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Percutaneous image-guided ablation is an increasingly common treatment for a multitude of solid organ malignancies. While
historically these techniques have been restricted to the management of small, unresectable tumors, there is an expanding
appreciation for the systemic effects these locoregional interventions can cause. In this review, we summarize the mechanisms of
action for the most common thermal ablation modalities and highlight the key advances in knowledge regarding the interactions

between thermal ablation and the immune system.

1. Introduction

Percutaneous image-guided ablation procedures are the cor-
nerstones in the management of numerous solid organ
malignancies [1]. While ablation has historically been con-
sidered analogous to surgical resection insofar as it results
in focal eradication of tumor, there are several important
differences. The most substantial distinction is that ablation
causes cell death in situ; this exposes previously shielded
tumor antigens to the immune system and can incite an
inflammatory response that may lead to either distant tumor
growth suppression [2] or acceleration [3]. Both positive
(remote tumor regression) and negative (remote tumor
growth) outcomes have been observed in preclinical and
clinical cases following ablation. In this review, we summarize
the current data regarding systemic responses to ablative
therapies, emphasizing the key cellular mechanisms and role
of the immune system. We additionally highlight examples
of synergy between immune checkpoint modulation and
thermal ablation reported in preclinical studies to moti-
vate further investigations in this potentially transformative
approach to cancer therapy.

2. Mechanisms of Action for
Clinical Ablative Therapies

Multiple minimally invasive thermal ablation technologies
are used in clinical practice today, including radiofrequency
ablation (RFA), microwave ablation (MWA), laser inter-
stitial thermal therapy (LITT), and high intensity focused
ultrasound (HIFU). While each modality accomplishes the
local deposition of energy via vastly different approaches,
several generalities regarding these heat-based technologies
can be made [2]. Of note, cryoablation, another commonly
used ablation technique, effects cell death via mechanisms
disparate from these heat-based methods and is discussed
separately. The extent of cellular damage caused by heat-based
ablative therapies depends on three factors: the amount of
energy applied, the rate of energy delivery, and the target
tissue’s intrinsic thermal sensitivity [4]. Importantly, tumor
tissue is believed to be more thermosensitive than normal
tissue; this may be due to relatively increased cellular density,
fewer interstitial vascular and lymphatic channels to dissipate
heat, and the hypoxic/acidic tumor microenvironment [5-
8].



The degree of hyperthermia during an ablation procedure
varies in both space and time. With all heat-based ablation
modalities, the targeted tissue can be divided into two zones.
The central zone refers to the area of the tumor into which
energy is directly deposited by the ablation device. In this
zone, lethal hyperthermia is typically consistently achieved,
and cell death via coagulative necrosis occurs. The necrotic
debris that accumulates in this zone serves as a vital reservoir
for tumor antigens that gradually drain to regional lymph
nodes [9, 10].

The central zone is surrounded by a peripheral zone,
composed of tissue into which heat is transferred via conduc-
tion from the central zone. In this zone, lethal hyperthermia
may not be consistently reached, and cell death may occur
via apoptosis due to heat-mediated lysosomal activation or
mitochondrial damage rather than necrosis [11]; alternatively,
cell recovery may occur. Indeed, apoptosis likely plays a key
role in cell death in the peripheral heating zone [11]. Cell death
by apoptosis is widely considered to be immunosuppressive
and therefore opposes the development of abscopal effects
[12]. As such, the balance of tumor necrosis to apoptosis
is a critical yet poorly characterized factor in the immune
response following ablative therapies.

A limitation that is shared by all heat-based modalities
that primarily affects treatment efficacy within the peripheral
zone is the heat sink effect [13]. This effect refers to the
dissipation of thermal energy from the ablation zone by blood
flowing within an adjacent blood vessel; tumoral tissue in
continuity with blood vessels thus may not reach cytotoxic
temperatures. As the relative proportion of central to periph-
eral zone within the overall ablation zone varies from one
modality to another, the significance of the heat sink effect
is modality dependent. This effect has been most extensively
evaluated with RFA. Preclinical studies have shown that
the heat sink effect can be consistently demonstrated with
blood vessels greater than 3 mm in size. This effect has also
been observed in the clinical setting, with higher rates of
recurrence in tumors adjacent to large blood vessels [14].

