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Conventional orthogonal frequency division multiplexing (OFDM) may turn to be inappropriate for future wireless cellular
systems services, because of extreme natural and artificial impairments they are expected to generate. Natural impairments result
from higher Doppler and delay spreads, while artificial impairments result from multisource transmissions and synchronization
relaxation for closed-loop signaling overhead reduction.These severe impairments induce a dramatic loss in orthogonality between
subcarriers and OFDM symbols and lead to a strong increase in intercarrier interference (ICI) and intersymbol interference (ISI).
To fight against these impairments, we propose here an optimization of the transmit/receive waveforms for filter-bank multicarrier
(FBMC) systems, with hexagonal time-frequency (TF) lattices, operating over severe doubly dispersive channels. For this, we
exploit the Ping-pong Optimized Pulse Shaping (POPS) paradigm, recently applied to rectangular TF lattices, to design waveforms
maximizing the signal-to-interference-plus-noise ratio (SINR) for hexagonal TF lattices. We show that FBMC, with hexagonal
lattices, offers a strong improvement in SINR with respect to conventional OFDM and an improvement of around 1 dB with respect
to POPS-FBMC, with rectangular lattices. Furthermore, we show that hexagonal POPS-FBMCbringsmore robustness to frequency
synchronization errors and offers a 10 dB reduction in out-of-band (OOB) emissions, with respect to rectangular POPS-FBMC.

1. Introduction

OFDM is now a well-established technique that provides
high-data-rate wireless communications through a trans-
formation of the frequency-selective channel into several
nonselective subchannels, thereby reducing the ISI [1]. For
all standardized systems, OFDM uses a rectangular wave-
form, in order to ensure maximum spectral efficiency, while
maintaining orthogonality between the different shifts of the
used waveform in the TF plane. Unfortunately, in practice,
the mobile radio channel is highly TF dispersive, causing
an orthogonality loss between the TF shifted versions of
this rectangular waveform. By adding a cyclic prefix (CP),
the conventional OFDM system becomes less sensitive to
delay spread and time synchronization errors, at the cost of a
spectrum efficiency loss. However, in the presence of Doppler
spread and frequency synchronization errors, the bad fre-
quency localization of the rectangular waveform leads to a
very important ICI, in both downlink and uplink channels.

Moreover, at the uplink channel, guard bands between users
accessing the spectrum resources are required because of the
misalignment nature of multiple access and the strong out-
of-band (OOB) power leakages between adjacent user bands,
leading to an inefficient use of spectrum resources.

With respect to LTE-A, future wireless cellular systems
are expected to support new applications and services,
such as Tactile Internet, the Internet of things (IoT), and
machine type communications (MTC) [2–4]. In order to
reduce latency and efficiently use energy and radio spectrum
resources for all these applications and services, it is necessary
to alleviate the synchronization mechanism overhead for
sporadic and small packet transmissions. Here, synchroniza-
tion alleviation means the reduction of the signaling load
by tolerating large synchronization errors. Unfortunately,
decreasing signaling by synchronization alleviation or relax-
ation introduces artificial impairments, caused by timing and
carrier frequency offset shifts. In addition, other extra arti-
ficial impairments, caused by delay spread and multisource
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transmissions, such as a CoMP, MBMS, and cloud-radio
access networks (C-RAN), are expected to be prevalent.These
delay and frequency spreads cannot be tolerated and endured
by conventional OFDM, leading to either a dramatic loss
in spectral efficiency or a strong decrease in SINR. To face
all these impairments, a plethora of research activities have
focused on waveform design. Waveform design is precisely
the concern for this paper, which proposes a new technique
to optimize the transmit/receive waveforms.

1.1. Related Works on Waveform Design. Waveform design
dates back to the work of Le Floch et al. in [5] and Haas and
Belfiore [6] in 1995. In [5], a transformation of the Gaussian
waveform into an orthogonal waveform with slightly worse
localization was proposed as the so-called Isotropic Orthog-
onal TransformAlgorithm (IOTA) approach. In [6], themost
localized Hermite functions including the Gaussian wave-
formwere combined in order to obtain a partially orthogonal
and well TF-localized waveform. Since then, the problem of
waveform optimization has been extensively investigated.
The first series of research works focused on continuous-
time waveform optimization. In [7], the authors proposed
a method for orthogonalizing the Gaussian waveform and
introduced an optimization of the TF lattices for TF disper-
sive channels, in order to minimize ICI/ISI. They concluded
that the use of hexagonal lattices outperforms the use of
rectangular ones. However, the continuous-time proposed
waveforms are orthogonalized but not well TF-localized
[8], leading to lower robustness to TF dispersive channels.
This motivated some subsequent research works to abandon
the strict orthogonality for the modulated waveforms and
to focus on the good localization of these waveforms in
TF plane. In [9], the authors have derived a TF well-
localized continuous-time waveform for hexagonal lattices,
by minimizing the mean power of ISI and ICI. However,
they overlooked the mean power of the useful signal leading
to a reduction in SIR. In the aforementioned works, the
same waveform is considered at transmission and reception
sides. To give an additional degree of freedom in waveform
design, some research works proposed to consider different
waveforms at transmission and reception. In [10], the authors
presented two methods for optimal continuous-time design
of the transmit and receive waveforms of BFDM systems
over dispersive channels based on ISI/ICI-minimizing. Sto-
janovic et al. derived, in [11], TF well-localized waveforms
for BFDM systems based on a quasi-Newton method with
line search for the minimization of the interference power. In
[12], based on SINR maximization, we proposed a novel
approach to design continuous-time nonorthogonal well-
localized transmit/receive waveforms for rectangular lattices.
The proposed waveforms, which are expressed as linear
combinations of the most TF-localized Hermite waveforms,
demonstrated an extra robustness to doubly dispersive chan-
nels. The main drawbacks behind continuous-time opti-
mization are significant optimization complexity and per-
formance degradation following discretization, subsequently
required in the system implementation stage. Accordingly, in
more than one respect, a single-step discrete-time waveform

design is more advantageous than a two-step continuous-
time design. The discrete-time design is, therefore, an active
area of research for either OFDM or filter-bank multicar-
rier (FBMC) systems. Although the theory of FBMC has
a long history close to OFDM [13], it has recently been
considered as a promising waveform for 5G systems, to
enhance spectral efficiency with respect to the conventional
CP-OFDM thanks to CP-less transmission and guard-band
reduction [14]. In [15], Siala et al. optimized the discrete-time
nonorthogonal waveforms, for rectangular lattices, operating
over doubly dispersive channels. For this, they exploit the
POPS paradigm based on SINR maximization. In [16], the
authors proposed an optimization design of QAM-FBMC
waveform that provides superior spectrum confinement and
higher spectral efficiency compared to conventional OFDM.
Furthermore, recent research projects, such as PHYDYAS
[17] and 5GNOW [4], thoroughly studied FBMC in the 5G
applications framework. They also considered some other
waveforms suitable for 5G applications, such as generalized
frequency division multiplexing (GFDM) [18] and universal
filtered multicarrier (UFMC) [19]. These projects proposed
off-the-shelf waveforms obtained empirically in order to
reduce secondary lobes and therefore to decrease OOB
emissions.Thesewaveformsmeet the requirements for which
they have been designed, with no guarantee for the provision
of good SINR over strongly dispersive channels.

