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Graphs are often used to describe the structure of compounds and drugs. Each vertex in the graph represents themolecule and each
edge represents the bond between the atoms.The resistance distance between any two vertices is equal to the resistance between the
two points of an electrical network.TheResistance-Harary index is defined as the sum of reciprocals of resistance distances between
all pairs of vertices. In this paper, the extremal graphs withmaximumResistance-Harary index are determined in connected graphs
with given vertices and cut edges.

1. Introduction

Recently, the development of computational chemistry owes
much to the theory of graphs. One of the most popular areas
is topological index. The molecular topological index can
describe the molecular structure quantitatively and analyze
the structure and performance of molecules.

Among them, the most common topological index is
resistance distance. The resistance distance is raised by Klein
and Randić [1] as a distance function. Let 𝐺 be a simple
connected graph with vertex set 𝑉(𝐺) and edge set 𝐸(𝐺).

The resistance distance between vertices 𝑢 and V of 𝐺 is
recorded as 𝑟𝐺(𝑢, V), which represents the effective resistance
between two nodes 𝑢 and V in an electronic network; that is
to say, the vertex corresponds to the node of the electronic
network, and the edge corresponds to the unit resistance.

Similar to the traditional path distance, the resistance
distance not only has good mathematical characteristics but
also has good physical characteristics [2, 3]; at the same time,
it also has a good application in chemistry.

Harary index is another kind of graph invariants pro-
posed by Plavšić et al. [4] and by Ivanciuc et al. [5] in 1993 for
the characterization of molecular graphs. Name this in honor
of Professor Frank Harary’s birthday.TheHarary index𝐻(𝐺)
is defined as the sum of reciprocals of distances between all
pairs of vertices of the graph 𝐺; that is,

𝐻(𝐺) = ∑
{𝑢,V}⊆𝑉(𝐺)

1𝑑 (𝑢, V) . (1)

Gutman [6] and Xu [7] investigated the Harary index of
trees; they studied the Harary index of tree and pointed out
that the path and the star attain the minimal and maximal
value of Harary index, respectively, among a tree with given
n vertices. In recent years, the Harary index was well studied
in mathematical and chemical literatures [8].

The reciprocal resistance distance is also called electrical
conductance, Klein and Ivanciuc [9] investigated QSAR and
QSPR molecular descriptors computed from the resistance
distance and electrical conductance matrices, and they pro-
posed the global cyclicity index 𝐶(𝐺) as

𝐶 (𝐺) = ∑
𝑢V∈𝐸(𝐺)

[ 1𝑟 (𝑢, V)] − |𝐸𝐺| , (2)

where the sum is over all edges of 𝐺.
In [10], using graph theory, electronic networks, and real

number analysis methods, Yang obtains some conclusions
about the global cyclicity index.

Following the definition of the Harary index, Chen et
al. [11] generalized the global cyclicity index and introduced
Resistance-Harary index, defined as

RH (𝐺) = ∑
{𝑢,V}⊆𝑉(𝐺)

1𝑟 (𝑢, V) . (3)

In [11], Chen et al. depicted the graphs with largest and
smallest Resistance-Harary index in all unicyclic graphs.
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All graphs considered in this paper are finite and simple.
Before proceeding, we introduce some further notation

and terminology. A cut edge is an edge whose deletion
increases the number of components. Denote by 𝐾𝑛, 𝐶𝑛,
and 𝑆𝑛 the complete, cycle, and star graph on 𝑛 vertices,
respectively. For a graph 𝐺 with V ∈ 𝑉(𝐺), 𝐺 − V denotes the
graph resulting from 𝐺 by deleting V and its incident edges.
For an edge 𝑢V of the graph 𝐺 (the complement of 𝐺, resp.),𝐺 − 𝑢V (𝐺 + 𝑢V, resp.) denotes the graph resulting from 𝐺 by
deleting (adding, resp.) 𝑢V.

For other definitions, we can refer to [12].
In this thesis, we consider the Resistance-Harary index

of graphs given cut edge. We will determine the graphs
withmaximumResistance-Harary index in connected graphs
given vertices and cut edges.

2. Some Preliminary Results

We first list or prove some lemmas as basic but necessary
preliminaries.