A commonly used threshold for lethal hyperthermia is
50°C; that is, for temperatures above 50°C, coagulative necro-
sis due to protein denaturation occurs essentially immedi-
ately, while for temperatures just below 50°C, sustained expo-
sure is required for cell death [4, 5, 15]. Atlethal hyperthermic
temperatures, cell death also occurs through mechanisms
involving mitochondrial dysfunction [4] and suppression of
DNA replication [16]. If immediate cell death is not achieved,
a delayed response due to heat-induced cellular damage can
be observed after the return to normothermic conditions. In
this setting, cell death can occur through apoptosis, possibly
driven by vascular thrombosis resulting in tissue ischemia or
by reperfusion injury [4, 17].

2.1. Radiofrequency Ablation. Radiofrequency ablation re-
quires the insertion of one or more RF applicators within a
target lesion under imaging guidance, typically ultrasound
or computed tomography (CT). One or more grounding
pads is also placed on the patient at a site remote to the
applicator, such as the patient’s back or thigh. An electrical
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circuit is thus established within the patient, and when a
high power, alternating current is generated by a power
source between the applicators and the grounding pads,
energy is deposited via frictional heating of ions that oscillate
due to the alternating current. Radiofrequency ablation
achieves temperatures of 60-100°C within the central zone.
At temperatures of above 100°C, tissue charring occurs, at
which point impedance increases by orders of magnitude
decreasing electrical conduction and rendering the technique
less effective. The electrical conductivity of the tissue being
ablated, therefore, plays an important role in the degree of
heat generation. As Goldberg et al. estimate to a first-order
approximation, RF-induced heat transfer can be simplified
as follows: “coagulation necrosis = energy deposited x local
tissue interactions — heat lost” [18].

Of all the heat-based ablation technologies, RFA is in
principle the most susceptible to the heat sink effect [13].
However, in a clinical trial comparing the efficacy of RFA to
MWA for hepatocellular carcinoma, no significant difference
was seen for complete response, local tumor recurrence, and
overall survival rates [19].

2.2. Microwave Ablation. Microwave ablation requires the
direct insertion of an antenna or antennae into a target
lesion using imaging guidance and thus from a procedural
standpoint is very similar to RFA. However, unlike RFA,
MWA does not require the establishment of an electrical
circuit. Instead, microwaves are emitted from the antenna
into the surrounding tissue at the resonance frequency of
water molecules, resulting in oscillation of these molecules
and subsequent release of this kinetic energy as heat [20]. A
newer technology than RFA, MWA, offers several technical
advantages. Since MWA does not rely on electrical currents
or conduction through tissue, temperatures > 100°C can be
and often are achieved in the central zone. This allows for
larger zones of ablation and shorter treatment times, as the
central zone is larger relative to RFA, and conduction of heat
from the central zone results in a larger peripheral zone and
an overall larger volume of lethal hyperthermia. The larger
central zone also lessens (but does not eradicate) the heat
sink effect. The size of the ablation zone with MWA can be
harder to predict than RFA and can lead to overtreatment and
damage to adjacent off-target structures.

2.3. Cryoablation. In contradistinction to the above modal-
ities, cryoablation results in local cell death via the removal
of heat. As with heat-based modalities, cryoablation requires
the image-guided insertion of a specialized cryoprobe into
the target lesion. A room temperature gas, typically argon,
is pumped into the cryoprobe. When this gas reaches the
tip of the cryoprobe, it is forced through a narrow throttle
and then allowed to rapidly expand. Through a mechanism
known as the Joule-Thompson effect, this rapid expansion
results in a decrease in temperature around the cryoprobe
[21]. Heat is transferred via conduction and convection
out of the surrounding tissues, and thus a zone of lethal
hypothermia is created. During a cryoablation procedure,
several cycles of freezing followed by thawing are performed.
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While cryoablation can lower interstitial temperatures to
-160°C, temperatures required for cell typically range from
-20 to —40°C.