1.2. Work Motivation and Contributions of the Paper. This
paper is concerned with the optimization of FBMC wave-
forms for hexagonal TF lattices, accounting for both natural
and artificial impairments, expected in future wireless appli-
cations and services. The first objective of the paper is to
specify an iterative method for waveform optimization for
hexagonal lattices, using the POPS paradigm introduced in
[15] for rectangular lattices and further investigated in [20].
The second objective is to assess whether the use of hexagonal
lattices, instead of rectangular lattices, actually brings a
noteworthy improvement in performance, as claimed in [7,
9], or not. Ourmain contributions can be outlined as follows:

(i) We present a general mathematical framework for
waveform optimization for hexagonal lattices and
detail the approach for SINR computation. We stress
the fact that the analytical derivation of the SINR
is not straightforward and different from that for
rectangular lattices [15].

(ii) We evaluate the gain, in terms of SINR, brought
by hexagonal lattices compared to rectangular ones.
Moreover, we determine through numerical results
the situations for which the hexagonal lattices outper-
form the rectangular lattices.

(iii) We compare, through numerical results, the OOB
emission of hexagonal and rectangular lattices, with
optimized waveforms, and conventional OFDM. It is
worth noting here that OOB is not included as a
criterion in waveform optimization although it can
be in practice, since OOB could be expressed as a
quadratic form of the transmitted waveform.
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(iv) We characterize the robustness of POPS-FBMC with
respect to frequency and time synchronization and
channel spread factor estimation errors. We also
compare the robustness of the optimized systems on
hexagonal and rectangular lattices to that of conven-
tional OFDM.

With respect to existing works, the proposed approach
provides five main advantages:

(i) It is based on SINR maximization instead of partial
ICI/ISI minimization, as performed in [9].

(ii) It considers the exact optimization in the discrete-
time domain with a finite waveform support instead
of continuous-time optimization with an infinite
waveform support, followed by discretization and
truncation in time [9] that can lead to a performance
degradation. Thus, the resulting waveforms can be
directly implementable in hardware.

(iii) The strategy adopted in this paper for waveform
optimization offers more simplicity and accuracy
than the optimization method proposed in [12].

(iv) Our work can be implemented for any frequency
band anddiscrete-time channel that satisfies theWide-
Sense Stationary Uncorrelated Scattering (WSSUS)
criterion.

(v) Performed offline, the proposed iterative optimiza-
tion strategy can be carried out for a finite bunch of
representative propagation channel dispersion statis-
tics, for all expected novel services (such as CoMP,
MBMS, and C-RAN). The resulting optimized trans-
mit/receive waveform pairs form a codebook and are
then used online, in an adaptive fashion, to better
adapt to the slowly varying channel propagation
statistics. More specifically, as in adaptive modulation
and coding (AMC), adaptive waveform communica-
tions (AWC) could become a reality in future wireless
communications, whereby the most suitable pair
of transmit-receive waveforms is selected from the
codebook and used, as a function of an estimate of
the current channel dispersion statistics.

1.3. Organization of This Paper. The rest of this paper is
organized as follows. In Section 2, we introduce the system
model. We analyse the interference and noise statistical
characteristics in Section 3. In Section 4, we present the
optimization procedure of the transmit/receive waveforms,
based on SINR maximization. Then, in Section 5, we detail
the approach for signal and interference Kernels computa-
tion. Finally, we devote Section 6 to simulation results and
Section 7 to concluding this paper.

1.4. Notations. Throughout the paper, the norm of a vector
is denoted by ‖ ⋅ ‖ and the Hermitian scalar product of two
vectors is represented by ⟨⋅, ⋅⟩. The operators (⋅)𝑇, (⋅)∗,(⋅)𝐻, and E(⋅) stand for transposition, complex conjugation,
transconjugation, and expectation, respectively.Wedenote by

⊗ the Kronecker matrix product and by ⊙ the component-
wise product (also known as the Hadamard matrix product).
The notations (⋅)𝑞 and (⋅)𝑝𝑞 are used to refer to vector and
components matrix entries generically indexed by 𝑞 and(𝑝, 𝑞), respectively. The function [W,Λ] = eig(A) produces
a diagonal matrix Λ of eigenvalues and a matrix W whose
columns are the corresponding eigenvectors of matrix A,
while the function [w, 𝜆] = eigs(A) returns the eigenvector
w associated with the maximum eigenvalue 𝜆 of matrix A.
Finally, I𝑚 represents the 𝑚 × 𝑚 identity matrix and 𝐽0(⋅)
denotes the 0th-order Bessel function of the first kind.

2. System Model

2.1. Transmitter and Receiver Models. We consider a base-
band model of a multicarrier system with 𝑄 subcarriers, reg-
ularly spaced by 𝐹 in frequency.The transmitted multicarrier
signal is sampled at a sampling rate 𝑅𝑠 = 1/𝑇𝑠, where 𝑇𝑠 =𝑇/𝑁 is the sampling period, 𝑇 is the OFDM symbol period,
and𝑁 is an integer accounting for the number of samples per
OFDM symbol period. Due to the hexagonal nature of the
TF lattices and the underlying half-symbol period shift
between consecutive subcarriers,𝑁must be even, leading to
a slight flexibility reductionwith respect to the rectangular TF
lattices, where 𝑁 could also be odd. The subcarrier spacing,𝐹, is related to the sampling period and to the number of sub-
carriers by 1/𝐹 = 𝑄𝑇𝑠. In this study, the TF lattice density,Δ =1/𝐹𝑇, is taken below unity, leading to undersampled TF lat-
tices in theWeyl-Heisenberg frame theory jargon.Theunder-
sampled nature of the lattices, acquired by taking 𝑄 smaller
than 𝑁, offers flexibility and room to absorb and put up
with different impairments inflicted by the channel and the
transmitter and receiver imperfections. It is also to be noted
that the positive difference (𝑁 − 𝑄)𝑇𝑠 is equivalent to the
notion of guard interval time in conventional OFDM.

Working in the discrete-time domain at both transmitter
and receiver, the sampled version of the transmitted signal is
represented by the infinite vector

e = (. . . , 𝑒−2, 𝑒−1, 𝑒0, 𝑒1, 𝑒2, . . .)𝑇 = (𝑒𝑞)𝑇𝑞∈Z , (1)

where 𝑒𝑞 is the transmitted signal sample at time 𝑞𝑇𝑠, with𝑞 ∈ Z. This vector can be written as

e = ∑
𝑚,𝑛

𝑎𝑚𝑛𝜑𝑚𝑛, (2)

where the function 𝜑𝑚𝑛, used for the transmission of symbol𝑎𝑚𝑛, results from a time shift, by 𝑡𝑚𝑛, and a frequency
shift, by 𝑓𝑚𝑛, of the transmit waveform vector 𝜑, and 𝑎𝑚𝑛,𝑚, 𝑛 ∈ Z, are independent identically distributed modulated
symbols, of zero mean and common mean transmit energy𝐸𝑠 = E[|𝑎𝑚𝑛|2]‖𝜑‖2. As illustrated in Figure 1, the TF shifts,
dictated by quincunx/hexagonal lattices, are determined by
the generator matrix [7, 9]

(𝑡𝑚𝑛𝑓𝑚𝑛) = (𝑇
𝑇20 𝐹)(𝑛𝑚) . (3)
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Figure 1: A hexagonal lattice in the TF plane.