Lemma 1 (see [1, 13, 14]). Let 𝑥 be a cut vertex of a graph 𝐺,
and let 𝑎 and 𝑏 be vertices in different components of 𝐺 − 𝑥.
Then

𝑟 (𝑎, 𝑏) = 𝑟 (𝑎, 𝑥) + 𝑟 (𝑥, 𝑏) . (4)

Lemma2. The functions𝑓1(𝑥) = 𝑥/(2/𝑥+𝑚)−(𝑥−1)/(2/(𝑥−1)+𝑚) for 𝑥 ≥ 2 and𝑚 > 0 and𝑓2(𝑥) = 𝑥/(2/𝑥+𝐴)(2/𝑥+𝐵)
for 𝑥 > 1 and 𝐴 > 0, 𝐵 > 0 are strictly increasing.
Proof. By simple calculation,

𝑓󸀠1 (𝑥) = 4𝑥 + 𝑥2𝑚(2 + 𝑚𝑥)2 − 𝑚𝑥
2 − 2𝑚𝑥 + 𝑚 + 4𝑥 − 4(2 + 𝑚𝑥 − 𝑚)2

= 4𝑚 (2𝑥 − 1) + 16(2 + 𝑚𝑥)2 (2 + 𝑚𝑥 − 𝑚)2 > 0.
(5)

Since 𝑥 ≥ 2 and𝑚 > 0, 𝑓󸀠1(𝑥) is the derivative of function𝑓1(𝑥) on 𝑥. Obviously, 𝑓1(𝑥) is a strictly increasing function
for 𝑥 ≥ 2 and𝑚 > 0.

Similarly, we prove that the function 𝑓2(𝑥) = 𝑥/(2/𝑥 +𝐴)(2/𝑥 + 𝐵) for 𝑥 > 1 and 𝐴 > 0, 𝐵 > 0 is also an increasing
function. We finally obtain the result.

Lemma 3. Let 𝐺 be a connected graph with at least three
vertices. If 𝐺 is not isomorphic to 𝐾𝑛, Let 𝐺∗ = 𝐺 + 𝑒, and
then RH(𝐺∗) > RH(𝐺).
Proof. Suppose that 𝐺 is not a complete graph. Then there
exists a pair of vertices V𝑖 and V𝑗 in 𝐺 such that V𝑖V𝑗 ∈ 𝐸(𝐺).

Let 𝐺∗ = 𝐺 + V𝑖V𝑗, we have

RH (𝐺∗) − RH (𝐺) = RH (𝐺 + V𝑖V𝑗) − RH (𝐺)
= ∑
1≤𝑟<𝑠≤𝑛

( 1𝑟𝐺∗ (V𝑟, V𝑠) −
1𝑟𝐺 (V𝑟, V𝑠))

= ( 1𝑟𝐺∗ (V𝑖, V𝑗) −
1𝑟𝐺 (V𝑖, V𝑗))

+ ∑
1≤𝑟<𝑠≤𝑛
(𝑟,𝑠) ̸=(𝑖,𝑗)

1𝑟𝐺∗ (V𝑟, V𝑠) −
1𝑟𝐺 (V𝑟, V𝑠) .

(6)

We only to prove that 𝑟𝐺∗(V𝑖, V𝑗) < 𝑟𝐺(V𝑖, V𝑗); the proof
of 𝑟𝐺∗(V𝑟, V𝑠) < 𝑟𝐺(V𝑟, V𝑠) for (𝑟, 𝑠) ̸= (𝑖, 𝑗) is similar. We
distinguish the following two cases.

Case 1. V𝑖 and V𝑗 are vertices of cycle 𝐶𝑔 in 𝐺, where 𝑔 is the
length of 𝐶𝑔.

Let 𝑑1(V𝑖, V𝑗) and 𝑑2(V𝑖, V𝑗) be distance between V𝑖 and V𝑗
in the cycle 𝐶𝑔, respectively. By the definition of resistance,
we have

1𝑟𝐺∗ (V𝑖, V𝑗) −
1𝑟𝐺 (V𝑖, V𝑗)

= ( 1𝑑1 (V𝑖, V𝑗) +
1𝑑2 (V𝑖, V𝑗) + 1)

− ( 1𝑑1 (V𝑖, V𝑗) +
1𝑑2 (V𝑖, V𝑗)) > 0.

(7)

That is to say, 𝑟𝐺∗(V𝑖, V𝑗) < 𝑟𝐺(V𝑖, V𝑗).
Case 2. V𝑖 and V𝑗 are not vertices in any cycle of 𝐺.

