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Planning a journey by integrating route and timetable information fromdiverse sources of transportation agencies such as bus, ferry,
and train can be complicated. A user-friendly, informative journey planning system may simplify a plan by providing assistance
in making better use of public transportation. In this study, we presented the service-oriented, multimodel Intelligent Journey
Planning System, which we developed to assist travelers in journey planning. We selected Izmir, Turkey, as the pilot city for this
system. The multicriteria problem is one of the well-known problems in transportation networks. Our study proposes a gradual
path-finding algorithm to solve this problem by considering transfer count and travel time. The algorithm utilizes the techniques
of efficient algorithms including round based public transit optimized router, transit node routing, and contraction hierarchies on
transportation graph. We employed Dijkstra’s algorithm after the first stage of the path-finding algorithm by applying stage specific
rules to reduce search space and runtime. The experimental results show that our path-finding algorithm takes 0.63 seconds of
processing time on average, which is acceptable for the user experience.

1. Introduction

Metropolitan areas have some prevalent transport problems
such as traffic congestion, parking difficulties, and emission
of pollutant and greenhouse gases. Public authorities support
stronger use of public transportation systems for mitigating
traffic congestion and reducing carbon emissions. Enormous
development has been taking place in public transportation
systems of metropolitan areas around the world since the
last decades. Consequently, use of public transportation sys-
tems is getting complicated. Mostly, more than one of the
transportation agencies are operating in metropolitan areas.
Route and timetable information of these services is available
on their websites, but there is no information about the con-
nection of other forms of transportation. It is not easy
to integrate route and timetable information from diverse
sources of agencies to plan a journey as a whole.

The usability of public transportation systems can sig-
nificantly be enhanced by assisting people in making better
use of public transportation. User-friendly and informative

journey planning systems have become important by provid-
ing suggestions for alternative routes. The goal of this study
is to present an Intelligent Journey Planning System (IJPS),
to assist commuters in planning their trips. Our motivation
is to reduce dependence on personal automobiles and to
encourage wider use of public transport. In consequence
of this work, we aim to reduce noise and carbon dioxide
emissions and avoid traffic jams and congestions.

Journey planner systems like TfL of London, RATP of
Paris, AnachB of Austria, and so on are in use inmanymetro-
politan cities throughout the world. Nevertheless, almost all
of them are commercial projects. Despite that, there are also
many academic studies focused on solving problems regard-
ing transportation networks, including earliest-arrival prob-
lem and multicriteria problem in the literature. A significant
part of these studies stands on graph-based techniques, one of
which is Dijkstra’s algorithm [1].Multilabel correcting (MLC)
algorithm [2], transfer patterns [3], contraction hierarchies
(CH) [4], transit node routing (TNR) [5], and trip-based
public transit routing (TB) [6] can exemplify this category.
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Other studies, including round based public transit opti-
mized router (RAPTOR) [7] and connection scan algorithm
(CSA) [8], are not Dijkstra-based.They use arrays to organize
timetable information or elementary timetable connections.
Some studies perform precomputations to use precomputed
data for table lookups in shortest-path queries [3–5], while
others do not rely on preprocessing [7, 8].

In cities with insufficient subway infrastructure such
as Izmir, bus lines meet a significant part of the public
transportation needs. For instance, while maximum of 8
metro lines intersect in a transfer point in Paris, 55 bus
lines intersect in a transfer point in Izmir. This increases
the density and complexity of the transportation network.
The main contribution of this study is a proposal of a
novel gradual path-finding algorithm (GPFA) to solve the
multicriteria problem in such dense networks. GPFA has a
hybrid approach that utilizes the techniques of some efficient
algorithms including round based public transit optimized
router, transit node routing, and contraction hierarchies on
transportation graph and modifies Dijkstra’s algorithm for
fast computation of the queries. Second, IJPS is introduced
to indicate alternative routes by considering modal transfers
and user preferences. The other intention is to inform the
passengers about point of interests (POIs), car parks, and
events (concerts, exhibitions, etc.) located on their routes.
Thus, passengers will be encouraged by the social and cultural
activities carried out in the city, thanks to this unique feature.

The structure of the paper is follows: Section 2 states
the multicriteria problem. Section 3 discusses existing tech-
niques that are applicable to solving this problem. Section 4
introduces GPFA, our main contribution. Section 5 gives an
overview of the system architecture and provides the imple-
mentation details. Section 6 presents the scenario analysis
results, and, finally, Section 7 concludes the paper with a
summary of the work as well as future directions.

2. Problem Definition

In graph theory, a graph𝐺 is a set of vertices (nodes)𝑉, and a
set of edges 𝐸 has the form (𝑢, V), where 𝑢, V ∈ 𝑉 are ordered
distinct vertices. A path 𝑝 is a sequence of consecutive nodes
and edges that are formulated as V1, 𝑒1, V2, 𝑒2, . . . , 𝑒𝑗, V(𝑗+1) for
every 𝑖 (1 ≤ 𝑖 ≤ 𝑗); the edge 𝑒𝑖 connects V𝑖 and V(𝑖+1). The
length of the path is equal to 𝑖, which is the number of edges
traversed. A path is defined as the shortest path from the
origin 𝑜 to the destination 𝑑 if the path starts with the node 𝑜
and ends with the node 𝑑 and has the shortest length among
all paths from 𝑜 to 𝑑.