Consequently, the shifted waveforms are defined by

𝜑𝑚𝑛 = 𝜎(𝑛+𝑚/2)𝑁 (𝜑) ⊙ (𝑒𝑗2𝜋𝑚𝑞/𝑄)𝑞 , (4)

where 𝜎𝑘(𝜑) is obtained by shifting 𝜑 by 𝑘 samples, cor-
responding to a time shift by 𝑘𝑇𝑠. In order to reduce
the optimization complexity and the latency, the transmit
waveform is assumed to have a finite duration,𝐷𝜑, and thus a
finite number of samples,𝑁𝜑 = 𝐷𝜑/𝑇𝑠, where𝑁𝜑 is a positive
integer.

By considering a time-varying channel, the sampled
version of the received signal, r = (𝑟𝑞)𝑞∈Z, is determined by

𝑟𝑞 = ∑
𝑝

ℎ (𝑝, 𝑞) 𝑒𝑞−𝑝 + 𝑛𝑞 = ∑
𝑚𝑛

𝑎𝑚𝑛 (𝜑̃𝑚𝑛)𝑞 + 𝑛𝑞, (5)

where (𝜑̃𝑚𝑛)𝑞 = ∑𝑝 ℎ(𝑝, 𝑞)(𝜑𝑚𝑛)𝑞−𝑝 is the 𝑞th sample of
the channel-distorted version, 𝜑̃𝑚𝑛, of 𝜑𝑚𝑛, ℎ(𝑝, 𝑞) is the
impulse response of the discrete channel at time 𝑞𝑇𝑠, and𝑛𝑞 is a discrete-time complex additive white Gaussian noise
(AWGN), the samples of which are centered and uncorre-
lated, with common variance𝑁0.

The decision variable on the transmitted symbol 𝑎𝑚𝑛 is
obtained by

Λ𝑚𝑛 = ⟨𝜓𝑚𝑛, r⟩ = 𝜓𝐻𝑚𝑛r, (6)

where 𝜓𝑚𝑛 is a TF shifted version of the receive waveform,𝜓,
defined by

𝜓𝑚𝑛 = 𝜎(𝑛+𝑚/2)𝑁 (𝜓) ⊙ (𝑒𝑗2𝜋𝑚𝑞/𝑄)𝑞 . (7)

Likewise, the receive waveform is assumed to have a finite
duration, 𝐷𝜓, and thus a finite number of samples, 𝑁𝜓 =𝐷𝜓/𝑇𝑠, which is taken as a positive integer. In order to
better adapt to the possible discrepancy in the complexity
capabilities of both transmitter and receiver, we can consider
different durations of the transmit and receive waveforms.

2.2. Channel Model. The discrete-time channel is assumed
to satisfy the WSSUS criterion, with discrete autocorrelation
function [21]

𝜙ℎ (𝑝1, 𝑝2; Δ𝑞) = 𝐸 [ℎ∗ (𝑝1; 𝑞) ℎ (𝑝2; 𝑞 + Δ𝑞)]= 𝜙ℎ (𝑝1; Δ𝑞) 𝛿 (𝑝2 − 𝑝1) , (8)

where 𝛿(⋅) is the Kronecker delta, 𝜙ℎ(𝑝) = 𝜙ℎ(𝑝; 0) is the
channel multipath-power profile, and

𝑆 (𝑝, ]) = ∑
Δ𝑞

𝜙ℎ (𝑝, Δ𝑞) 𝑒−2𝑗𝜋]𝑇𝑠Δ𝑞 (9)

is the channel scattering function. For a simplified derivation
of the expression of the SINR, to be maximized as a function
of the transmit and receive waveforms, we start by consider-
ing a channel with a finite number, 𝐾, of paths, with channel
impulse response

ℎ (𝑝, 𝑞) = 𝐾−1∑
𝑘=0

ℎ𝑘 exp (𝑗2𝜋]𝑘𝑇𝑠𝑞) 𝛿 (𝑝 − 𝑝𝑘) , (10)

where ℎ𝑘, ]𝑘, and 𝑝𝑘 are, respectively, the amplitude, the
Doppler frequency shift, and the normalized time delay
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shift of the 𝑘th path, with a time delay 𝑝𝑘𝑇𝑠. The paths
amplitudes, ℎ𝑘, are assumed to be centered and decorrelated
random complex Gaussian variables with average powers𝜋𝑘 = E[|ℎ𝑘|2]. The channel scattering function is therefore
given by

𝑆 (𝑝, ]) = 𝐾−1∑
𝑘=0

𝜋𝑘𝛿 (𝑝 − 𝑝𝑘) 𝛿 (] − ]𝑘) . (11)

In reality, this function corresponds to a two-dimensional
convolution between the scattering function and the joint
probability distribution of synchronization errors in time and
frequency.

Without any loss of generality, we assume the channel to
be of normalized average power, meaning that ∑𝐾−1𝑘=0 𝜋𝑘 = 1,
in order to maintain the same average energy per symbol at
the transmission and reception sides.

3. Analysis of Average Useful, Interference,
and Noise Powers

For simplicity sake, and without loss of generality, we focus
on the reception of symbol 𝑎00. While referring to (6), Λ 00 is
expressed as

Λ 00 = ⟨𝜓00,∑
𝑚𝑛

𝑎𝑚𝑛𝜑̃𝑚𝑛⟩ + ⟨𝜓00,n⟩
= 𝑎00 ⟨𝜓00, 𝜑̃00⟩ + ∑

(𝑚,𝑛) ̸=(0,0)

𝑎𝑚𝑛 ⟨𝜓00, 𝜑̃𝑚𝑛⟩
+ ⟨𝜓00,n⟩ ,

(12)

where n = (𝑛𝑞)𝑞∈Z is the received noise vector. We note that
the decision variable Λ 00 is composed of a desired term and
interference and noise terms. Based on this expression of the
decision variable, we can define the useful signal power as

𝑃𝑆 = 𝐸𝑠󵄩󵄩󵄩󵄩𝜑󵄩󵄩󵄩󵄩2E [󵄨󵄨󵄨󵄨⟨𝜓00, 𝜑̃00⟩󵄨󵄨󵄨󵄨2]
= 𝐸𝑠󵄩󵄩󵄩󵄩𝜑󵄩󵄩󵄩󵄩2𝜓𝐻00E [𝜑̃00𝜑̃𝐻00]𝜓00 = 𝐸𝑠󵄩󵄩󵄩󵄩𝜑󵄩󵄩󵄩󵄩2𝜓𝐻KS𝜑𝑆(𝑝,])𝜓,

(13)

with KS𝜑
𝑆(𝑝,]) being the useful Kernel matrix defined by

KS𝜑
𝑆(𝑝,]) = 𝐾−1∑

𝑘=0

𝜋𝑘𝜙]𝑘 ⊙ (𝜎𝑝𝑘 (𝜑)𝜎𝑝𝑘 (𝜑)𝐻) , (14)

where 𝜙]𝑘 is the Hermitian matrix with (𝑝, 𝑞)th entry𝑒2𝑗𝜋𝑇𝑠]𝑘(𝑝−𝑞). Similarly, by considering the decorrelated and

centered nature of the transmitted symbols, we can write the
mean power of the interference term as

𝑃𝐼 = 𝐸𝑠󵄩󵄩󵄩󵄩𝜑󵄩󵄩󵄩󵄩2 ∑
(𝑚,𝑛) ̸=(0,0)

