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CONTINUITY FOR MAXIMAL COMMUTATOR
OF BOCHNER-RIESZ OPERATORS ON SOME
WEIGHTED HARDY SPACES

LIU LANZHE AND TONG QINGSHAN

Received 17 May 2004 and in revised form 3 November 2004

We show the boundedness for the commutator of Bochner-Riesz operator on some
weighted H! space.

1. Introduction

Let b be a locally integrable function. The maximal operator Bi,h associated with the
commutator generated by the Bochner-Riesz operator is defined by

ﬁﬂmmfgWMﬁML (1.1)
where
BN = | B = 7 f (0 () - b)) dy (1.2)
and (B2(1))(8) = (1 - r2[&[2) £ (¢). We also define that

KUWmewmum (1.3)

which is the Bochner-Riesz operator (see [8]). Let E be the space E = {h: ||kl =
sup,.q |h(r)| < oo}, then, for each fixed x € R", BS(f)(x) may be viewed as a mapping
from [0,+c) to E, and it is clear that B (f)(x) = IBS(f)(x)|l and Bi)b(f)(x) =
1b(x)BY(f)(x) = B2 (b )Xl

As well known, a classical result of Coifman et al. [4] proved that the commutator
[b, T] generated by BMO(R") functions and the Calderén-Zygmund operator is bounded
on LP(R") (1 < p < o). However, it was observed that [b, T] is not bounded, in general,
from H?(R") to L*(R") and from L'(R") to L>* (R") for p < 1. But, if H?(R") is replaced
by some suitable atomic space Hf(R") and H}(R") (see [1, 6, 7, 9]), then [b, T] maps
continuously H;f(R”) into L?(R") and H}(R") into weak L' (R") for p € (n/(n+1),1]. The
main purpose of this paper is to establish the weighted boundedness of the commutators
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related to Bochner-Riesz operator and BMO(R") function on some weighted H! space.
We first introduce some definitions (see [1, 6, 7, 9]).

Definition 1.1. Let b, w be locally integrable functions and w € A; (i.e., Mw(x) < cw(x)
a.e.). A bounded measurable function a on R" is said to be (w, b)-atom if
(i) suppa C B = B(xy,7),
(i) llallz> <w(B)71,
(iii) [ a(y)dy = [ a(y)b(y)dy = 0.
A temperate distribution f is said to belong to H}(w) if, in the Schwartz distributional
sense, it can be written as

f) =2 Ajaj(x), (1.4)
=1
where a;j’s are (w, b)-atoms, A; € C, and Z;ozl A1 < 0o. Moreover, || f1lg; ) ~ 2;021 1Al

Definition 1.2. Let w € A;. A function f is said to belong to weighted Block H' space
Hj(w) if f can be written as (1.4), where a;’s are w-atoms (i.e., a;’s satisfy Definition
1.1(1), (ii), and (iii)" [a(y)dy = 0) and A; € Cwith

; ™ (1+log M—]|) < o, (1.5)

Moreover, || f Il ) ~ 251 1A 1(1+1og" ((X; 1Ai1)/14;1)).

Now, we formulate our results as follows.

TueoreM 1.3. Let b € BMO(R") and w € Ay. Then the maximal commutator Bi)b is

bounded from Hg(w) to LL(R") when 8 > (n—1)/2.

THEOREM 1.4. Let b € BMO(R") and w € Ay. Then the maximal commutator Bi,b is
bounded from Hj(w) to L, (R") when & > (n —1)/2.