Cell death in cryoablation is dependent on four variables:
the rate of cooling, the minimum temperature achieved,
the duration of time at the minimum temperature, and the
rate of thawing [21, 22]. Cryoablation causes both direct
and indirect cell death. In the former circumstance, cell
injury occurs from dehydration as a result of freezing. Due
to high intracellular osmolality, water freezes in the extra-
cellular compartment before the intracellular compartment;
the resultant osmotic gradient drives fluid out of the cells.
During the thaw phase of a cryoablation cycle, the reversal
of the osmotic gradient causes rapid influx of water, leading
to swelling and cell rupture. Moreover, if cooling occurs
rapidly, intracellular ice crystals can form, which physically
damage organelles and the plasma membrane; during the
thaw phase, intracellular ice may actually grow, as the influx
of extracellular fluid lowers intracellular osmolality [21, 23].
Cell death via direct cooling injury results in coagulative
necrosis. Alternatively, for cells that are not exposed to lethal
levels of hypothermia, cold-induced injury to mitochondria
can result in delayed apoptosis-mediated cell death; this
typically occurs at the periphery of the cryoablation zone.
The balance between coagulative necrosis and apoptosis can
have important implications with regard to immunomod-
ulation, as described below. Indirect methods of cell death
are mediated by injury to blood vessels due to cold-induced
endothelial cell dysfunction, initiating a cascade of platelet
aggregation, microthrombus formation, and ischemia.

3. Requirements for Acquired
Immune System Activation

When cell death occurs, the “first responders” are typically
representatives of the innate immune system, including
neutrophils, macrophages, and natural killer (NK) cells.
This is followed by the more robust and sustained acquired
immune response. However, there are four requirements for
activating the acquired immune system: antigen presentation,
antigen recognition by T-cells, interaction of costimulatory
molecules, and the presence of danger signals [24]. Cell
necrosis results in the spillage of intracellular antigens that
were previously invisible from the immune system. These
antigens are acquired by antigen presenting cells, of which
dendritic cells (DCs) are the most important. Dendritic cells
then localize to regional lymph nodes, where they present
antigens to T-cells through major histocompatibility complex
(MHC) molecules. Recognition of the antigen by the T-cell
is necessary but not sufficient for T-cell proliferation and
survival. Without concomitant costimulation, T-cells may
undergo anergy and cell death. Costimulation refers to inter-
actions between non-antigen-specific markers on the DC and
T-cell, specifically CD28 on T-cells and the B7 molecules
(also known as CD80 and CD86) on DCs. Alternatively,
binding of the inhibitory signaling molecule CTLA-4 on the
T-cell’s surface with CD80 and CD86 functions as an “oft”
switch, inactivating the T-cell [25]. Finally, for DCs to activate
T-cells, they themselves must become activated. Based on

the “danger theory,” this occurs following the exposure of
DCs to damage-associated molecular patterns, of which
many have been proposed, including uric acid, heat-shock
proteins (HSPs), and various cytokines [26].

It is important to note that antigen presentation may not
occur after apoptotic damage because phagocytosis shields
intracellular contents; moreover, if antigen presentation does
occur, the lack of associated “danger” signals with apoptosis
can lead to immune tolerance [27]. As such, the ratio of
apoptosis to necrosis following thermal ablation is critical for
subsequent acquired immune system activation.

4. Interactions between Thermal
Ablation and the Immune System

A relationship between thermal therapies and the immune
system has been recognized since the 1960s, when an anti-
body response was seen following cryotherapy in a rabbit
model [28]. Of the existing thermal ablation techniques,
the two modalities with the most well established immune
interactions are RFA and cryoablation (Table 1). While HIFU
[29, 30] and MWA have been shown to elicit an immune
response, the magnitude of the response appears to be far
greater with RFA and cryoablation [2].