E [󵄨󵄨󵄨󵄨⟨𝜓00, 𝜑̃𝑚𝑛⟩󵄨󵄨󵄨󵄨2]
= 𝐸𝑠󵄩󵄩󵄩󵄩𝜑󵄩󵄩󵄩󵄩2 ∑

(𝑚,𝑛) ̸=(0,0)

𝜓
𝐻
00E [𝜑̃𝑚𝑛𝜑̃𝐻𝑚𝑛]𝜓00

= 𝐸𝑠󵄩󵄩󵄩󵄩𝜑󵄩󵄩󵄩󵄩2𝜓𝐻KI𝜑𝑆(𝑝,])𝜓,
(15)

whereKI𝜑
𝑆(𝑝,]) is the intersymbol interferenceKernel, given by

KI𝜑
𝑆(𝑝,]) = 𝐾−1∑

𝑘=0

𝜋𝑘𝜙]𝑘
⊙ ∑
(𝑚,𝑛) ̸=(0,0)

(𝜎𝑝𝑘 (𝜑𝑚𝑛)𝜎𝑝𝑘 (𝜑𝑚𝑛)𝐻) . (16)

Finally, the average power of the noise term is expressed as

𝑃𝑁 = E [󵄨󵄨󵄨󵄨⟨𝜓00,n⟩󵄨󵄨󵄨󵄨2] = 𝜓𝐻00E [nn𝐻]𝜓00 = 𝑁0 󵄩󵄩󵄩󵄩𝜓󵄩󵄩󵄩󵄩2 . (17)

We note that both Kernel matrices, KS𝜑
𝑆(𝑝,]) and KI𝜑

𝑆(𝑝,]), are
Hermitian positive-definite. To derive the POPS optimization
algorithm, to be presented in Section 4,we also note that these
Kernels obey the equalities

𝜓
𝐻KS𝜑
𝑆(𝑝,])𝜓 = 𝜑𝐻KS𝜓𝑆(−𝑝,−])𝜑,

𝜓
𝐻KI𝜑
𝑆(𝑝,])𝜓 = 𝜑𝐻KI𝜓𝑆(−𝑝,−])𝜑. (18)

Consequently, given the receiver waveform 𝜓, we can write
the useful signal power and the mean power of the interfer-
ence as quadratic functions in the transmit waveform 𝜑, with
the new KernelsKS𝜓

𝑆(−𝑝,−]) andKI
𝜓

𝑆(−𝑝,−]), respectively. Again,
using these new Kernels, we can optimize the transmitter
waveform 𝜑 through a maximization of the SINR.

4. Optimization Procedure

TheSINR, defined as the ratio of themean power of the useful
signal, in (13), and the mean power of the interference and
noise terms, in (15) and (17), respectively, is used as the opti-
mization criterion. The maximization of this SINR leads to
the optimum pair of transmit and receive waveforms

(𝜑opt,𝜓opt) = argmax
𝜑,𝜓

SINR. (19)

To determine the couple (𝜑,𝜓) that maximizes (19), we
express explicitly the SINR as function of 𝜑 and 𝜓 as follows:

SINR = 𝑃𝑆𝑃𝐼 + 𝑃𝑁 = 𝜓𝐻KS𝜑
𝑆(𝑝,])𝜓

𝜓𝐻KI𝜑
𝑆(𝑝,])𝜓 + SNR−1 󵄩󵄩󵄩󵄩𝜑󵄩󵄩󵄩󵄩2 󵄩󵄩󵄩󵄩𝜓󵄩󵄩󵄩󵄩2

= 𝜑𝐻KS𝜓
𝑆(−𝑝,−])𝜑

𝜑𝐻KI𝜓
𝑆(−𝑝,−])𝜑 + SNR−1 󵄩󵄩󵄩󵄩𝜓󵄩󵄩󵄩󵄩2 󵄩󵄩󵄩󵄩𝜑󵄩󵄩󵄩󵄩2 ,

(20)
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where SNR = 𝐸𝑠/𝑁0 is the signal-to-noise ratio. In some
favorable transmission scenarios, the noise term is negligible
with respect to the interference term, resulting in a measure
of the SIR, as a substitute of the SINR. Let

KIN𝜑
𝑆(𝑝,]) = KI𝜑

𝑆(𝑝,]) + SNR−1 󵄩󵄩󵄩󵄩𝜑󵄩󵄩󵄩󵄩2 I𝑁𝜓 (21)

be the interference plus noise Kernel used in the quadratic
form of the SINR denominator. Referring to (18), the opti-
mization problem in (19) is equivalent to a maximization of
a generalized Rayleigh quotient involving an optimization of
the receive waveform 𝜓, for a given transmit waveform 𝜑,
and an optimization of the transmit waveform 𝜑, for a given
receive waveform𝜓. Inmany respects, our algorithm behaves
like the Lloyd-Max algorithm, which is used for quanti-
zation optimization, by repeatedly finding the centroid of
each set in the partition and then repartitioning the input
according to which of these centroids is closest. Several
algorithms can be used for an iterative offline optimization
of this problem. Thanks to its proven numerical stability, the
SINR optimization algorithm adopted in this paper consists
in diagonalizing the denominator KIN𝜑

𝑆(𝑝,]) and making a
basis change, so that themaximization amounts to finding the
maximum-eigenvalue eigenvector of a quadratic form. More
precisely, we first decompose the Kernel KIN𝜑

𝑆(𝑝,]) as

KIN𝜑
𝑆(𝑝,]) = UΛU𝐻, (22)

where U is a unitary matrix and Λ is a diagonal matrix with
nonnegative eigenvalues corresponding to the eigenvectors
of KIN𝜑

𝑆(𝑝,]). Second, we make a basis change in the Kernel
KIN𝜑
𝑆(𝑝,]) as

𝜓
𝐻KIN𝜑

𝑆(𝑝,])𝜓 = 𝜓𝐻UΛU𝐻𝜓 = u𝐻u, (23)

with the introduction of the vector u = Λ1/2U𝐻𝜓.
Banking on the fact that KI𝜑

𝑆(𝑝,]) is a positive Hermitian
matrix, while referring to (21), we are sure that all eigenvalues
of Λ are greater than or equal to SNR−1 and therefore are
strictly positive. Hence, we can recover 𝜓 from u as 𝜓 =
UΛ−1/2u/‖UΛ−1/2u‖, up to a normalizing multiplicative fac-
tor, avoiding any numerical instability. By replacing this new
expression of the receive waveform𝜓 in the expression of the
SINR, we end up with

SINR = u𝐻Φu
u𝐻u

, (24)

withΦ = Λ−1/2U𝐻KS𝜑
𝑆(𝑝,])UΛ

−1/2 being a positive Hermitian
matrix. Consequently, the maximization of the SINR consists
in finding the maximum eigenvalue of Φ and its associated
eigenvector u. The stages of this optimization approach are
detailed in Algorithm 1.

In perfect agreement with the POPS paradigm intro-
duced in [15], Algorithm 1 is an offline iterative algorithm,
composed of an initialization stage and an iterative stage.
In the initialization stage, the good choice of the transmit
waveform initialization is very critical in order to ensure the

convergence of the algorithm to a global maximum of the
SINR, which results in the best optimized transmit and
receive waveforms. In each iteration 𝑘 of the iterative stage,
we proceed through two major steps:

(i) A first step dedicated to the optimization of the
receive waveform, 𝜓(𝑘), given the previously obtained
transmit waveform 𝜑(𝑘). This step is referred to as the
“ping” step.