In this case, we have

𝑟𝐺∗ (V𝑖, V𝑗) − 𝑟𝐺 (V𝑖, V𝑗) = 𝑑𝐺 (V𝑖, V𝑗)1 + 𝑑𝐺 (V𝑖, V𝑗) − 𝑑𝐺 (V𝑖, V𝑗)

= 𝑑𝐺 (V𝑖, V𝑗)( 11 + 𝑑𝐺 (V𝑖, V𝑗) − 1) < 0.
(8)

This completes the proof.

Lemma 4. Let 𝑥𝑦 ∈ 𝐸(𝐺) be a cut edge in 𝐺, and let 𝐺1 and𝐺2 be the two components of 𝐺 − 𝑥𝑦. Suppose further that 𝑥 ∈𝑉(𝐺1) and 𝑦 ∈ 𝑉(𝐺2), and then RH(𝐺) = RH(𝐺1)+RH(𝐺2)+∑𝑎∈𝑉(𝐺1)∑𝑏∈𝑉(𝐺2)(1/(𝑟𝐺(𝑎, 𝑥) + 𝑟𝐺(𝑏, 𝑦) + 1)).
Proof. By the definition of Resistance-Harary index and by
Lemma 1, we have

RH (𝐺) = ∑
𝑎,𝑏∈𝑉(𝐺𝑖)

1𝑟𝐺 (𝑎, 𝑏) + ∑
𝑎∈𝑉(𝐺1)

∑
𝑏∈𝑉(𝐺2)

1𝑟𝐺 (𝑎, 𝑏)
= RH (𝐺1) + RH (𝐺2)
+ ∑
𝑎∈𝑉(𝐺1)

∑
𝑏∈𝑉(𝐺2)

1𝑟𝐺 (𝑎, 𝑥) + 𝑟𝐺 (𝑏, 𝑦) + 1 .
(9)

This completes the proof.
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Figure 1: The graphs in Lemma 5.

Lemma 5. Let 𝐺 and 𝐺󸀠 be the graphs in Figure 1, where 𝐺0 is
a complete graph, and then 𝑅𝐻(𝐺) ≤ 𝑅𝐻(𝐺󸀠), with equality if
and only if 𝑥1 = 𝑥2 = ⋅ ⋅ ⋅ = 𝑥𝑟.
Proof. From the definition of the Resistance-Harary index
and Lemma 4, we have

RH (𝐺) = ∑
1≤𝑖<𝑗≤𝑛

1𝑟𝐺 (V𝑖, V𝑗) =
𝑟∑
𝑖=0

RH (𝐺𝑖) + 𝑟∑
𝑖=1

∑
𝑎∈𝑉(𝐺0)

∑
𝑏∈𝑉(𝐺𝑖)

1𝑟𝐺 (𝑎, 𝑏) + ∑
1≤𝑖<𝑗≤𝑟

∑
𝑏∈𝑉(𝐺𝑖)

∑
𝑐∈𝑉(𝐺𝑗)

1𝑟𝐺 (𝑏, 𝑐)
= 𝑟∑
𝑖=0

RH (𝐺𝑖) + 𝑟∑
𝑖=1

∑
𝑎∈𝑉(𝐺0)

∑
𝑏∈𝑉(𝐺𝑖)

1𝑟𝐺0 (𝑎, 𝑥𝑖) + 𝑟𝐺𝑖 (𝑦𝑖, 𝑏) + 1
+ ∑
1≤𝑖<𝑗≤𝑟

∑
𝑏∈𝑉(𝐺𝑖)

∑
𝑐∈𝑉(𝐺𝑗)

1𝑟𝐺𝑖 (𝑏, 𝑦𝑖) + 𝑟𝐺𝑗 (𝑐, 𝑦𝑗) + 2 + 𝑟𝐺0 (𝑥𝑖, 𝑥𝑗) .
(10)

Similarly,

RH (𝐺󸀠) = ∑
1≤𝑖<𝑗≤𝑛

1𝑟𝐺󸀠 (V𝑖, V𝑗)
= 𝑟∑
𝑖=0

RH (𝐺𝑖) + 𝑟∑
𝑖=1

∑
𝑎∈𝑉(𝐺0)

∑
𝑏∈𝑉(𝐺𝑖)

1𝑟𝐺󸀠 (𝑎, 𝑏)
+ ∑
1≤𝑖<𝑗≤𝑟

∑
𝑏∈𝑉(𝐺𝑖)

∑
𝑐∈𝑉(𝐺𝑗)

1𝑟𝐺󸀠 (𝑏, 𝑐)

= 𝑟∑
𝑖=0

RH (𝐺𝑖)
+ 𝑟∑
𝑖=1

∑
𝑎∈𝑉(𝐺0)

