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This paper is concerned with the positive filtering problem for discrete-time positive systems under the ℓ
1
-induced performance.

We aim to propose a pair of positive filters with error-bounding features to estimate the output of positive systems. A novel
characterization is first constructed so that the filtering error system is asymptotically stable with a prescribed ℓ

1
-induced

performance.Then, necessary and sufficient conditions for the existence of required filters are presented, and the obtained results are
expressed as linear programming problems. Moreover, it is pointed out that the results can be easily checked by standard software.
In addition, a numerical example is given to show the effectiveness of the proposed design procedures.

1. Introduction

In real world, many dynamical systems involve variables
which are always confined to the positive orthant.This special
category of systems is generally referred to as positive systems
in the literature. Positive systems arise in different application
fields such as physics, engineering, and social sciences [1, 2].
Since positive systems possessmany unique features and have
special structures, a lot of methods established for general
systems cannot be used for positive systems. Due to their
numerous applications and unique features, positive systems
have received ever-increasing research interest in recent
years [3–12]. For instance, the problem of reachability and
controllability has been studied for positive systems in [13–
15]. In [16, 17], the state-feedback controller synthesis results
have been expressed as linear matrix inequality problems
and linear programming problems. In [18, 19], a stability
analysis method for compartmental dynamic systems has
been proposed. An interesting result on the positive observer
design problem has been given for positive systems in [20].
The positive realization problem has been discussed in [21].
In [22], a solution has been proposed to the model reduction
problem for positive systems. Furthermore, the analysis and
synthesis problems have been addressed for special classes

of positive systems such as 2-D positive systems [4, 23] and
time-delay positive systems [24–29].

It is remarkable that since many previous approaches
used for the filtering problem of general systems fail to
ensure the positivity of the filter, existing approaches cannot
be directly applied for positive systems. Therefore, it is
necessary to develop new techniques for positive systems.
Moreover, differently from most existing results on stability
and stabilizability of positive systems which were derived
by resorting to the quadratic Lyapunov functions, the appli-
cations of the linear copositive Lyapunov functions led to
many novel results in recent years [1, 16, 30–36]. In addition,
linear copositive Lyapunov functions stimulate the use of ℓ

1
-

gain as a performance index for positive systems. In some
situations, onemight be interested in the sumof quantities for
positive systems from a practical viewpoint. Therefore, some
frequently used performance measures induced by ℓ

2
signals

such as𝐻
∞
norm are not very natural to describe the features

of practical positive systems. On the other hand, 1-norm is
more appropriate for positive systems because it represents
the sum of the values of the components. For example, it is
usually desirable to analyze the total mass of material in all
the compartments for compartmental networks.
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In this paper, the problem of ℓ
1
-induced filtering is

studied for positive systems with the positivity preserved
in the filters. The main contributions of this paper are as
follows. First, we present the ℓ

1
-induced performance index

for positive systems and characterize it analytically. Then, we
propose a pair of ℓ

1
-induced positive filters to estimate the

output of positive systems at all times. Finally, we establish
necessary and sufficient conditions to obtain the desired
positive filters in terms of linear programming.

The layout of the paper is as follows. In Section 2, the
problem addressed in this paper is formulated and the posi-
tive filters are introduced.The positive filter design procedure
for positive systems is proposed in Section 3, followed by a
numerical example in Section 4 to show the application of the
theoretical results. Finally, we draw conclusions in Section 5.

Notation 1. All the matrices, if the dimensions are not
explicitly stated, are assumed to have compatible dimensions
for algebraic operations. LetR denote the set of real numbers;
R𝑛 is the 𝑛-column real vectors; R𝑛×𝑚 stands for the set
of real matrices of dimension 𝑛 × 𝑚. For a vector 𝑥(𝑘) =

(𝑥
1
(𝑘), 𝑥
2
(𝑘), . . . , 𝑥

𝑛
(𝑘)), the 1-norm is defined as ‖𝑥(𝑘)‖

1
≜

∑
𝑛

𝑖=1
|𝑥
𝑖
(𝑘)|. LetR𝑛

+
denote the nonnegative orthant ofR𝑛. For

a matrix 𝐴 ∈ R𝑚×𝑛, the element located at the 𝑖th row and
the 𝑗th column is denoted by [𝐴]

𝑖𝑗
; [𝐴]
𝑟,𝑖

and [𝐴]
𝑐,𝑗

denote
the 𝑖th row and the 𝑗th column, respectively. The ℓ

1
-norm

of an infinite sequence 𝑥 is defined as ‖𝑥‖
ℓ
1

≜ ∑
∞

𝑘=0
‖𝑥(𝑘)‖

1
.