(ii) A second step dedicated to the optimization of
the transmit waveform, 𝜑(𝑘+1), given the previously
obtained receive waveform 𝜓(𝑘). This step is referred
to as the “pong” step.

Accordingly, the proposed optimization approach is referred
to as the POPS algorithm, since it is based on “ping” and “pong”
steps, to compute, offline, the best transmit and receive wave-
forms for any transmission impairments.

5. Computation of Simplified Versions of
Useful and Interference Kernels

The complexity of the proposed approach could be catego-
rized with respect to offline and online processing. On the
one hand, offline processing, which is the concern of the
present paper, is done once and beforehand, with the aim of
finding the most suitable codebook size, under a complexity-
efficiency compromise perspective, the best representative
statistics of the channel, and the best corresponding pairs
of transmit-receive waveforms. This processing can rely on
standard, general, and familiar software, such as MATLAB,
and requires a very short time (several minutes) for the
optimization of the whole set of codebooks required for
all applications or mechanisms (such as CoMP or MBMS,
C-RAN, and the random access channel). On the other
hand, online processing encompasses standard waveform
filtering, at both transmit and receive sides, as well as
run-of-river channel statistics estimation and transmitter-
receiver signaling, to adapt the transmit-receive waveform
pair to the changing propagation statistics. Among these
tasks, filtering is by far the most computational-resource-
consuming. Hence, we believe that online processing will
mostly be of similar complexity to standard and thoroughly
studied FBMC systems. In order to reduce the offline com-
plexity of Algorithm 1, we next derive simplified expressions
of the useful and interference Kernels (see (14) and (16)),
taking into account the channel characteristics and the quin-
cunx/hexagonal nature of multicarrier transmission. Despite
the fact that the presented paradigm can take into account the
cumulative effects of asynchronism, synchronization errors,
and delay and Doppler spreads, briefly, we only focus next
on natural impairments, brought by the channel. For this,
we consider a scattering function with decoupled diffuse
Doppler spectral density in the frequency domain, 𝛼(]),
obeying the Jakes model [22], and a discrete-time multipath-
power profile in the time domain,𝛽(𝑝), obeying the exponen-
tial truncated decaying model. Hence𝑆 (𝑝, ]) = 𝛼 (]) 𝛽 (𝑝) , (25)
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Initialization stage: At this stage, we initialize 𝜑(0) and introduce a precision parameter 𝜖 > 0 and the maximum number of
allowed iterations.
Iterative stage: At the 𝑘th iteration, 𝑘 = 0, 1, 2, 3, . . ., we successively estimate the receiver waveform 𝜓(𝑘) and the transmitter
waveform 𝜑(𝑘+1) as follows:(1) Compute the Kernels KS𝜑

(𝑘)

𝑆(𝑝,]) and KI𝜑
(𝑘)

𝑆(𝑝,])(2) KIN𝜑(𝑘)
𝑆(𝑝,]) = KI𝜑

(𝑘)

𝑆(𝑝,]) + SNR−1‖𝜑(𝑘)‖2I𝑁𝜓(3) [U,Λ] = eig(KIN𝜑(𝑘)
𝑆(𝑝,]))(4) Φ = Λ−1/2U𝐻KS𝜑(𝑘)
𝑆(𝑝,])UΛ

−1/2(5) [umax , 𝜆max] = eigs(Φ)(6) 𝜓(𝑘) = UΛ−1/2umax‖UΛ−1/2umax‖(7) Calculate the Kernels KS𝜓(𝑘)
𝑆(−𝑝,−]) and KI𝜓

(𝑘)

𝑆(−𝑝,−])(8) KIN𝜓(𝑘)
𝑆(−𝑝,−]) = KI𝜓

(𝑘)

𝑆(−𝑝,−]) + SNR−1‖𝜓(𝑘)‖2I𝑁𝜑(9) [V,Ξ] = eig(KIN𝜓(𝑘)
𝑆(−𝑝,−]))(10) Γ = Ξ−1/2V𝐻KS𝜓(𝑘)
𝑆(−𝑝,−])VΞ

−1/2(11) [kmax, 𝜗max ] = eigs(Γ)(12) 𝜑(𝑘+1) = VΞ−1/2kmax‖VΞ−1/2kmax ‖
Stop condition: ‖⟨𝜑(𝑘+1),𝜑(𝑘)⟩‖/‖𝜑(𝑘+1)‖‖𝜑(𝑘)‖ > 1 − 𝜖 and ‖⟨𝜓(𝑘+1),𝜓(𝑘)⟩‖/‖𝜓(𝑘+1)‖‖𝜓(𝑘)‖ > 1 − 𝜖 or the maximum number of
allowed iterations is reached.

Algorithm 1: Optimization approach.

with

𝛼 (]) = {{{{{{{{{
1𝜋𝑓𝐷 1√1 − (]/𝑓𝐷)2 , if |]| < 𝑓𝐷,
0, if 𝑓𝐷 ≤ |]| ≤ 12𝑇𝑠 ,

(26)

where 𝑓𝐷 is the maximum Doppler frequency shift, and

𝛽 (𝑝) = 𝐾−1∑
𝑘=0

𝜋𝑘𝛿 (𝑝 − 𝑝𝑘) , (27)

with normalized power paths 𝜋𝑘 = ((1 − 𝑏)/(1 − 𝑏𝐾))𝑏𝑘, 𝑘 =0, 1, . . . , 𝐾 − 1, with 0 < 𝑏 < 1 being the decaying factor and𝐾 being the number of contiguous paths in the channel.
For the present channel, the useful Kernel can be written

as

KS𝜑
𝑆(𝑝,]) = Π ⊙ 𝐾−1∑

𝑘=0

𝜋𝑘 (𝜎𝑝𝑘 (𝜑)𝜎𝑝𝑘 (𝜑)𝐻) , (28)

where Π is the Hermitian matrix representing the time
autocorrelation function of the channel, whose (𝑝, 𝑞)th entry
is given by

(Π)𝑝𝑞 = ∫𝛼 (]) 𝑒𝑗2𝜋]𝑇𝑠(𝑝−𝑞)𝑑] = 𝐽0 (2𝜋𝑓𝐷𝑇𝑠 (𝑝 − 𝑞)) . (29)

As for the second interference Kernel, for hexagonal lattices,
we can write

KI𝜑
𝑆(𝑝,]) = ∞K𝜑𝑆(𝑝,]) − KS𝜑

𝑆(𝑝,]), (30)

where ∞K
𝜑

𝑆(𝑝,]) is a new “infinite” Kernel, defined by

∞K
𝜑

𝑆(𝑝,]) = ∞KE𝜑𝑆(𝑝,]) + ∞KO𝜑𝑆(𝑝,]), (31)

where

∞KE
𝜑

𝑆(𝑝,])