Finding all possible paths between any two nodes in a
graph with a large number of nodes is a classic example of
problems in the field of computational complexity theory [9].
Such problems require very large numbers of computations
and memory addresses to solve. Instead of finding all paths,
dealing with just the best 𝐾 path is generally the preferred
technique [10, 11]. The 𝐾-shortest-path problem is an exten-
sion algorithm of the single-source shortest-path problem.
The single-source shortest-path problem finds shortest paths
from an origin node 𝑜 to destination 𝐷 (𝐷 is equalized to 𝑉,
which is the set of all nodes in the graph). Yen’s algorithm is
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Figure 1: The scope of the problem.

one of the fundamental works dealing with the 𝐾-shortest-
path problem [12]. It finds not only the shortest path, but also
the second shortest, third shortest, and so on up to the 𝐾th
shortest path with increasing cost. It uses Dijkstra’s algorithm
[1], or any other shortest-path algorithm, to find the best 𝐾
path. Hundreds of studies offer new solutions or improve the
existing algorithms [13–15].

For public transportation networks, there are two well-
known problem definitions [16]. Earliest-arrival problem
only considers the time as the optimization criterion. When
the number of transfers or other criteria are considered, the
problem is then referred to as the multicriteria problem.
In this study, we want to answer the question illustrated
in Figure 1: “for a given departure time 𝑡𝑑, how can one
get from origin o to destination d with the least number
of transfers and the shortest traveling time by considering
modal preferences and an acceptable walking distance?” in an
acceptable response time. In this case, the best path is not just
the shortest one according to traveling time; here, transfer
count and user preferences have to be considered, too.

Themulticriteria problemhas a host of challenges to over-
come. Compared to static road networks, public transport
networks are more difficult to model, because they are less
hierarchically structured on large metropolitan areas [17].
Additionally, these networks are event-based and require
modeling in a time-dependent approach. Many algorithms
that perform well in road networks cannot perform well or
even fail in transportation networks. While basic routing
only considers static edge weights associated with travel
times, transportation networks employ a travel time function
depending on the chosen departure time. In multicriteria
optimization, it is necessary to consider multiple criteria
including the travel time and the number of transfers.
Also depending on user preferences, acceptable walking
distance, modal transfers, and vehicle type restrictions must
be considered, too. Instead of suggesting only the best route,
some favorable alternatives should be provided to the user.
Furthermore, precomputing is much more complicated in
public transportation routing and precomputed data must be
filtered effectively according to variable query parameters.

3. Related Works

There have been many recent advances in journey planning
on public transportation systems in recent years. Efficient
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algorithmic techniques (usually based on Dijkstra’s algo-
rithm) have been further developed for public transporta-
tion systems. Bast et al. gave an excellent survey of these
techniques [16]. Mainly, time-expanded and time-dependent
approaches have been used to model timetable information
[2]. In time-expanded approach [18] every node models a
departure or arrival event. The consecutive departure and
arrival events are connected by connection edges. In time-
dependent approach [19], every node models a station and
an edge is assigned between two nodes if a direct connection
between corresponding two stations exists. The weights of
the edges are assigned “on the fly” associated with the travel
time function. For the earliest-arrival problem, Pyrga et al.
showed that time-expanded approach constructs large graphs
and yields poor query performance compared to the time-
dependent approach [2]. Therefore, in this study we focused
on the time-dependent model.

One of the algorithms in time-dependent model is
multilabel correcting (MLC) algorithm that aims to find
all pareto-optimal solutions [2]. A path is called pareto-
optimal if another path does not dominate it.MLCcanhandle
multiple criteria that are modeled by multiple edge labels for
each criteria in a generalized Dijkstra’s algorithm. Another
technique in time-dependent model is transfer patterns [3].
It precomputes and stores each sequence of intermediate
transfer stations that can lead to an optimal route for every
source station A to all stations B reachable from A. The set
of these sequences of transfers is called transfer pattern that
achieves very fast query times. Contraction hierarchies (CH)
is also a time-dependent technique that performs precompu-
tation for node contraction [4]. It gradually removes nodes
from the graph and adds shortcuts to preserve the shortest
paths. CH has been applied to the multimodal transportation
networks [20] and the time-dependentmodel [21]. Algorithm
maintains multiple labels per vertex to ensure minimum
transfer counts. Transit node routing (TNR) is yet another
technique that determines a small set of the transit nodes
that every shortest path passes through at least one of these
nodes [5]. Distances are precomputed from each node to its
closest transit nodes (access nodes) to use for table lookups
in shortest-path queries. TNR has been applied to public
transit journey planning in [22]. Trip-based public transit
routing (TB) is a different approach that uses a graph where
nodes represent trips (not stops) and edges represent possible
transfers between trips [6, 23]. A two-phase preprocessing
step is required to compute all possible transfers between trips
and discarding the superfluous transfers. TB determines the
optimal routes in increasing order of transfers.

