ‖p,γ

with Ap independent of f .

In (.), we may take k = . Then this proposition is an immediate consequence of the
Lp,γ boundedness of the Riesz-Bessel transforms generated by a Bessel-generalized shift
operator and the identity

∂xi (∂xk f ) = –RBRBBf . (.)

To prove (.) we use the Fourier-Bessel transform. Thus if FB[f ](x) is the Fourier-Bessel
transform of f , then the Fourier-Bessel transform of ∂xi f is

FB[∂xi f ](y) = –xiFB[f ](y)

and

FB[Bf ](y) = –|x|FB[f ](y),

and so

FB
[
∂xi (∂xk f )

]
(y) = –

(
xi
|x|

)(
xk
|x|

)
|x|FB[f ](y) = –FB[RBRBBf ](y),
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which gives (.). Thus we have

∥∥∂xi (∂xk f )
∥∥
p = ‖RBRBBf ‖p ≤ C‖Bf ‖p.

By using the Fourier Bessel transformations, we have

P
(|y|)FB[(B)f ](y) = –|y|FB

[
P(B)f

]
(y)

(see []).

Corollary . Suppose Pk is a homogeneous elliptic polynomial of degree k and f is k-times
continuously differentiable with compact support. Then we have the priori estimate

‖Bf ‖p,γ ≤ Ap
∥∥Pk(B)f

∥∥
p,γ ,  < p < ∞.

To prove this inequality, we note that the following relation between Fourier Bessel
transform of Bf and Pk(B)f holds:

Pk
(|y|)FB[Bf ](y) = –|y|FB

[
Pk(B)f

]
(y).

Pk(|y|) is non-vanishing except at the origin and let – |y|
Pk (|y|) be homogeneous of degree

zero and indefinitely differentiable on the unit sphere. Then we get

Bf = RB
(
Pk(B)f

)
.

We also have the following Lp,γ boundedness of the high order Riesz-Bessel transform.

Theorem . The high order Riesz-Bessel transforms generated by a Bessel-generalized
shift operator are bounded operators from Lp,γ (Rn

+) into itself for all  < p < ∞

‖RBf ‖p,γ ≤ Ap‖f ‖p,γ .
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