= Ωe ⊙ 𝐾−1∑
𝑘=0

𝜋𝑘∑
𝑛

(𝜎𝑝𝑘+𝑛𝑁 (𝜑) ⊙ (𝜎𝑝𝑘+𝑛𝑁 (𝜑))𝐻) (32)

is an “even” infinite Kernel, with

Ωe = Π ⊙ (𝑄/2−1∑
𝛿=0

𝑒𝑗4𝜋𝛿(𝑝−𝑞)/𝑄)
(𝑝,𝑞)∈Z2

(33)

being a Hermitian matrix, whose (𝑝, 𝑞)th entry is given by

(Ωe)𝑝𝑞
= {{{

𝑄2 𝐽0 (2𝜋𝑓𝐷𝑇𝑠 (𝑝 − 𝑞)) , if (𝑝 − 𝑞) mod 𝑄2 = 00, otherwise,
∞KO
𝜑

𝑆(𝑝,])= Ωo
⊙ 𝐾−1∑
𝑘=0

𝜋𝑘∑
𝑛

(𝜎𝑝𝑘+(𝑛+1/2)𝑁 (𝜑) ⊙ (𝜎𝑝𝑘+(𝑛+1/2)𝑁 (𝜑))𝐻)

(34)
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is an “odd” infinite Kernel, with

Ωo = Π ⊙ (𝑄/2−1∑
𝛿=0

𝑒𝑗2𝜋(2𝛿+1)(𝑝−𝑞)/𝑄)
(𝑝,𝑞)∈Z2

(35)

being a Hermitian matrix whose (𝑝, 𝑞)th entry is given by

(Ωo)𝑝𝑞
= {{{{{{{{{{{

−𝑄2 𝐽0 (2𝜋𝑓𝐷𝑇𝑠 (𝑝 − 𝑞)) , if (𝑝 − 𝑞)mod𝑄 = 𝑄2𝑄2 𝐽0 (2𝜋𝑓𝐷𝑇𝑠 (𝑝 − 𝑞)) , if (𝑝 − 𝑞)mod𝑄 = 00, otherwise.
(36)

Notice that the “even” infinite Kernel accounts for the
contributions of even subcarriers presenting a zero time shift
with respect to the 0th subcarrier and the “odd” infinite
Kernel accounts for the contributions of the odd subcarriers
presenting a half-symbol-period time shiftwith respect to the0th subcarrier. Also notice that the matrices Π, Ωe, and Ωo
are calculated once for the whole optimization process and
are kept unchanged from one iteration to another.

As illustrated in Figure 2, we next propose an easy and
efficient method to simplify the numerical calculation of the
previous Kernels, KS𝜑

𝑆(𝑝,]) and KI𝜑
𝑆(𝑝,]). The calculation of

these Kernels is performed at the “ping” step of each iteration𝑘 for the optimization of the receive waveform 𝜓. Likewise,
following the same process as in Figure 2, the “pong” step of
each iteration banks on a determination of both Kernels,
KS𝜓
𝑆(−𝑝,−]) and KI

𝜓

𝑆(−𝑝,−]), by replacing the transmit waveform
𝜑 by the receive waveform, 𝜓, and considering instead the
inverse in time and frequency of channel scattering function.
According to Figure 2(a), we start bymultiplying the transmit
waveform 𝜑 by its Hermitian transpose 𝜑𝐻. The resulting
matrix is shifted according to the multipath-power profile of
the channel and then entrywise multiplied with matrix Π.
Subsequently, the useful Kernel KS𝜑

𝑆(𝑝,]) is obtained using a
selection window, in gap with that of the transmit waveform,
to take into account the causality of the channel. As shown
in Figures 2(a), 2(b), and 2(c), this selection window, which
is common to all involved Kernels, plays a key role in
the determination of the SINR as a ratio of two quadratic
forms in 𝜓. Because of the finite durations of 𝜑 and 𝜓, the
relative position of the time window of 𝜓, with respect to
the time window of 𝜑, becomes crucial and decisive in the
determination of the achievable SINR. Typically, it is opti-
mized by moving the 𝜓 window around the average delay
incurred by the channel, in steps of the sampling period 𝑇𝑠,
and finding the best achievable SINR.

Now, in order to compute the elementary contributions to
the Kernel ∞K

𝜑

𝑆(𝑝,]), we must compute the “even” and “odd”
infinite Kernels. As shown in Figure 2(b), the “even” infinite
Kernel, ∞KE

𝜑

𝑆(𝑝,]), is obtained by regularly and periodi-
cally shifting the shifted matrix ∑𝐾−1𝑘=0 𝜋𝑘(𝜎𝑝𝑘(𝜑) 𝜎𝑝𝑘(𝜑)𝐻)
by increments of the normalized symbol duration 𝑁 and
multiplying the final result with matrix Ωe. Also, as shown
in Figure 2(c), the “odd” interference Kernel, ∞KO

𝜑

𝑆(𝑝,]), is

obtained by regularly and periodically shifting the shifted
matrix ∑𝐾−1𝑘=0 𝜋𝑘(𝜎𝑝𝑘(𝜑)𝜎𝑝𝑘(𝜑)𝐻) by integer multiples of 𝑁
samples starting from an initial shift by 𝑁/2 samples in
time and, finally, multiplying this result with matrix Ωo. The
infinite Kernel is obtained by selecting the window from
the optimum position after summing both “even” and “odd”
infinite Kernels.

In order to determine the interference KernelKI𝜑
𝑆(𝑝,]), we

subtract the useful Kernel KS𝜑
𝑆(𝑝,]) from the infinite Kernel

∞K
𝜑

𝑆(𝑝,]). Since the transmit and receive waveforms have
finite durations, only a finite number of the shifts of∑𝐾−1𝑘=0 𝜋𝑘(𝜎𝑝𝑘(𝜑)𝜎𝑝𝑘(𝜑)𝐻) actually contribute to the full deter-
mination of the selection window needed in the determina-
tion of the SINR.

6. Numerical Results

In this section, we numerically evaluate the performance of
FBMC with waveforms optimized for hexagonal lattices and
operating over highly TF dispersive channels, characterized
by channel scattering functions obeying (25). In a first bunch
of numerical results, we fix the number of subcarriers to𝑄 = 128 and the spread factor to 𝐵𝑑𝑇𝑚 = 10−2. In a
second bunch of numerical results, we vary these values to
study the performance of POPS-FBMC as a function of 𝑄
and 𝐵𝑑𝑇𝑚. According to past experimental characterizations
of the small-scale part of the propagation channel, the
maximum reported delay spread, 𝑇𝑚, never exceeds a few
microseconds [23], while the maximum Doppler frequency,𝐵𝑑, never goes above a few hundred Hertz [24] for a high
mobility. As a consequence, the channel spread factor of10−2 is typically one to two orders of magnitude larger that
practically reported values. Camping on these large values
of the channel spread not only helps us tackle a worst case
situation but also takes into account other synchronization
and asynchronism imperfections. In order to have the best
value of the SINR, we always go through a preliminary
determination of the best balance between 𝐹 and 𝑇 with
respect to 𝐵𝑑 and 𝑇𝑚, respectively, while observing a given
lattice density constraint Δ = 1/𝐹𝑇. In this determination,
we do not care about the optimum initialization of the
POPS algorithm and stick to the Gaussian function, as an
initialization of the transmit waveform, which is also the
first Hermite function, that offers the best localization on
the TF plane. Moreover, for simplicity sake and without loss
of generality, we choose 𝑁𝜑 and 𝑁𝜓 as integer multiples
of 𝑁 and assume a common duration, 𝐷 = 𝐷𝜑 = 𝐷𝜓,
for the transmitter and receiver waveforms, although these
conditions are not necessary and the general case could be
treated as well. We compare the obtained numerical results
to two benchmarks, with the first being conventional OFDM
and the second being POPS-FBMC with rectangular lattices,
with the common TF shifts being, respectively, 𝑡𝑚𝑛 = 𝑛𝑇 and𝑓𝑚𝑛 = 𝑚𝐹.
6.1. SINR and SIR Performances of POPS-FBMC on Quin-
cunx/Hexagonal Lattices. In Figure 3, we present the evolu-
tion of the SINR as a function of the number of iterations,
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 =
H = × =