Tueorem 1.5. Let b € BMO(R") and w € A,. Then the maximal commutator Bi)b is
bounded from H'(w) to L;®(R") when 8 > (n—1)/2.
2. Proof of theorems

Proof of Theorem 1.3. Tt suffices to show that there exists a constant C > 0 such that for
every (w,b)-atom g,

1B (@], < C. (2.1)
Let a be a (w,b)-atom supported on a ball B = B(xy,R). We write
| 1B @0

X—xXo| <2 * a)lx X dx 1 + 1 1

|x—x0|>2R
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For I, taking g > 1, by Holder’s inequality and the L1-boundedness of Bi)b (see [2]), we
see that

I <C|B} ()]s - w(2B)' V1 < Cllall s w(B)' "1 < C. (2.3)

For I, let by = [B(x0,R)| ™" [3(, ) b(¥)dy, then

I < Z J |b(x) — by | B (a) (x)w(x)dx
2kHIR> |x— x0|>2kR
(2.4)
+ZJ B2 ((b—bo)a) (x)w(x)dx = II, +IL,.
=1 2k+H1R>|x—xo|>2kR
For I1;, we choose §, such that
" ; ! < 8y < min (8, nTH) (2.5)
and consider the following two cases.
Case 1 (0 <r < R). In this case, note that (see [8])
|BO(2)| < C(1+|g]) M2, (2.6)
we have, for |x — x| > 2|y — x0l,
. la(y)|
|B(a)(x)| < Cr "J
' BGaR) (1+ |x — yl/r )‘”‘”*”/2 (2.7)
<C|B‘ (8o+(n+1) /2/n|2k+1B| —(8o+(n+1)/2)/ (B) 1
Case 2 (r > R). In this case, note that
|VEBY(2)| < C(1+ |2)~*F (2.8)

for any = (B1,...,8x) € (NU {0})" and [x — x| > 2|y — x¢, where

VB — (a)ﬁ' . (a>ﬁ", (2.9)

ox1 0x,

by the vanishing condition of a, we gain

B la(y) ||y —xol
B2 a)(x)| < Cr <"“>j |
Blxo,R) (1+ |x xo|/7’ 8+ e (2.10)

< C|B|@ot(n+1/2)/n | 2k+1B| (o+(n+1)/2)/n "w(B)"\.
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Combining Case 1 with Case 2, we obtain

I, <C Z J | b(x) — bo | |B| @0t m+1/2)/n
k=172

k+1R>|x—x9|>2KR

y |2k+lB | —(60+(n+1)/2)/nW(B)71W(x)dx (2.11)

< CS 2 K1) (g1 J |b(x) = bo | w(x)dx.

=1 2k+H1R>|x—x9|>2kR

Since w € Ay, w satisfies the reverse of Holder’s inequality as follows:

v
(IT?I L; w(x)de) F. € w(x)dx (2.12)

< —
|Bl JB

for any ball B and some 1 < p < oo (see[10]). Using the properties of BMO(R") functions
(see [10]), and noting w € A}, then

<C (2.13)

for all balls By, B, with B; C B,. Thus, by Holder’s and reverse of Holder’s inequalities for
we A, weget, for I/p+1/p =1,

00 , %4
II, < C Y 27 Koutntly2)y,(B)=1 [ 2k+1B| ( b(x)—bo|” dx)

1 J |
= |2k+lB| Jk+ip

1 1/p
X (W g W(X)de) (214)

w(2%B) |B| >5C.

< Cllbllpo Y. ko Hormva (W20 B
= [2¥B| w(B)

For I1,, similar to the estimate of II;, we obtain

BY((b— bo)a)(x) < Cllbllpmow(B) | B Gt/ |y |~ 255 15
thus
1L, < Cllbllsmo Z W(B)71 |B|(80+(n+1)/2)/n | sz | —(60+(n+1)/2)/nw(2kB)
k=1
(2.16)
< 2*B) |B|
<Clb 5K~ (n=12) (L_> -C
I ||BMok§1 28] w®)
This finishes the proof of Theorem 1.3. O

To prove Theorem 1.4, we recall the following lemma (see [5, 10]).
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LEMMA 2.1. Let w = 0 and {gi} be a sequence of measurable functions satisfying
llgrllpie < 1. (2.17)