∑
𝑏∈𝑉(𝐺𝑖)

1𝑟𝐺0 (𝑎, 𝑥1) + 𝑟𝐺𝑖 (𝑦𝑖, 𝑏) + 1
+ ∑
1≤𝑖<𝑗≤𝑟

∑
𝑏∈𝑉(𝐺𝑖)

∑
𝑐∈𝑉(𝐺𝑗)

1𝑟𝐺𝑖 (𝑏, 𝑦𝑖) + 𝑟𝐺𝑗 (𝑐, 𝑦𝑗) + 2 .
(11)

Since 𝐺0 is a complete graph, 𝑟𝐺0(𝑎, 𝑥1) = 𝑟𝐺0(𝑎, 𝑥𝑖) = 2/𝑛0
for 1 ≤ 𝑖 ≤ 𝑟. And

RH (𝐺󸀠) − RH (𝐺) = ∑
1≤𝑖<𝑗≤𝑟

∑
𝑏∈𝑉(𝐺𝑖)

∑
𝑐∈𝑉(𝐺𝑗)

( 1𝑟𝐺𝑖 (𝑏, 𝑦𝑖) + 𝑟𝐺𝑗 (𝑐, 𝑦𝑗) + 2 −
1𝑟𝐺𝑖 (𝑏, 𝑦𝑖) + 𝑟𝐺𝑗 (𝑐, 𝑦𝑗) + 2 + 𝑟𝐺0 (𝑥𝑖, 𝑥𝑗)) ≥ 0 (12)

with equality if and only if 𝑟𝐺0(𝑥𝑖, 𝑥𝑗) = 0; that is, 𝑥1 = 𝑥2 =⋅ ⋅ ⋅ = 𝑥𝑟. This completes the proof.

Lemma 6. Let 𝐺 and 𝐺󸀠 be the graphs depicted in Figure 2,
where 𝐺2 and 𝐺3 are all complete graphs. Let 𝑛𝑖 be the number
of vertices of 𝐺𝑖, where 𝑖 = 2, 3. If 𝑛3 > 𝑛2 and 𝑉(𝐺4) may be
an empty set, then RH(𝐺󸀠) > RH(𝐺).
Proof. By the definition of the Resistance-Harary index and
Lemmas 1 and 4, we have

RH (𝐺) = ∑
1≤𝑖<𝑗≤𝑛

1𝑟𝐺 (V𝑖, V𝑗)

= 4∑
𝑖=1

RH (𝐺𝑖) + 4∑
𝑖=2

∑
𝑎∈𝑉(𝐺1)

∑
𝑏∈𝑉(𝐺𝑖)

1𝑟𝐺 (𝑎, 𝑏)
+ ∑
2≤𝑖<𝑗≤4

∑
𝑎∈𝑉(𝐺𝑖)

∑
𝑏∈𝑉(𝐺𝑗)

1𝑟𝐺 (𝑎, 𝑏) .
(13)

Since 𝐺2 and 𝐺3 are all complete graphs, for any two vertices𝑥, 𝑦 ∈ 𝑉(𝐺𝑖), we have 𝑟𝐺𝑖(𝑥, 𝑦) = 2/𝑛𝑖, where 𝑖 = 2, 3.
Similarly, we have
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Figure 2: The graphs in Lemma 6.

RH (𝐺󸀠) = ∑
1≤𝑖<𝑗≤𝑛

1𝑟𝐺󸀠 (V𝑖, V𝑗) =
4∑
𝑖=1

RH (𝐺𝑖) + 4∑
𝑖=2

∑
𝑎∈𝑉(𝐺1)

∑
𝑏∈𝑉(𝐺𝑖)

1𝑟𝐺󸀠 (𝑎, 𝑏) + ∑
2≤𝑖<𝑗≤4

∑
𝑎∈𝑉(𝐺𝑖)

∑
𝑏∈𝑉(𝐺𝑗)

1𝑟𝐺󸀠 (𝑎, 𝑏) ,

RH (𝐺󸀠) − RH (𝐺) = ∑
𝑎∈𝑉(𝐺1)

∑
𝑏∈𝑉(𝐺3)

{ 1𝑟𝐺1 (𝑎, 𝑥1) + 𝑟𝐺3 (𝑏, 𝑥3) −
1𝑟𝐺1 (𝑎, 𝑥1) + 𝑟𝐺3 (𝑏, 𝑥3) + 1}

− ∑
𝑎∈𝑉(𝐺1)