Round based public transit optimized router (RAPTOR)
[7] is a different approach that is not Dijkstra-based. Instead
of using a graph, it uses arrays of timetable information
including stops, trips, and routes. It does not rely on prepro-
cessing and operates in rounds by minimizing the transfer
count and the arrival time.With round 𝑖, the journeys consist-
ing of exactly 𝑖 transfers are computed. Another non-graph-
based algorithm is connection scan algorithm (CSA) [8, 24].
It is not based on trips and routes (as RAPTOR); instead
elementary connections of the timetable are organized in an
array that is sorted by departure time. This array is scanned

once per query, which is very efficient in practice. Dib et al.
proposed a heuristic approach whereby a Genetic Algorithm
(GA) was combined with a Variable Neighborhood Search
(VNS) to solve the multicriteria shortest-path problem in
multimodal networks [25]. Experimental results show that
the computational time is not prohibitive to integrate it within
an online journey planning system.

We propose a gradual path-finding algorithm for public
transportation networks that utilizes the published tech-
niques of different algorithms. Like RAPTOR, our algorithm
has a round base approach depending on transfer count,
but based on graph-based Dijkstra algorithm. The transfer
centers in our algorithm (the main items of Izmir transporta-
tion) correspond to the transit nodes in TNR technique. In
preprocessing step that is explained in Section 4.1, we found
and recorded the available paths that have up to two transfers
among all the transfer centers. We inspired from contraction
hierarchies to insert shortcuts between every transfer center
pair, which is connected via a direct route.

4. Gradual Path-Finding Algorithm

In this study, two main parts of IJSP have been developed
in a service-oriented model. These main components are
the Update Service and the Journey Planning Web Service
(JPWS). Update Service is aWindows service application that
executes some preprocessing tasks every night. JPWS is a
Windows Communication Foundation (WCF) web service
and acts as a routing engine for clients.

Preprocessing tasks consist of four steps, namely, col-
lecting and transforming transport data, determining nearby
stops, accessible transfer centers, and route planning among
all transfer center pairs. JPWS has a method that takes the
journey parameters from user applications and produces
alternative paths by using the GPFA. The algorithm schema
of Update Service and JPWS is given in Figure 2. Sections 4.1
and 4.2 give detailed explanation of the preprocessing tasks
and the GPFA, respectively.

4.1. Preprocessing Tasks. Standing on a common data format
makes an application able to work in all transit systems
for which open transit data has been released and the
common data is available to any developer to use. General
Transit Feed Specification (GTFS) is a common data format,
which has six required feeds and seven optional feeds for
representing the stops, routes, trips, and other schedule data
of a transportation network [26]. During the last years, the
GTFS has become themost popular format and there are 1000
transit agencies providing GTFS data as of June, 2017. Trans-
portation agencies in Izmir store transportation data in dif-
ferent formats. Update Service collects the current data from
transportation agencies, integrates them in accordance with
GTFS format, and stores them into the database. All required
feeds are generated for Izmir transportation network.

Tomake point-to-point queries in a transit network, some
foot edges are required.This is so that any stage of the journey
can be made on foot, or passengers may walk between stops
while transferring between two lines. Foot edges also provide
links between each part of the transportation network (bus,
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Figure 2: Algorithm schema of JPWS and Update Service procedures.

train, subway, and ferry) in the resultingmultimodal network
G. Two stops 𝑢 and V are labeled as nearby stops by adding
foot edges ((𝑢, V) ∈ 𝐸 and (V, 𝑢) ∈ 𝐸) between them if distance
(𝑢, V) is less than the maximum walking distance. Nearby
stops are computed using the Euclidean distance.

TNR technique precomputes the connections from each
potential origin or destination to its access transit nodes and
between all pairs of transit nodes [5]. In Izmir, themain trans-
portation lines are train, subway, and ferry. Passengers using
these lines can transfer to a bus line to reach their neighbor-
hood. Currently, there are 20 transfer centers, located mostly
around train, subway, and ferry stations, and each includes
up to 34 stops. A passenger who travels between two remote
points is likely to pass through one or more of these transfer
centers. Our path-finding algorithm uses this logic by assum-
ing the transfer centers to be “access transit nodes” in TNR
technique. Thus, determination of accessible transfer centers
for each stop is a preprocess, which runs after the update of
transportation data. In this study, an accessible transfer center
for a stop means that there is at least one path that has up to
two transfers between the stop and transfer center.

The path-finding preprocess calculates and records the
available paths that have up to two transfers among all the
transfer centers. If we refer to the transportation graph as 𝐺,
which consists of a set of transfer centers 𝑇, and each transfer
center has a set of stops 𝑆, a set of paths 𝑃 ⊆ 𝑠𝑛 ∈ 𝑡𝑖 × 𝑠𝑚 ∈ 𝑡𝑗
for every 𝑖 and 𝑗 (𝑖 ̸= 𝑗 and 𝑡𝑖, 𝑡𝑗 ∈ 𝑇) is calculated and stored
in a database table. p ∈ P is a path that has no or only one
transfer. Notations describes the notations used in this paper.