4.1. Radiofrequency Ablation. Following heat-based ablation,
numerous intracellular components that stimulate the innate
immune system and can activate the acquired immune
system are released (Figurel). These include RNA, DNA,
HSPs, and uric acid, as well as inflammatory cytokines such as
interleukin-1p (IL-1), IL-6, IL-8, and tumor necrosis factor-
o« (TNF-«) [31-34]. HSPs are common within tumor cells
and are released during necrosis [35] as well as hyperthermia
at 60°C [36]. Intracellularly, HSPs serve to prevent cell
death by inhibiting apoptosis [36]. Once in the extracellular
space, however, they drive the acquired immune response
via several mechanisms, HSPs chaperone antigens to DCs
for presentation, and they also function as danger signals to
facilitate DC activation [35, 37-40]. HSP70 in particular has
been implicated in the immune response to ablation therapy,
and HSP70 levels are elevated in the serum of patients
following RFA [41, 42].

RFA also reduces levels of regulatory T-cells (Tyeg) [32].
By suppressing these immunosuppressive cells, REA may
diminish immune tolerance to tumor cells, resulting in a
more tumoricidal immune response. Indeed, levels of tumor-
specific T-cells have been seen after RFA, and there is a
survival benefit associated with higher levels of these cells
[43, 44]. For example, intratumoral accumulation of CD8+
T-cells is associated with improved survival in patients with
hepatocellular carcinoma who undergo resection surgery
[45]. RFA has been shown to also result in an increase in
tumor-specific antibodies, CD4+ cells, and CD8+ cells weeks
to months after the ablation procedure [46].

On the other hand, since the early days of RFA, anecdotal
reports of patients rapidly developing metastases following
an ablation procedure have been described, and recently, an
immunologic mechanism for these observations has begun
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Ablation needle

Immunostimulation

Tumor cell—lethal hyperthermia
Temperature > 50°C

Tumor cell—sublethal hyperthermia
Temperature 40-50°C

Oncogenesis

Hepatocyte—sublethal hyperthermia
Temperature 40-50°C

Coagulation necrosis Necrosis, apoptosis, or recovery T blood flow
Protein denaturation 1 blood flow T HSP70
T HSP70 T c-Met
T immune cell infiltration 1 1IL-6
1 HIF-1«

FIGURE I: Thermal ablation and the proposed mechanisms for immunostimulation and oncogenesis in the liver. In the central heating zone,
temperatures > 50°C cause coagulation necrosis. In the adjacent peripheral heating zone, lethal hyperthermia temperatures may not be
achieved, leading to either necrosis, apoptosis, or recovery. In this zone, hyperemia results in increased oxygen delivery, and cell death results in
the release of cytokines and other immune stimulatory factors such as heat-shock protein 70 (HSP70). As a result, either immunostimulation
due to T-cell activation or immunosuppression due to T-cell anergy in the setting of apoptosis may occur. Sublethal thermal injury to the
adjacent hepatocytes causes the release of additional growth factors such as c-Met that can cause systemic tumor growth stimulation.

to be elucidated. Indeed, RFA has been shown to cause
distant tumor growth following hepatic ablation procedures
in preclinical primary and metastatic liver cancer models
[3,47-50]. A key factor for these deleterious effects appears to
be the response of the liver parenchyma that is included in the
ablation zone. In those areas, elevated levels of HSPs, hypoxia
induced factor-lee (HIF-1e), and other cytokines have been
identified [34, 49, 51-53]. In an intriguing experiment,
Ahmed et al. [47] performed RFA on a small portion of
normal liver in a rat model and demonstrated accelerated
growth in distant breast cancer xenografts compared to
partial hepatectomy or sham surgery controls. This oncogenic
response to RFA may be mediated by activation of hepatocyte
regeneration signaling pathways by the heat-injured liver
parenchyma, as inhibition of the hepatocyte growth factor/c-
Met axis abrogates the accelerated tumor growth. Further-
more, IL-6 is an important driver of perilesional infiltration
of immune cells: IL-6 knockout mice do not experience this
infiltrative effect after ablation [3, 54]. Anti-IL-6 siRNA has
been shown to suppress RFA-induced IL-6 production and its
downstream oncogenic effects [54]. It is important to note,
however, that while there is a growing body of preclinical

data regarding the oncogenic impact of RFA, from a clinical
standpoint, RFA has not been shown to worsen survival
compared to untreated patients [48].