∑
𝑏∈𝑉(𝐺2)

{ 1𝑟𝐺1 (𝑎, 𝑥1) + 𝑟𝐺2 (𝑏, 𝑥2) −
1𝑟𝐺1 (𝑎, 𝑥1) + 𝑟𝐺2 (𝑏, 𝑥2) + 1}

+ ∑
𝑎∈𝑉(𝐺1)

∑
𝑏∈𝑉(𝐺4)

{ 1𝑟𝐺1 (𝑎, 𝑥1) + 𝑟𝐺4 (𝑏, 𝑥4) −
1𝑟𝐺1 (𝑎, 𝑥1) + 𝑟𝐺4 (𝑏, 𝑥4) + 1} .

(14)

We just need to prove that

∇1 = ∑
𝑎∈𝑉(𝐺1)

∑
𝑏∈𝑉(𝐺3)

{ 1𝑟𝐺1 (𝑎, 𝑥1) + 𝑟𝐺3 (𝑏, 𝑥3) −
1𝑟𝐺1 (𝑎, 𝑥1) + 𝑟𝐺3 (𝑏, 𝑥3) + 1}

− ∑
𝑎∈𝑉(𝐺1)

∑
𝑏∈𝑉(𝐺2)

{ 1𝑟𝐺1 (𝑎, 𝑥1) + 𝑟𝐺2 (𝑏, 𝑥2) −
1𝑟𝐺1 (𝑎, 𝑥1) + 𝑟𝐺2 (𝑏, 𝑥2) + 1} > 0.

(15)

In fact,

∇1 = ∑
𝑎∈𝑉(𝐺1)

{ 𝑛3(𝑟𝐺1 (𝑎, 𝑥1) + 2/𝑛3) (𝑟𝐺1 (𝑎, 𝑥1) + 2/𝑛3 + 1) −
𝑛2(𝑟𝐺1 (𝑎, 𝑥1) + 2/𝑛2) (𝑟𝐺1 (𝑎, 𝑥1) + 2/𝑛2 + 1)} . (16)

In the following, we just need to prove that the fraction of∇1 is greater than zero. Denote ∇2 to be the fraction of ∇1; in
fact,

∇2 = (𝑟𝐺1 (𝑎, 𝑥1))2 (𝑛3 − 𝑛2)
+ 𝑟𝐺1 (𝑎, 𝑥1) [𝑛3 (4 + 𝑛2)𝑛2 − (4 + 𝑛3) 𝑛2𝑛3 ]
+ 2𝑛3 (2 + 𝑛2)𝑛22 − 2𝑛2 (𝑛3 + 2)𝑛23 ,

= (𝑟𝐺1 (𝑎, 𝑥1))2 (𝑛3 − 𝑛2)
+ 𝑟𝐺1 (𝑎, 𝑥1) 4 (𝑛

2
3 − 𝑛22) + 𝑛2𝑛3 (𝑛3 − 𝑛2)𝑛2𝑛3

+ 4 (𝑛33 − 𝑛32) + 2𝑛1𝑛3 (𝑛23 − 𝑛22)𝑛22𝑛23 > 0.
(17)

Since 𝑛3 > 𝑛2, RH(𝐺󸀠) > RH(𝐺). This completes the proof.
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3. Characterization of the Maximizing Graph

In this section, we will characterizemaximizing graph among
all connected graphs with 𝑛 vertices and 𝑘 cut edges.

First, we need some definitions below; let 𝑠𝑘+1 be a star
with vertex set {V0, V1, . . . , V𝑘}, where V0 is the center of
the star. In particular, the graph 𝑆𝑛(𝐾𝑛0 ; 𝐾𝑛1 , . . . , 𝐾𝑛𝑘) with∑𝑘𝑖=0 𝑛𝑖 = 𝑛 is obtained from 𝑆𝑘+1 by replacing the vertex V𝑖
by 𝐾𝑛𝑖 for 𝑖 = 0, 1, 2, . . . , 𝑘. By the definition of Resistance-
Harary index, it is not difficult to obtain RH(𝐾𝑛) = 𝑛2(𝑛 −1)/4. If𝐺0 is a complete graph, for any vertices𝑥0, 𝑎 ∈ 𝑉(𝐺0),
there is 𝑟𝐺0(𝑎, 𝑥0) = 2/𝑛0.
Lemma 7. Let 𝑛 and 𝑛0, 𝑛1, . . . , 𝑛𝑘 (𝑘 ≥ 1) be positive integers
such that 𝑛0 ≥ 𝑛1 ≥ ⋅ ⋅ ⋅ ≥ 𝑛𝑘, 𝑛1 > 1, and 𝑛0 + 𝑛1 + ⋅ ⋅ ⋅ +𝑛𝑘 = 𝑛. Let 𝐺 = 𝑆𝑛(𝐾𝑛0 , 𝐾𝑛1 , . . . , 𝐾𝑛𝑘) (see Figure 3) and 𝐺󸀠 =𝑆𝑛(𝐾𝑛0+1, 𝐾𝑛1−1, . . . , 𝐾𝑛𝑘). Then RH(𝐺󸀠) > RH(𝐺).