4.2. Proposed Algorithm. In this study, each stop (bus, train,
subway, and ferry) is represented as a node; a line connecting
two consecutive stops in a particular direction is represented
as a directed edge, thereby forming a transportation graph.
If two stops are in walking range, they are connected to each
other with foot edges. Transferring between different lines
occurs through foot edges. The edge weights of the vehicle

edges are represented as average travel times to cover the
specified transport segment. The average travel time for each
edge 𝑒 is computed by a travel time function 𝑓(𝑒) using the
statistical travel time of the transport segment at a given time
interval (e.g., [0:00–0:59], [1:00–1:59], . . . , [23:00–23:59]).
The edge weights of the foot edges are computed by taking
the geographic length of the transport segment and assuming
an average walking speed 𝑠w of a pedestrian as 6 km/h. After
the JPWS is launched, route and time table data, which are
used to create a static transportation graph, are loaded into
the memory once for use in the query execution. For each
individual query, a new auxiliary graph is constructed from
the static graph without any database queries. Then this
auxiliary graph is used to compute alternative routes. Nodes
and edges of user-unpreferred transportation modes are not
included in auxiliary graph.

Transferring between two lines takes time, including
walking between stops and waiting at the connecting line.
Passengers naturally wish to reduce this waiting time [27].
Additionally, passengers who are disabled, older, or carrying
heavy luggage or children usually prefer trips with fewer
transfers.Therefore, we developed theGPFA,which produces
a path primarily with fewer transfers and then according to
other criteria. The path-finding operation is completed in at
most five stages. If the necessary number of paths to achieve
𝐾-shortest paths cannot be identified, the operation proceeds
to the next stage. Calculation of the departure times of the
produced paths, filtering, and ordering of the results is then
undertaken. The stages of the GPFA appear in Figure 2. If
more than 𝐾 paths are achieved by the last stage, only 𝐾
journeys with highest score are shown to the user.

There may be multiple origin stops and multiple destina-
tion stops, which correspond to selected points. Therefore,
the problem is reduced to the single-source shortest-path
problem by running the modified Dijkstra’s algorithms for
each origin stop to all destination stops in Stages 2, 3,
and 5. We modified Dijkstra’s algorithm by determining
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edge weights on the fly to favor edges leading toward the
destination. In the shortest-path calculation, the total travel
time to cover the path forms the total cost of the path. So, we
can obtain the fastest path which has the transfer count we
currently work on. In our transportation graph, direct routes
are used as shortcuts between transfer center nodes to bypass
intermediate nodes in journey planning. This approach is an
adaption of contraction hierarchies [21].

We have illustrated an example scenario in Figure 3 to
explain and clarify some definitions. A passenger wants to
arrive at the Dokuz Eylül University Faculty of Engineering
from the Faculty of Medicine, which is located in a different
district. He is ready at the origin at 09:30 AM. To keep
the drawing simple, we only display the transfer stops. For
each transportation connection in the itinerary, we give the
traveling time in minutes and time of arrival at the next
transfer stop (e.g., (20, 10:07)). The GPFA suggests the route
alternatives by considering the transfer count and travel time.
In the first stage, the algorithm checks if a common line exists
between 𝐿O and 𝐿D, which implies a direct route between the
origin and the destination points. In this scenario, there is no
direct line that is connecting the origin and the destination.
In the second stage of the algorithm, routes containing only
one transfer are produced. In this case, one of the origin lines,
namely, Bus-554, is connected to one of the destination lines,
namely, Bus-304, by a walk.The passenger waits 5 minutes to
get on the first service of the Bus-554, when he arrived at the
origin stop. After he travels 32min by the Bus-554, he gets off
at the stop 𝑠2 andwalks 1min to arrive at the stop 𝑠3.There, he
waits 1min to get on the Bus-304. After 40min of travel on the
Bus-304, he then arrives at the destination at 10:49 AM. In the
third stage of the algorithm, routes containing two transfers
are discovered.According to one of the suggested paths in this
stage, the passenger can start the journey by the Bus-554, and
then transfers to the Metro-31 and the Bus-490, respectively,
to arrive at the destination at 10:53 AM. In the next stage, the
GPFA finds the paths that have up to two transfers, passing
through at least one transfer center. In this scenario, the
suggested path includes the Bus-554, Metro-31, Train-22, and
the Bus-878, respectively. The last stage of the algorithm that
finds 𝑛 transfer paths does not run in this example, since 𝐾
paths (𝐾 is assumed to be 3) are obtained already.

Some of the origin lines (e.g., Bus-950) are night-only
services which operate during the late night hours. These
lines do not take a part in any of the results for the
chosen departure time.The algorithm eliminates all the paths
that contain lines causing unacceptable waiting times. Thus,
timetable restricts the route selection from the viewpoint of
time or space as it is in [28, 29]. In the following subsections,
the stages of GPFA will be explained in detail.