K−1∑
k=0

kpk (H) =

Matrix shi�s according to
the multipath power profile

Duration: D

(a) Useful Kernel

Matrix shi�s according to
the normalized symbol duration N

e
K−1∑
k=0

kpk (H) = ∑
n

nN

K−1∑
k=0

kpk (H) =

(b) “Even” infinite Kernel

Matrix shi�s according to
the normalized symbol duration N

o

K−1∑
k=0

kpk (H) = ∑
n

(n+1/2)N (K−1∑
k=0

kpk (H)) =

(c) “Odd” infinite Kernel

Figure 2: Illustration of the calculation of the useful and interference Kernels. (The pink squares of “even” and “odd” infinite Kernels do not
overlap with the selection window and therefore do not contribute to the determination of the infinite Kernel.)
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Figure 3: Evolution of the achievable SINR as a function of the
POPS algorithm iterations, for 𝐵𝑑𝑇𝑚 = 0.01, 𝑄 = 128, CP = 32,𝐷 = 7𝑇, 𝐹𝑇 = 1.25, and SNR = 25 dB, 30 dB, and infinity.

for hexagonal and rectangular lattices, over a TF dispersive
AWGN channel, when SNR = 25 dB, 30 dB, and infinity, for
a lattice density Δ = 1/𝐹𝑇 = 0.8 (𝐹𝑇 = 1.25) and a waveform
duration 𝐷 = 7𝑇. This figure shows that FBMC, with
quincunx/hexagonal lattices, offers a slight improvement in
SINR with respect to FBMC with rectangular lattices, for the
different considered values of the SNR. We also notice the
convergence of the SINR to the SNR over the a TF dispersive
AWGN channel, for both rectangular and hexagonal lattices.
To better illustrate this result, we draw, in Figure 4, the
behavior of the optimized SINR as a function of the SNR for
a hexagonal multicarrier system, for different values of the
lattice density (Δ = 0.7, 0.8, and 0.9) and awaveformduration𝐷 = 7𝑇. This figure shows that, at low SNR, the optimized
SINR is very close to the SNR value. However, at high SNR,
the optimized SINR converges to the optimized SIR value
obtained for a noiseless channel (i.e., 𝑁0 = 0). Figure 5
shows the SIR evolution as a function of𝐹𝑇 for optimized sys-
tems, on hexagonal and rectangular lattices, operating over
TF dispersive noiseless channels. A comparison is also made
with the conventional OFDM system. Different values of
the waveform duration (𝐷 = 𝑇, 3𝑇, 5𝑇, and 7𝑇) are
considered. Figure 5 shows an SIR enhancement for the
rectangular and hexagonal multicarrier transmission systems
when the waveform duration increases or the lattice density
decreases. It also shows that the SIR obtained with 𝐷 =7𝑇 slightly outperforms the one obtained with 𝐷 = 5𝑇.
Figure 5 also shows that the POPS-FBMC on hexagonal
lattices offers a strong improvement in SIR with respect to
the conventional OFDM and a maximum improvement of1 dB with respect to the optimized system on rectangular
lattices, depending on waveform duration and lattice density.
For example, when Δ = 0.8 and 𝐷 = 3𝑇, a 5 dB (4 dB, resp.)
gain is obtained with the optimized system on hexagonal
(rectangular, resp.) lattices, relatively to conventional OFDM
systems. Figure 6 illustrates the impact of an increase of the

number of subcarriers, 𝑄, on the SIR behavior of the opti-
mized POPS-FBMC with hexagonal lattices. Two values of
the waveform duration, 𝐷 = 𝑇 and 𝐷 = 3𝑇, are
considered. We observe a slight improvement in SIR when 𝑄
increases. For a further characterization of the POPS-FBMC
on hexagonal lattices, we show in Figure 7 the behavior of
the SIR versus the channel spread factor 𝐵𝑑𝑇𝑚, for a lattice
density Δ = 0.8 and a waveform duration 𝐷 = 3𝑇. We also
add in this figure the SIR obtained with a POPS-FBMC on
rectangular lattices and a conventional OFDM. We observe
a significant enhancement in SIR when the spread factor
decreases for the different systems. We also note that POPS-
FBMC on hexagonal lattices always outperforms POPS-
OFDM on rectangular lattices and conventional OFDM, for
all values of 𝐵𝑑𝑇𝑚. More importantly, we observe that the SIR
performance increases with hexagonal-lattice FBMC, with
respect to the rectangular-lattice FBMC, when the channel
dispersion 𝐵𝑑𝑇𝑚 increases. For example, when 𝐵𝑑𝑇𝑚 =10−2, a 1 dB gain is obtained with the optimized system on
hexagonal lattices, relatively to the optimized system with
rectangular lattices, while a 0.5 dB gain is obtained when𝐵𝑑𝑇𝑚 = 10−4.
6.2. Optimized Waveforms Characterization on Hexagonal
Lattices. In Figure 8, we present the temporal evolution of the
optimum transmit and receive waveforms corresponding to
the optimized SIR, when SNR = ∞, for Δ = 0.9 and 𝐷 = 7𝑇
and both hexagonal and rectangular lattices. For both lattices,
we observe that the optimized receive waveform matches
perfectly the temporal inverse of the optimized transmit
waveform. Using alternative expressions of the SINR as gen-
eralized Rayleigh quotients in the receive waveform𝜓, we can
prove that this characteristic is theoretically valid when the
optimum pair of transmit/receive waveforms is unique. We
also note that the main lobes of the optimized transmit and
receive waveforms obtained on hexagonal lattices are more
concentrated around the origin, compared to the ones on
rectangular lattices. This better localization justifies the SIR
performance improvement on hexagonal lattices. In Figure 9,
we depict the power spectral densities (PSD) of the optimized
transmit waveform for the hexagonal lattices (Figure 9(a))
as well as for 65 contiguous subcarriers (Figure 9(b)), for
different waveform durations and Δ = 0.9. A comparison
is made with the PSD, of the conventional OFDM waveform
and the POPS-optimized waveform for rectangular lattices,
for 𝐷 = 7𝑇. First, we note that the OOB power leakage
of conventional OFDM is very important, requiring an
insertion of large guard bands between the subcarriers of
different users, mainly at the uplink when the transmission is
asynchronous and the receive power is generally unbalanced
between the different communications. Second, we note that
the optimized waveform on hexagonal lattices reduces the
OOB emission with respect to the conventional OFDM,
especially when 𝐷 increases. For example, a gain of 70 dB
is brought by the POPS-FBMC on hexagonal lattices with𝐷 = 7𝑇, compared to the conventional OFDM system.Third,
we point out a 10 dB reduction in OOB emission when we
consider the hexagonal layout instead of the rectangular one.
This reduction in OOB emission minimizes the interference
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into neighbouring bands and reduces the probability of
violating spectral masks imposed by some standards.