Proof. By direct calculation, we have

RH (𝐺) = RH (𝑆𝑛 (𝐾𝑛0 ; 𝐾𝑛1 , . . . , 𝐾𝑛𝑘))
= 𝑘∑
𝑖=0

RH (𝐾𝑛𝑖) + 𝑘∑
𝑖=1

∑
𝑎∈𝑉(𝐾𝑛0 )

∑
𝑏∈𝑉(𝐾𝑛𝑖 )

1𝑟𝐺 (𝑎, 𝑏)
+ ∑
1≤𝑖<𝑗≤𝑘

∑
𝑏∈𝑉(𝐾𝑛𝑖 )

∑
𝑐∈𝑉(𝐾𝑛𝑗 )

1𝑟𝐺 (𝑏, 𝑐)
= 14
𝑘∑
𝑖=0

𝑛2𝑖 (𝑛i − 1)
+ 𝑘∑
𝑖=1

∑
𝑎∈𝑉(𝐾𝑛0 )

∑
𝑏∈𝑉(𝐾𝑛𝑖 )

1𝑟𝐺 (𝑎, 𝑥0) + 𝑟𝐺 (𝑏, 𝑥𝑖) + 1
+ ∑
1≤𝑖<𝑗≤𝑘

∑
𝑏∈𝑉(𝐾𝑛𝑖 )

∑
𝑐∈𝑉(𝐾𝑛𝑗 )

1𝑟𝐺 (𝑏, 𝑥𝑖) + 𝑟𝐺 (𝑐, 𝑥𝑗) + 2
= 14
𝑘∑
𝑖=0

𝑛2𝑖 (𝑛𝑖 − 1) + 𝑘∑
𝑖=1

𝑛02/𝑛0 + 2/𝑛𝑖 + 1
+ ∑
1≤𝑖<𝑗≤𝑘

∑
𝑏∈𝑉(𝐾𝑛𝑖 )

∑
𝑐∈𝑉(𝐾𝑛𝑗 )

12/𝑛𝑖 + 2/𝑛𝑗 + 2 .

(18)

Similarly, we can deduce the value of RH(𝐺󸀠). Then

RH (𝐺󸀠) − RH (𝐺) = 14 {(𝑛0 + 1)2 𝑛0 − 𝑛20 (𝑛0 − 1) + (𝑛1 − 1)2 (𝑛1 − 2) − 𝑛21 (𝑛1 − 1)}
+ { 𝑛0 + 12/ (𝑛0 + 1) + 2/ (𝑛1 − 1) + 1 −

𝑛02/𝑛0 + 2/𝑛1 + 1}
+ 𝑘∑
𝑖=2

{ 𝑛0 + 12/ (𝑛0 + 1) + 2/𝑛𝑖 + 1 −
𝑛02/𝑛0 + 2/𝑛𝑖 + 1}

+ 𝑘∑
𝑖=2

{ 𝑛1 − 12/ (𝑛1 − 1) + 2/𝑛𝑖 + 2 −
𝑛12/𝑛1 + 2/𝑛𝑖 + 2} .

(19)

In order to prove that the result RH(𝐺󸀠) > RH(𝐺), we
distinguish three steps in the following. Denote

△1 = 14 {(𝑛0 + 1)2 𝑛0 − 𝑛20 (𝑛0 − 1) + (𝑛1 − 1)2 (𝑛1 − 2) − 𝑛21 (𝑛1 − 1)} − 𝑛02/𝑛0 + 2/𝑛1 + 1 ,
△2 = 𝑛0 + 12/ (𝑛0 + 1) + 2/ (𝑛1 − 1) + 1 ,
△3 = 𝑘∑

𝑖=2

{( 𝑛0 + 12/ (𝑛0 + 1) + 2/𝑛𝑖 + 1 −
𝑛02/𝑛0 + 2/𝑛𝑖 + 1) + (

𝑛1 − 12/ (𝑛1 − 1) + 2/𝑛𝑖 + 2 −
𝑛12/𝑛1 + 2/𝑛𝑖 + 2)} .