4.2.1. Finding Direct Routes. Direct paths, which have no
transfers, are calculated by using origin lines 𝐿O and desti-
nation lines 𝐿D. For a line 𝑙, if 𝑙 ∈ 𝐿O and 𝑙 ∈ 𝐿D, we can
say that 𝑙 is a line that reaches the destination from the origin
with no transfers. A Path obtained at this stage has only one
SubPath, which contains line 𝑙. Each line that forms a direct
path is stored in the used-line list 𝐿U to prevent using it in
calculating paths with transfers. Direct paths are obtained by

using static data without any database queries and shortest-
path algorithms.

4.2.2. Finding Routes Containing One Transfer. In this stage
of the algorithm, the aim is finding a path that starts with
an origin line and ends with a destination line. The origin
and destination lines must be connected by a transfer stop or
there must be a walk between two lines. A modified version
of Dijkstra’s algorithm is developed to obtain paths that start
with an origin line and end with a destination line. The
algorithm allows starting with an origin line, transferring to
a destination line, and arriving at the destination stop using
that line (Figure 4) according to the given restrictions below:

(i) 𝑙1 ∈ 𝐿O, 𝑙2 ∈ 𝐿D.
(ii) 𝑙1, 𝑙2 ∉ 𝐿U.
(iii) 𝑠1 ∈ 𝑆O, 𝑠2 ∈ 𝑆D, and 𝑠3, 𝑠4 ∉ 𝑆O, 𝑆D.

In our algorithm, each node (stop) has a weight vector
with the size of its outbound line count.With our approach, in
contrast to a conventional graph, edge weights are not known
at the beginning of the process. Weight values are assigned
according to restrictions when running the algorithm. The
weights of edges that do not meet these requirements remain
as infinity, while the other weights are identified by the travel
time function. The minimum-cost path that corresponds to
the rules is obtained as a result and returned as a Path object.

Themodified version of Dijkstra’s algorithm runs for each
origin line 𝑙. We use two cost values 𝐶T and 𝐶W in the
algorithm. 𝐶T is used to find paths with fewer stops when
𝐶W is employed to identify paths with less walking. After
finding a path with one transfer, new paths are generated by
replacing the second line 𝑙2 with parallel linesusing static data.
A parallel line is a line that passes through both the first stop
and the last stop of 𝑙2 in the produced SubPath. Parallel lines
are then added to 𝐿U. If the necessary path count cannot
be found, the algorithm runs again for 𝑙1 to search for an
alternative path without using 𝑙2 and its parallel lines. This
stage continues until finding 𝐾 paths, or a path with one
transfer can no longer be found for any line 𝑙1. Pseudocode
of the modified Dijkstra’s algorithm for routes that contain
one transfer is given in Algorithm 1.

4.2.3. Finding Routes Containing Two Transfers. If the neces-
sary path count (𝐾 paths) cannot be found in Stages 1 and
2 (Figure 2), the process continues by identifying routes that
contain two transfers. At the beginning of this stage, predes-
tination lines 𝐿Pr, which intersect with a destination line at
a stop directly or via a walk, are determined. The algorithm
finds the paths that start with an origin line, continue with a
predestination line, and endwith a destination line. Arbitrary
lines can be connected at a transfer stop or there may be
a walk between two lines (Figure 5) according to the given
restrictions:

(i) 𝐿Pr ∩ 𝐿O = ⌀, 𝐿Pr ∩ 𝐿D = ⌀.
(ii) 𝑙1 ∈ 𝐿O, 𝑙2 ∈ 𝐿Pr, 𝑙3 ∈ 𝐿D.
(iii) 𝑙1, 𝑙2, 𝑙3 ∉ 𝐿U, 𝑠1 ∈ 𝑆O, 𝑠2 ∈ 𝑆D.
(iv) 𝑠3, 𝑠4, 𝑠5, 𝑠6 ∉ 𝑆O, 𝑆D.
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Pseudocode of the modified Dijkstra’s algorithm for
routes that contain two transfers is given in Algorithm 2. In
this version of Dijkstra’s algorithm, each node has a transfer
count property in addition to distance property. Transfer
count property is used to hold the transfer count of the
minimum-cost path of each node. After a path is found
with two transfers, new paths are generated by replacing the
second line 𝑙2 with its parallel lines and then by replacing
the third line 𝑙3 with its parallel lines. 𝑙2, 𝑙3, and their parallel
lines are then added to 𝐿U. If the necessary count of paths
still cannot be found, the algorithm runs again for 𝑙1 to find
an alternative path without using lines that are in 𝐿U. This

stage continues until producing 𝐾 paths, or a path with two
transfers can no longer be found with any 𝑙1.

4.2.4. Finding Routes Using Transfer Centers. If the necessary
path count with zero, one, or two transfers cannot be found
between the origin and destination stops, a search must
be conducted for paths over two transfers. Considering the
traffic infrastructure in Izmir, a personmaking a trip between
twodistant points is likely to pass through a transfer center. At
this stage, the aim is finding paths with over two transfers and
passing through at least one transfer center. As noted above,
determining the accessible transfer centers for all stops and
the path-finding preprocess between each transfer center are
accomplished by Update Service.