4.2. Cryoablation. The abscopal effect of cryotherapy has
been reported as early as the 1970s [55, 56]. The concept
of “cryoimmunology” originated in the 1960s when it was
observed that serum anti-tumor antibodies develop after
cryoablation [24, 57]. Anecdotal reports of the abscopal effect
of cryotherapy in humans followed shortly thereafter in the
1970s [58]. Around the 1970s, it was also observed that
cryotherapy can cause immunosuppression in rats. Leaving
the bulk of the tumor in the animal was seen to result in
slower tumor regression compared to regression after only
a small amount of tissue remained [57]. Early studies also
showed that cytotoxicity after cryoablation was tumor spe-
cific; that is, the lymphocytes harvested after cryoablation did
not attack other tumor types. For example, cryoablation has
been shown to confer resistance to rechallenge: in xenograft
models, repeat delivery of tumor cells was less effective
following cryoablation versus surgery performed on the
initial tumor [57, 59-61]; this protection is tumor specific, as
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FIGURE 2: The method of tumor cell death following ablation plays a critical role in the downstream immunologic effects. Apoptosis results
in the organized breakdown of dying cells into apoptotic bodies and does not release damage-associated molecular patterns such as DNA,
HSPs, or uric acid as is seen with necrosis. Without the subsequent dendritic cell activation, T-cells do not receive costimulatory signals and

therefore undergo anergy and clonal deletion.

there was no prevention of tumor growth following challenge
with another tumor cell line.

Cryoablation induces a much greater postablative
immune response relative to RFA or MWA. This can be
seen in greatly elevated levels of IL-1, IL-6, NF«B, and
TNF-« after cryoablation compared to the case after RF
and MW [33, 34, 62, 63]. In comparative animal studies, the
degree of DC antigen loading is greater with cryoablation
versus RFA [9]. The proposed reason for this variation in
immune activation is that hyperthermia based methods
cause protein denaturation, reducing the number of intact
antigens. Also, heat causes tissue coagulation and by doing
so reduces the amount of intracellular contents that spill
into circulation. Freezing, on the other hand, maintains
cellular ultrastructure while increasing the permeability
of plasma membranes. Also, it is for these reasons that we
observe the phenomenon of cryoshock. Cryoablation causes
the release of inflammatory intracellular debris, causing
release of cytokines that can result in systemic inflammatory
response syndrome (SIRS) [63]. A similar phenomenon is
not observed in hyperthermia based modalities.

However, the converse has also been seen, with no
immune response or with immune suppression follow-
ing cryoablation [64-66]. In rat fibrosarcoma models,
increased susceptibility to rechallenge, increased primary
tumor growth, and increased metastases have been seen fol-
lowing cryoablation [65, 67]. The balance between immunos-
timulation and immunosuppression may be related to tech-
nical factors during the cryoablation procedure. Across
the multiple animal studies, there is substantial variation
in the method of cryoablation performed, the minimum

temperatures achieved, the duration of the therapy, and the
number of freeze/thaw cycles performed. Indeed, the rate
of freezing has been shown to impact immunostimulation
[68]. These technical variations may translate into shifts
in the relative balance of apoptosis and necrosis follow-
ing ablation. It is difficult to predict whether apoptosis or
necrosis is the dominant response after cryoablation [64,
68, 69], but this balance is of paramount importance, as
dendritic cells that take up apoptotic cells do not mature,
may have suppressed cytokine production, and may trigger
clonal deletion and anergy (Figure2). The target volume
may play a key role in the subsequent immune response,
potentially in a somewhat counterintuitive fashion. As shown
by Blackwood and Cooper [57] and repeated by others [70],
cryoablation zones that encompass the majority of a tumor
may result in immunosuppression, while smaller volume
ablations may result in immunostimulation and prolonged
survival. Likewise, in an animal model of multiple hepatic
metastases, cryoablation of multiple lesions was less effective
than cryoablation of a single lesion at reducing the overall
number of metastases [71].