(20)



6 Journal of Chemistry

Obviously, △2 > 0. In the following, we first prove that△1 > 0. By direct calculation, we have
△1 = 14 {3𝑛20 + 𝑛0 − 3𝑛21 + 5𝑛1 − 2}

− 𝑛02/𝑛0 + 2/𝑛1 + 1
= 𝑛1 − 12 + 3𝑛20 − 3𝑛21 + 𝑛0 + 3𝑛14

− 𝑛20𝑛12𝑛1 + 2𝑛0 + 𝑛0𝑛1
= 𝑛1 − 12 + 3𝑛0𝑛1 (𝑛0 − 𝑛1) + 3𝑛0𝑛1 (𝑛20 − 𝑛21)4 (2𝑛1 + 2𝑛0 + 𝑛0𝑛1)
+ 6 (𝑛30 − 𝑛31) + (8𝑛0𝑛1 + 2𝑛20 + 6𝑛21)4 (2𝑛1 + 2𝑛0 + 𝑛0𝑛1) > 0

(21)

(since 𝑛0 ≥ 𝑛1 > 1). Secondly, we will prove that△3 > 0.

△3 = 𝑘∑
𝑖=2

{( 𝑛0 + 12/ (𝑛0 + 1) + 2/𝑛𝑖 + 1 −
𝑛02/𝑛0 + 2/𝑛𝑖 + 1) − (

𝑛12/𝑛1 + 2/𝑛𝑖 + 2 −
𝑛1 − 12/ (𝑛1 − 1) + 2/𝑛𝑖 + 2)}

> 𝑘∑
𝑖=2

{( 𝑛0 + 12/ (𝑛0 + 1) + 2/𝑛𝑖 + 1 −
𝑛02/𝑛0 + 2/𝑛𝑖 + 1) − (

𝑛12/𝑛1 + 2/𝑛𝑖 + 1 −
𝑛1 − 12/ (𝑛1 − 1) + 2/𝑛𝑖 + 1)} > 0,

(22)

where the second inequality is due to the fact that

𝑛12/𝑛1 + 2/𝑛𝑖 + 1 −
𝑛1 − 12/ (𝑛1 − 1) + 2/𝑛𝑖 + 1

− 𝑛12/𝑛1 + 2/𝑛𝑖 + 2 −
𝑛1 − 12/ (𝑛1 − 1) + 2/𝑛𝑖 + 2

= 𝑛1(2/𝑛1 + 𝐴) (2/𝑛1 + 𝐵)
− 𝑛1 − 1(2/ (𝑛1 − 1) + 𝐵) (2/ (𝑛1 − 1) + 𝐴) ,

(23)

where 𝐴 = 2/𝑛𝑖 + 1, 𝐵 = 2/𝑛𝑖 + 2, and the function 𝑓(𝑥) =𝑥/(2/𝑥 + 𝐴)(2/𝑥 + 𝐵) is an increasing function, and then

𝑛12/𝑛1 − 2/𝑛𝑖 + 1 −
𝑛1 − 12/ (𝑛1 − 1) + 2/𝑛𝑖 + 1

> 𝑛12/𝑛1 + 2/𝑛𝑖 + 2 −
𝑛1 − 12/ (𝑛1 − 1) + 2/𝑛𝑖 + 2 .

(24)

By Lemma 2, the last inequality is due to the fact the function𝑓2(𝑥) = 𝑥/(2/𝑥 + 𝐴) − (𝑥 − 1)/(2/(𝑥 − 1) + 𝐴) for 𝑥 ≥ 2 and0 < 𝐴 ≤ 3 is an increasing function.
By combinationwith above discussion, we haveRH(𝐺󸀠) >

RH(𝐺), which finishes the proof of Lemma 7.

Corollary 8. Suppose that RH(𝑆𝑛(𝐾𝑛0 ; 𝐾𝑛1 , . . . , 𝐾𝑛𝑘)) is
defined as above and 𝑛0 ≥ 𝑛1 ≥ 𝑛2 ≥ ⋅ ⋅ ⋅ ≥ 𝑛𝑘, the value of
RH(𝑆𝑛(𝐾𝑛0 ; 𝐾𝑛1 , . . . , 𝐾𝑛𝑘)) reaches its maximum value at𝑛0 = 𝑛 − 𝑘 and 𝑛1 = 𝑛2 = ⋅ ⋅ ⋅ = 𝑛𝑘 = 1.