A path-finding process using transfer centers can occur in
two cases as illustrated in Figure 6. In the first case, origin and
destination stops have common accessible transfer centers
(Figure 6(a)). In this case, paths with zero transfers and one
transfer are calculated between the origin stop and common
transfer center by the techniques noted for Stages 1 and 2. If
no path is found, paths with two transfers are calculated. The
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Inputs: origin, origin line l, LU, LD
for each node n in Graph:

-n.dist fl infinity;

-n.previous fl undefined;

origin.dist fl 0;

Q fl Priority queue according to distance;

enqueue origin into Q;

while Q.isEmpty != true:

-u fl node with min distance in Q;

-remove u from Q;

-for each outbound edge e of node u:

--v fl node reachable from u with edge e;

--e.weight fl infinity;

--if e.Line ∉ LU:

---if u.previous != null: prev e fl edge used for reaching to u

----if prev e.Line ∈ LD:

-----if e.Line = prev e.Line: e.weigth fl 𝑓(𝑒);
----else

-----if e is a line:

------if e reaches a destination stop: e.weigth fl 𝑓(𝑒);
------else if e.Line = prev e.Line: e.weigth fl 𝑓(𝑒) + CT;

-----else if e is foot-edge: e.weigth fl 𝑓(𝑒) + CW;

---else//u.previous = null:

----if e.Line is l: e.weigth fl 𝑓(𝑒);

-for each outbound edge e of node u:

--v fl node reachable from u with edge e;

--dist v fl u.dist + e.weigth;

--if dist v < v.dist:

---dequeue v from Q with key v.dist;

---v.dist fl dist v;

---v.previous fl u;

---enqueue v into Q with key v.dist;

S fl empty sequence

u fl target

while u.previous is not null:

-insert u into S;

-u fl u.previous;

Algorithm 1: Finding routes containing one transfer.
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Figure 5: Illustration of routes with two transfers.



8 Journal of Advanced Transportation

Inputs: origin, origin line l, LU, LD, LPr
for each node n in Graph:

-n.dist fl infinity;

-n.trCnt fl 0; // Transfer Count

-n.previous fl undefined;

origin.dist fl 0;

Q fl Priority queue according to distance;

enqueue origin into Q;

while Q.isEmpty != true:

-u fl node with min distance in Q;

-remove u from Q;

-for each outbound edge e of node u:

--v fl node reachable from u with edge e;

--e.weight fl infinity;

--if e.Line ∉ LU:

---if u.previous != null: prev e fl edge used for reaching to u;

----if e is a line:

-----if ((u.trCnt = 2 and e.Line = prev e.Line) or

(u.trCnt = 1 and e.Line != prev e.Line and e.Line ∈ LD) or

(u.trCnt = 1 and e.Line = prev e.Line) or

(u.trCnt = 0 and e.Line != prev e.Line and e.Line ∈ LPr) or

(u.trCnt = 0 and e.Line = prev e.Line)): e.weigth fl 𝑓(𝑒);
----else // e is a foot-edge

-----if ((u.trCnt = 0 and prev e is a line) or

----- (u.trCnt = 1 and prev e is a line)): e.weigth fl 𝑓(𝑒);
-----else e.weigth fl infinity;

---else // u.previous = null:

----if e.Line is l: e.weigth fl 𝑓(𝑒);

-for each outbound edge e of node u:

--v fl node reachable from u with edge e;

--prev e fl edge used for reaching to u;

--dist v fl u.dist + e.weigth;

--if dist v < v.dist:

---dequeue v from Q with key v.dist;

---v.dist fl dist v;

---v.previous fl u;

---v.trCnt fl u.trCnt;

---if e.Line != prev e.Line: v.trCnt fl u.trCnt + 1;

---enqueue v into Q with key dist v;

S fl empty sequence;

u fl target;

while u.previous is not null:

-insert u into S;

-u fl u.previous;

Algorithm 2: Finding routes containing two transfers.

same process is undertaken between the common transfer
center and destination stop. 𝑃1 is the set of paths found
between the origin and transfer center; 𝑃2 is the set of paths
found between the transfer center and destination.The result
set P is obtained by cross production of 𝑃1 and 𝑃2, where
𝑝 ∈ 𝑃 and 𝑝 ⊂ 𝑃1 × 𝑃2.

In the second case, origin and destination stops do not
have a common transfer center (Figure 6(b)). Paths with zero

transfers and one transfer are calculated between the origin
stop and accessible transfer center𝑇1; pathswith two transfers
are calculated if necessary. The same procedure is conducted
for transfer center 𝑇2 and destination stops. Paths between
the two transfer centers are calculated and stored into the
database by Update Service. 𝑃1 is the set of paths between the
origin and transfer center 𝑇1; 𝑃2 is the set of paths between
the transfer center 𝑇1 and transfer center 𝑇2 stored in the
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Figure 6: Path-finding process between two stops through one
transfer center (a) and two stops through two transfer centers (b).

database; 𝑃3 is the set of paths between the transfer center
𝑇2 and destination. In this case, the result set 𝑃 is obtained
by cross production of 𝑃1, 𝑃2, and 𝑃3, where 𝑝 ∈ 𝑃 and
𝑝 ⊂ 𝑃1 × 𝑃2 × 𝑃3.