Then, for every numerical sequence {Ax},

<C%|/\k|(+10g<§\lj|/|lk|>>. (2.18)

loo

Proof of Theorem 1.4. By Lemma 2.1, it is enough to show that there exists a constant C
such that

|IB ,(a)]|1~ < C for each w-atom a. (2.19)
Let a be a w-atom supported on a ball B = B(xy,r). We write

w({x €R" :Bi,b(a)(x) >A})

S 5 (2.20)
<w({x €2B: B (a)(x) >A}) +w({x € (2B) : B ,(a)(x) >A}) = [ +I1.
For I, by the L1-boundedness ofBi,b for g > 1, we gain
I< )‘_1||Bi,h(“)X2B||L1W = CA_1||B§k,b(a)||qu -w(B)' " (2.21)
<CAYalls - w(B)! "Y1 < AL '
For I, let by = |B| ™! [; b(x)dx, notice that
BY ,(a)(x) = [|b(x)B(a)(x) — B (ba) (x)||
=[|(b(x) = bo) B (a) (x) — B ((b — bo)a) (x)]]
» 5 (2.22)
< [[(b(x) = bo) By (a)(x)|| +|B7 ((b = bo) @) (x)]|
< [b(x) —bo| BS (a)(x) + B (b~ bo)a) (),
we have
I < w({x € (2B)°: |b(x) - by | g (a)(x) > 4})
2
Y (2.23)
+w({x € (2B) : g ((b—bo)a)(x) > 5}) I, + 1D,
Similar to the proof of Theorem 1.3, we get
I < ca-lj |b(x) — o | BE (a) (x)w(x)dx
-ay Lﬂm ()~ bo | B (@ (w(0)dx = CL blowo, (224
IL <C\ j (b~ bo)a) (X)w(x)dx < CA~" |bllnro.
2B)
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Combining the estimate of I, I1;, and II,, we gain
w(fx e R": B ,(a)(x) > A}) < CA~[1bllsio. (2.25)

This completes the proof of Theorem 1.4. O

Proof of Theorem 1.5. . Given f € H'(w), let f = 3.;A;a; be the atomic decomposition
for f. By a limiting argument, it suffices to show Theorem 1.5 for a finite sum of f =
>qAqaq with 2 [Aql < Cll fllg1(w). We may assume that each Q (the supporting cube
of aq) is dyadic. For A > 0 by [3, Lemma 4.1], there exists a collection of pairwise disjoint
dyadic cubes {S} such that

> |Aq| =CAISI, VS,
QcS

DS <A Aol
Q

S

(2.26)
< CA

Le

> 2alQl 'xq
QFs

Let E = s S, where for a fixed cube Q, Q denotes the cube with the same center as
Q but with the side-length 4./n times that of Q. Then, |[E| < CA™!|| fllm. Set M(x) =
252 qcshqaqs N(x) = f(x) — M(x). By the L? boundedness ofBiJ7 and the well-known
argument, it suffices to show that

w({x € E°: B ,(M)(x) >A}) < CAM | 1111 (- (2.27)
Because Bi)b(M)(x) < s2.qcs IAQIBi’b(aQ)(x), we have

w({x € E°: B ,(M)(x) >1})

<Cr! J B ,(M)(x)w(x)dx

(2.28)
<ot A J a0) (X)w(x)dx,
%Q%J QIZ . B, (aq)
similar to the estimate of Theorem 1.3, we get, when x € E¢,
n n 8
B, (aq) (x) < Cllbllsmow(B) ™ Q| /2/m |y _ x| =0/ (29)

+C | b(x) —bo | w(B) —1y—=k(do+( n+1)/2))
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thus, by Holder’s and reverse of Holder’s inequalities for w € A;, we obtain

w({x € E B ,(M)(x) >1})

< CA_IW(B)_l Z Z |AQ| z kz—k(50+(n+l)/2)w(2kQ)
k=1

s Qcs
. (2.30)
< CA_I z Z |AQ| Z kz—k(éo—(n—l)/z)
§ Qcs k=1
<CAD > [ dol = A f Il w-
S Qcs
This finishes the proof of Theorem 1.5. O
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