In order to study the time-frequency localization of our
optimized waveforms, we present, in Figure 10, the evolu-
tion of the Heisenberg uncertainty [25] in discrete time,𝜉, as function of symbol period, 𝑇, and latency, 𝐷. This
figure shows that the time-frequency localization increases
linearly as a function of symbol period and latency. How-
ever, by improving latency, optimization complexity and
performance in terms of SIR increase. Then, we must find a
compromise between complexity, latency, and performance.
This compromise makes it possible for some applications
which tolerate increasing latency to benefit from an increase
in SIR. For example, instead of considering a latency of 𝑇, we
can use 3 or 5𝑇 instead to increase the SIR by 3 dB.

6.3. Robustness Characterization of POPS-FBMC on Quin-
cunx/Hexagonal Lattices. In this subsection, we characterize
the robustness of POPS-FBMC with respect to its sensitivity
to frequency and time synchronization and channel spread
factor estimation errors. In Figure 11(a), we compare the
sensitivity to frequency synchronization errors of optimized
systems on both hexagonal and rectangular lattices to that of
conventional OFDM.The channel is assumed to be noiseless,
meaning that SNR = ∞. In this figure, we consider a
normalized frequency synchronization error Δ]/𝐹 varying
between −0.1 and 0.1, a lattice densityΔ = 0.8, and waveform
durations𝐷 = 3𝑇 and 7𝑇. As it is expected, the SIR degrades
with the increase of the frequency synchronization error.
More importantly, we notice that POPS-FBMC on hexagonal
lattices is less sensitive to frequency synchronization errors
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than POPS-FBMC on rectangular lattices. For example, a
gain in terms of SIR of about 6 dB can be reached by using
hexagonal-lattice waveforms instead of rectangular-lattice
waveforms, for a waveform duration 𝐷 = 7𝑇 and Δ]/𝐹 =±0.1. Furthermore, Figure 12(b) shows the sensitivity of the
optimized POPS-FBMC on hexagonal lattices to frequency
synchronization errors, for different values of the lattice
density (Δ = 0.7, 0.8, and 0.9) and a waveform duration 𝐷 =7𝑇. Notice that the hexagonal-lattice FBMC is less sensitive
to frequency synchronization errors than rectangular-lattice
FBMC when 𝐹𝑇 increases.
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The sensitivity of POPS-FBMC on hexagonal and rect-
angular lattices to time synchronization errors is shown in
Figure 12(a), when the normalized time synchronization
error Δ𝜏/𝑇𝑠 varies between −40 and 40, for a lattice densityΔ = 0.8, waveform durations 𝐷 = 3𝑇 and 7𝑇, and a
noiseless channel. Contrarily to the sensitivity to frequency
synchronization errors, the POPS-FBMC with hexagonal
lattices is more sensitive to ISI over a time dispersive channel
than the POPS-FBMCwith rectangular lattices, especially for
large waveform durations. These extra sensitivity results are
explained by both the narrow gap between the successive time
shifts and the higher optimal value of 𝑇𝑚/𝑇 for hexagonal
lattices as compared to rectangular ones. Nevertheless, both
hexagonal and rectangular optimized systems outperform the
conventional OFDM even when the time synchronization
error is very important.Moreover, we show inFigure 12(b) the
sensitivity to time synchronization errors of the hexagonal-
lattice POPS-FBMC, for different values of 𝐹𝑇 when 𝐷 =7𝑇. It is clear that POPS-FBMC with hexagonal lattices
becomes less sensitive to time synchronization errors when𝐹𝑇 increases.

Figure 13 illustrates the sensitivity of POPS-FBMC, with
hexagonal lattices, to spread factor estimation errors, with
actual values of 𝐵𝑑𝑇𝑚 ranging between 10−4 and 10−2, for a
lattice density Δ = 0.8 and a common waveform duration𝐷 = 3𝑇. We show the behavior of the achievable SIR for
each of the optimal waveforms, obtained for (𝐵𝑑𝑇𝑚)1 =10−4, (𝐵𝑑𝑇𝑚)2 = 10−3, and (𝐵𝑑𝑇𝑚)3 = 10−2, as a function
of 𝐵𝑑𝑇𝑚. In this figure, we prove the robustness of our
optimized waveforms to estimation errors in 𝐵𝑑𝑇𝑚. We
observe that the SIR performance degradation, compared to
the optimum case, becomes larger when the actual 𝐵𝑑𝑇𝑚
becomes smaller than the 𝐵𝑑𝑇𝑚 used for optimization of the
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transmit-receive waveform pair than when the actual 𝐵𝑑𝑇𝑚
becomes larger. Figure 13 is also a good illustration of how
the AWC concept can be introduced in 5G systems and
beyond. The idea is to determine the codebook, of required
waveform pairs, suitable for an efficient adaptation of the
transmit and receive waveforms to the channel statistics,
while having an acceptable degradation with regard to the
case of perfect knowledge of 𝐵𝑑𝑇𝑚. More precisely, a finite
number of waveform pairs could be optimized offline for

several well-chosen values of 𝐵𝑑𝑇𝑚. Then, each pair is used
online, during effective transmission, for a range of values
of 𝐵𝑑𝑇𝑚 around the underlying value of its optimization
to outperform other pairs. As a consequence, the global
obtained performance corresponds to the maximum curves
of the performances of all pairs in the codebook. Compared
to the ideal yet unrealistic case, where the best pair for the
current value of 𝐵𝑑𝑇𝑚 is used, the performance degradation
brought by the use of the codebook is conditioned by the
gap between the maximum curve and the ideal curve of
the SIR and the a priori statistics of the taken values of𝐵𝑑𝑇𝑚. Therefore, the targeted values of 𝐵𝑑𝑇𝑚, underlying
the determination of the codebook, must be well chosen to
minimize the average loss in performance for a given size of
the codebook.

7. Conclusion

In this paper, we proposed an optimization technique for
the design of optimum transmit/receive waveforms in the
discrete-time domain for FBMC systems, using hexagonal
TF lattices and operating over TF dispersive channels. These
waveforms are obtained by using a new approach, known as
POPS, for the maximization of the SINR or the SIR at the
receiver.

We have shown that the optimal SIR obtained for FBMC
with hexagonal lattices outperforms the one obtained with
rectangular lattices, especially for highly dispersive channels.
Also, we have compared the performances of FBMC sys-
tems for both rectangular and hexagonal lattices over TF
dispersive channels and demonstrated that the POPS-FBMC,
with hexagonal lattices, is more efficient in the presence of
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frequency synchronization errors and is more sensitive in the
presence of time synchronization errors.The latter character-
istic, brought in part by the hexagonal nature of the TF lattice,
is not definitive and could be alleviated and even inverted,

using a nonoptimal distribution of the Doppler spread and
the time delay spread with respect to subcarrier frequency
spacing and symbol duration. On the other hand, we have
proved the dramatic increase in robustness brought by both
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systems relative to conventional OFDM, in the presence of
TF synchronization errors. A spectral study was done and
showed that the POPS-FBMCwith hexagonal lattices offers a10 dB (70 dB, resp.) reduction in OOB emissions with respect
to FBMC with rectangular lattices (conventional OFDM,
resp.).

In this paper, we have studied the performance of our
FBMC system in terms of SINR or SIR. A study of its
performance in terms of block error rate (BLER) or bit
error rate (BER) will be the objective of future work. We
also intend to work on multipulse waveform design [26–28]
and waveform optimization for partial equalization, whereby
interference from neighbouring symbols, in time or/and in
frequency, is tolerated thanks to a simplified equalization at
the receiver [29].
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