During cross production, if the destination stop of 𝑃1
differs from the start stop of 𝑃2, a walk is inserted between
them. Conversely, if the last line of 𝑃1 is the same as the first
line of 𝑃2, the two parts are combined.The same procedure is
performed for 𝑃2 and 𝑃3.

4.2.5. Finding Routes Containing 𝑛 Transfers. If the 𝐾 paths
still cannot be produced, we use another modified version
of Dijkstra’s algorithm to find minimum-cost paths that have
over two transfers. We employ some constants to change the
behavior of the algorithm. 𝐶Tr is the constant value added
onto edge weight at each line change. If the transferred line
is not a destination line but a predestination line, coefficient1
is added to edge weight. If the transferred line is in neither
𝐿D nor 𝐿Pr, coefficient2 is added to edge weight. coefficient2
> coefficient1, and these values are determined according
to edge weights in the graph. 𝐶W is added to weights of
foot edges, so a path with less walking also has lower cost.
Pseudocode of the modified Dijkstra’s algorithm for routes
that contain 𝑛 transfers is given in Algorithm 3.

4.2.6. Algorithm Complexity. In our implementation, all
unscanned reached nodes are stored using their tentative
distance values as keys in a priority queue implemented by
SortedDictionary < TKey, TValue > class, which has 𝑂(log 𝑛)
search time complexity. Every node reachable from 𝑜 is
inserted and removed from the queue exactly once. Each
node is scanned once at most, and each edge is relaxed once
at most. Hence, the worst-case complexities of our modified
Dijkstra’s algorithms are 𝑂((𝑉 + 𝐸) × log𝑉). Average-case
complexity is much better than the worst-case complexity
thanks to our restrictions while visiting the nodes and
relaxing the edges.

5. Case Studies on Izmir
Public Transportation

With a population of over 4 million, Izmir is the third-largest
city in Turkey. Each year, approximately 200,000 tourists
visit Izmir, where four public transport agencies currently

Table 1: Visited edge counts for modified and pure Dijkstra’s
algorithms.

Stages Visited edge count Ratio%
2 364 1.32
3 2,169 7.89
4 5,833 21.21
5 21,288 77.39
Pure Dijkstra’s algorithm 27,464 99.85

operate. Route and timetable information from these agencies
is available on their websites, but there is no information
about connections with other forms of transport.

In this study, we present the IJPS that stands on a
service-oriented architecture (Figure 7) to assist domestic and
foreign visitors, as well as locals, in efficient use of urban
transportation.We selected Izmir, Turkey, as the pilot city for
this system. IJPS indicates alternatives routes, transfer details,
and departure and arrival times according to user preferences
for any origin or destination point. The system provides
optimal route choices according to multiple criteria, such as
desiredmeans of transport, maximumwalking distance, least
number of changes, and shortest traveling time. IJPS runs on
different platforms to provide a wide range of usage anytime
and anywhere. Applications are available in both English and
Turkish for mobile web and desktop web portals, at kiosks,
and for Android, iPhone, and Windows Phone platforms.
Sample screens are shown in Figure 8, which display mobile
Web andWeb applications. IJPS supplies information includ-
ing weather, traffic and road conditions, approximate taxi
fares, activity centers, and events along the route.

At the beginning of the journey plan, origin and destina-
tion points are determined.Three methods are used in deter-
mining the origin and destination points: making a selection
from a pool of predefined POIs, making selection from stop
or station names, andmarking the location on themap.Other
parameters are the desired means of transport, preference
regarding walking between transfers, maximum acceptable
walking distance, and sorting criteria for the results. Accord-
ing to user preferences, event centers and POIs on the route
can be visualized on the map. POIs along the route are pre-
sented as a list. Another list offered includes cultural centers,
such as museums and exhibitions, and event centers, such as
cinemas, theaters, and concert halls near the route. If the user
selects a center from the list, events that are (or will be) taking
place around the date and time of the journey are displayed.

6. Scenario Analysis

Here, we present an experimental study, investigating the
reduction in search space achieved by the GPFA. A sample
query for the origin-destination pair “Evka 3TransferCenter”
and “Buca City Hall” has been executed to evaluate search
spaces for the stages of the GPFA. Table 1 shows the visited
edge counts among total 27,506 edges present in graph for the
modifiedDijkstra’s algorithmswhich were used in Stages 2–5.

The visited edge counts increase over the upper stages of
the algorithm. We reduced the search space to 1.32%, 7.89%,
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Inputs: origin, origin line l, LU, LD, LPr
for each node n in Graph:

-n.dist fl infinity;

-n.previous fl undefined;

Q fl Priority queue according to distance;

for each origin stop s in SS:

-s.dist fl 0;

-enqueue s into Q;

while Q.isEmpty != true:

-u fl node with min distance in Q;

-remove u from Q;

-for each outbound edge e of node u:

--v fl node reachable from u with edge e;

--e.weight fl infinity;

--if e.Line ∉ LU:

---if u.previous != null:

----prev e fl edge used for reaching to u

----if e is a line:

-----if e.Line != prev e.Line:

------if e.Line ∈ LD: e.weight fl 𝑓(𝑒) + CTr;