5. Overview of Immune Checkpoint Therapy

The significant relationship between cancer and the immune
system has been known for the last half century. The 1980s
bore witness to an international effort to capitalize on this
relationship through the development and application of
tumor vaccines, an approach that, on the whole, categorically
failed. In the past half decade, however, immunotherapy
has been revived and is once again at the forefront of



cancer therapies. The newest incarnation revolves around the
manipulation of the regulatory systems that control T-cells.
These immune checkpoint therapies are represented as major,
disruptive breakthrough in cancer care [25]. Unlike other
targeted therapies that focus on specific tumoral mutations,
immune checkpoint drugs do not target tumor cells at all, but
rather the immune cells that inhibit cytotoxic T-cell activity.
While tumoral mutational status may vary not only over time
but also within a lesion at single point in time, immune
checkpoints are conserved and thus represent a stationary
target.

Regulation of T-cell response is a highly complex system
involving multiple cell types and multiple signaling pathways.
At the time of T-cell activation, an inhibitory pathway is
also turned on that will eventually suppress activation. This
is done via the CTLA-4 surface marker on T-cells that, like
CD28, binds B7 molecules on DCs, but at a higher affinity.
Upon activation, T-cells begin to express CTLA-4, and as
this molecule increasingly binds B7 complexes on the DC
surface, costimulatory signals are lost, and the T-cell response
is inactivated.

By inhibiting CTLA-4, in theory, one could persistently
activate the cytotoxic T-cell response, in a manner that is
independent of which tumor, or which antigen, has been
targeted [25]. Ipilimumab is an anti-CTLA-4 antibody that
has been shown to improve overall survival in melanoma
patients [72, 73] in two Phase III trials. It has also shown
clinical response in patients with renal, prostate, bladder,
and ovarian cancers [74-78]. Ipilimumab is a groundbreaking
approach to cancer therapy, and it opened the door for other
immune “checkpoint” blockades, of which there are multiple.
For example, another target is programmed cell death-1 (PD-
1), a cell surface marker that is expressed by T-cells and
interferes with signaling from the T-cell antigen receptor.
PD-1 has two ligands, PD-LI and PD-L2, both of which are
expressed by many different cell types (unlike B7 which is
expressed only by dendritic cells) including epithelial cells,
endothelial cells, and tumor cells after exposure to interferon-
y. In this way, the PD-1/PD-LI axis protects native host
cells from T-cells. Anti-PD-LI antibodies led to regression
in melanoma, RCC, NSCLC, and bladder cancer [79, 80].
Anti-PD-1 drugs (nivolumab and pembrolizumab) are also
effective across a range of malignancies [81].

6. Combining Thermal Ablation with
Immune Therapy

The native immune response that follows an ablation pro-
cedure is unlikely to be of sufficient magnitude to cause
system-wide, sustained regression of distant metastases [82].
However, a combinatorial approach that pairs ablation with
immune stimulation may provide a synergistic effect. This
approach has been tried in the preclinical setting, with early
but promising results. Cryoablation has been combined with
toll-like receptor activators [83-85] that stimulate DCs and
thus promote cytotoxic T-cell activity. A greater antitumor
response was seen following cryoablation when these drugs
were administered compared to cryoablation alone. Addi-
tionally, the immune system can be “primed” following
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ablation by directly administering DCs into the ablation
zone following cryotherapy. This has been associated with
prolonged survival and reduced lung metastases in mice [82].
Dendritic cell based tumor vaccines have been combined
with RFA [86], and dendritic cell loading after cryoablation
may be more effective than after RFA [9]. Cryoablation
used in conjunction with ipilimumab in a prostate cancer
model slowed growth at secondary sites more effectively with
cryoablation alone. Also, elevated levels of CD4+ and CD8+
T-cells were observed in distant sites [87].

Some clinical data combining ablation and immunother-
apy are available as well. Cryotherapy in conjunction with
GM-CSF (which promotes dendritic cell activation) has been
seen to shrink metastases in lung cancer patients [88]. The
same combination in pancreatic patients has been seen to
increase survival [89].

7. Conclusions

The true extent of the systemic ramifications of thermal
ablation is now beginning to be appreciated. What is clear
is that thermal ablation cannot be considered solely as a
locoregional therapy. The resultant inflammatory response,
though at present limited and unpredictable, paves the way
for an expanded role of thermal ablation as a stimulant to
the immune system. Ablation, however, is a two-edged sword,
and causes of and solutions to its oncogenic effects need to be
investigated.
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