Theorem 9. If 𝐺 is a connected graph with 𝑘 cut edges and 𝑛
vertices, then

RH (𝐺) ≤ (𝑛 − 𝑘)2 (𝑛 − 𝑘 − 1)4 + 𝑘2 + 3𝑘4
+ (𝑛 − 𝑘 − 1) (𝑛 − 𝑘) 𝑘𝑛 − 𝑘 + 2 ,

(25)

with equality if and only if 𝐺 ≅ 𝑆𝑛(𝐾𝑛−𝑘; 𝐾1, 𝐾1, . . . , 𝐾1) (see
Figure 3).

Proof. To determine the maximum Resistance-Harary index
of the graph, we select such a connected graph so that it cut off
all the cut edges for a complete graph by Lemma 3. Moreover,
we can further choose 𝐺 = 𝑆𝑛(𝐾𝑛0 ; 𝐾𝑛1 , . . . , 𝐾𝑛𝑘) by Lemmas
5 and 6, and let ∑𝑘𝑖=0 𝑛𝑖 = 𝑛, 𝑛0 = max{𝑛0, 𝑛1, . . . , 𝑛𝑘}. From
the definition of the Resistance-Harary index and Lemma 4,
we have

RH (𝐺) = RH (𝑆𝑛 (𝐾𝑛0 ; 𝐾𝑛1 , . . . , 𝐾𝑛𝑘))
= 14
𝑘∑
𝑖=0

𝑛2𝑖 (𝑛𝑖 − 1)
+ 𝑘∑
𝑖=1

∑
𝑎∈𝑉(𝐾𝑛0 )

∑
𝑏∈𝑉(𝐾𝑛𝑖 )

1𝑟𝐺 (𝑎, 𝑥0) + 𝑟𝐺 (𝑏, 𝑥𝑖) + 1
+ ∑
1≤𝑖<𝑗≤𝑘

∑
𝑏∈𝑉(𝐾𝑛𝑖 )

∑
𝑐∈𝑉(𝐾𝑛𝑗 )

1𝑟𝐺 (𝑏, 𝑥𝑖) + 𝑟𝐺 (𝑐, 𝑥𝑗) + 2
= 14
𝑘∑
𝑖=0

𝑛2𝑖 (𝑛𝑖 − 1) + 𝑘∑
𝑖=1

𝑛02/𝑛0 + 2/𝑛𝑗 + 1
+ ∑
1≤𝑖<𝑗≤𝑘

∑
𝑏∈𝑉(𝐾𝑛𝑖 )

∑
𝑐∈𝑉(𝐾𝑛𝑗 )

12/𝑛𝑖 + 2/𝑛𝑗 + 2
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≤ (𝑛 − 𝑘)2 (𝑛 − 𝑘 − 1)4 + 𝑘2 + 3𝑘4
+ 𝑘 (𝑛 − 𝑘) (𝑛 − 𝑘 − 1)𝑛 − 𝑘 + 2 .

(26)

By Lemma 7 andCorollary 8, we know that the equality holds
if and only if 𝑛0 = 𝑛 − 𝑘, 𝑛1 = 𝑛2 = ⋅ ⋅ ⋅ = 𝑛𝑘 = 1; that is,𝐺 ≅ 𝑆𝑛(𝐾𝑛−𝑘; 𝐾1, . . . , 𝐾1). This completes the result.

Corollary 10. If𝑇 is a tree with 𝑛 vertices, then RH(𝐺) ≤ (𝑛2+𝑛 − 2)/4, with equality if and only if 𝑇 ≅ 𝑆𝑛.
Proof. Since 𝑇 is a tree with 𝑛 vertices, it has 𝑛 − 1 cut edges,
and RH(𝐺) ≤ (𝑛2+𝑛−2)/4with equality if and only if 𝑇 ≅ 𝑆𝑛
byTheorem 9. This completes the result.

4. Conclusion

In this thesis, we considered the Resistance-Harary index of
graphs with given number of cut edges and describe a graph
with a maximum Resistance-Harary index. A problem raised
naturally at this moment is, among all connected graphs with𝑛 vertices and 𝑘 cut edges, which graph has the minimum
Resistance-Harary index? We will continue to consider this
problem in the nearest future.
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