------else if e.Line ∈ LPr: e.weight fl 𝑓(𝑒) + CTr + coefficient1;

------else e.weight fl 𝑓(𝑒) + CTr + coefficient2;

-----else e.weight fl 𝑓(𝑒); // e.Line = prev e.Line

----else if e is foot-edge: e.weight fl 𝑓(𝑒) + CW;

---else e.weight fl 𝑓(𝑒); // u.previous = null

-for each outbound edge e of node u:

--v fl node reachable from u with edge e;

--dist v fl u.dist + e.weigth;

--if dist v < v.dist:

---dequeue v from Q with key v.dist;

---v.dist fl dist v;

---v.previous fl u;

---decrease-key v in Q;

---enqueue v into Q with key dist v;

S fl empty sequence;

u fl target;

while u.previous is not null:

-insert u into S;

-u fl u.previous;

Algorithm 3: Finding routes containing 𝑛 transfers.

21.21%, and 77.39% for Stages 2–5, respectively; the pure Dijk-
stra’s algorithm visits 99.85% of all edges. Reducing the search
space to this degree underlines the good performance of the
algorithm. Visualizations of the search spaces corresponding
to the sample query and optimal paths obtained for Stages 2–5
appear in Figure 9.

To verify the accuracy, reliability, and consistency of the
IJPS, we created a test data table; we executed 96,107 sample
queries from the first stop of all available bus, train, subway,
and ferry lines to the lines’ last stops. The statistical details
obtained from the test queries are shown in Table 2. Stages
1 and 2 were executed for 100% of all queries independently
from the result count. The operation continued with Stage

3 for 69.2% of queries because the 𝐾-shortest path (𝐾 was
assumed to be 5) could not be found in the first two stages.
After Stage 3, 30.1% of queries were processed in Stage 4 to
achieve the 𝐾-shortest path (𝐾 was here also assumed to be
5). Only 0.8% of queries that could not produce at least three
paths continued to Stage 5. Approximately 30% of all queries
ended in the first two stages; around 70% ended in Stage 3.
In the first four stages, we observed average runtimes under
1 sec. But, in Stage 5, the average runtimewas 8.47 sec because
the rules applied at this stage did not restrict the search space
as the other stages. This experimental results show that our
path-finding algorithm takes 0.63 sec of processing time on
average. It should be noted that all the runtimes contained
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Figure 8: Sample screens from IJPS applications for (a) mobile web and (b) web.
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Figure 9: Visualization of search spaces for Stages 2–5. The black lines indicate the traversed edges; the red lines show the optimal path.

Table 2: Average runtime (sec) and result count for stages of GPFA algorithm.

Stage # of queries executed (%) Avg. runtime (sec) # of queries that generated result (%) Avg. result count
1 96,107 (100.0) 0.00005 15,738 (16.4) 2.24
2 96,107 (100.0) 0.08743 47,319 (49.2) 20.46
3 66,500 (69.2) 0.37313 47,434 (71.3) 28.92
4 28,905 (30.1) 0.77419 27,392 (94.8) 949.27
5 777 (0.8) 8.47079 91 (11.7) 2.38
Overall 0.62618 295.00

several runs of modified Dijkstra’s algorithms. Overall, GPFA
produces accurate results for all queries with an acceptable
response time for system users.

7. Conclusion

In this study, we designed and implemented the service-
oriented, multimodel IJPS to assist travelers in journey
planning. We proposed a gradual approach to path finding
in transportation networks with the GPFA. Our proposed
algorithm employed the modified versions of Dijkstra’s algo-
rithm in several stages.ThemodifiedDijkstra’s algorithms ran
several times at each stage depending on the stop and line
count. We have presented our results obtained by running
the IJPS on the city of Izmir for journey planning. We

assigned edge weights on the fly associated with the travel
time function. The search space was reduced by decreasing
the number of visited nodes and edges in modified Dijkstra’s
algorithms. Our results showed that the number of visited
edges is increased over the upper stages of the algorithm.
Increases in the number of visited edges also resulted in
increasing the algorithm runtime. We observed that the
average response time of GPFA was 0.63 sec.

IJPS is a flexible system that can be applied to all means
of public transport. Prospective means of transport to be
operated in Izmir can be integrated into the system, too. IJPS
has the potential to be applied in any city.The performance of
IJPS can be enhanced by combination with other multimodel
speed-up techniques.
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Notations

𝑜, 𝑑: Origin node, destination node
𝑝: Path: the obtained routes are kept as

Path objects that store route details
sp: SubPath: Path object has a SubPath

list, which relates to each part of a
route

𝑠, 𝑡: Stop or station, transfer center
𝑆O and 𝑆D: Origin stops and destination stops
𝑙: Transportation line (bus, ferry,

subway, or train)
𝐿O: Origin lines: outbound transitions of

origin stops
𝐿D: Destination lines: inbound

transitions of destination stops
𝐿U: Used-line list: the lines which form a

direct path
𝐿Pr: Predestination lines: the lines that

intersect with a destination line at a
stop directly or with a walk

𝐶T, 𝐶W, and 𝐶Tr: Transition cost, walk cost, and
transfer cost.
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