𝐴 ≥ 0 (resp., 𝐴 > 0) means that, for all 𝑖 and 𝑗, [𝐴]
𝑖𝑗

≥ 0

(resp., [𝐴]
𝑖𝑗
> 0). The induced 1-norm of a matrix𝑄 ≜ [𝑞

𝑖𝑗
] ∈

R𝑚×𝑛 is denoted by ‖𝑄‖
1
≜ max

1≤𝑗≤𝑛
(∑
𝑚

𝑖=1
|𝑞
𝑖𝑗
|).The notation

𝐴 ≥ 𝐵 means that the matrix 𝐴 − 𝐵 ≥ 0 and 𝐴 > 𝐵 denotes
𝐴 − 𝐵 > 0. The Euclidean norm for vectors can be expressed
as ‖ ⋅ ‖. The space of all vector-valued functions defined on
R
𝑛

+
with finite ℓ

1
norm is denoted by ℓ

1
(R
𝑛

+
). 1 stands for a

column vector with each entry equal to 1.

2. Problem Formulation

In this section, the ℓ
1
-induced performance is first introduced

for discrete-time positive systems. Moreover, the ℓ
1
-induced

filtering problem for a stable positive system is formulated.
Consider the following discrete-time linear system:

𝑥 (𝑘 + 1) = 𝐴𝑥 (𝑘) + 𝐵𝑤 (𝑘) ,

𝑦 (𝑘) = 𝐶𝑥 (𝑘) + 𝐷𝑤 (𝑘) ,

𝑧 (𝑘) = 𝐿𝑥 (𝑘) ,

(1)

where 𝑥(𝑘) ∈ R𝑛, 𝑤(𝑘) ∈ R𝑙, 𝑦(𝑘) ∈ R𝑞, and 𝑧(𝑘) ∈ R𝑞

denote the state vector, disturbance signal, measurement, and
the signal to be determined, respectively.

Next, the following definition is presented below, which
will be used in the sequel.

Definition 1. System (1) is positive if 𝑥(𝑘) ≥ 0, 𝑦(𝑘) ≥ 0, and
𝑧(𝑘) ≥ 0 always hold for all 𝑥(0) ≥ 0 and all input 𝑤(𝑘) ≥ 0.

Beforemoving on, some useful results are introduced and
the following lemmas are needed.

Lemma 2 (see [37]). The discrete-time system (1) is positive if
and only if

𝐴 ≥ 0,

𝐵 ≥ 0,

𝐶 ≥ 0,

𝐷 ≥ 0,

𝐿 ≥ 0,

𝑖 = 1, 2, . . . , 𝑟.

(2)

Lemma 3. System (1) with input 𝑤(𝑘) = 0 is asymptotically
stable if and only if there exists a vector 𝑝 ≥ 0 (or 𝑝 > 0)
satisfying

𝑝
𝑇
𝐴 − 𝑝

𝑇
≪ 0. (3)

Next, the definition of ℓ
1
-induced performance is intro-

duced. A stable positive system (1) is said to have ℓ
1
-induced

performance at the level 𝛾 if, under zero initial conditions,

sup
𝑤 ̸=0, 𝑤∈ℓ

1
(R
𝑛

+
)

‖𝑧‖ℓ
1

‖𝑤‖ℓ
1

< 𝛾, (4)

where 𝛾 > 0 is a given scalar.
Now we are in the position to introduce the following

result which serves as a characterization on the asymptotic
stability of system (1) with the ℓ

1
-induced performance in (4)

via linear programming. The performance characterization
result is a theoretical basis for further development.

Lemma 4 (see [32]). The positive system (1) is asymptotically
stable and satisfies ‖𝑧‖

ℓ
1

< 𝛾‖𝑤‖
ℓ
1

if and only if there exists a
vector 𝑝 ≥ 0 satisfying

1𝑇𝐿 + 𝑝
𝑇
𝐴 − 𝑝

𝑇
≪ 0,

𝑝
𝑇
𝐵 − 𝛾1𝑇 ≪ 0.

(5)

It is easy to see that the transient output cannot be
estimated via conventional filters, which can only give an
estimate of the output asymptotically. In order to design
a filter which can be used to give the information of the
transient output at all times, we intend to find a lower-
bounding estimate 𝑧̌(𝑘) and an upper-bounding one 𝑧̂(𝑘).
More specifically, the signal 𝑧(𝑘) can be encapsulated between
the two estimates at all times. A pair of filters is proposed as
follows:

𝑥̌ (𝑘 + 1) = 𝐴
𝑓
𝑥̌ (𝑘) + 𝐵

𝑓
𝑦 (𝑘) ,

𝑧̌ (𝑘) = 𝐶
𝑓
𝑥̌ (𝑘) ,

(6)

𝑥̂ (𝑘 + 1) = 𝐴
𝑓
𝑥̂ (𝑘) + 𝐵

𝑓
𝑦 (𝑘) ,

𝑧̂ (𝑘) = 𝐶
𝑓
𝑥̂ (𝑘) ,

(7)

where 𝑥̂(𝑘) ∈ R𝑛, 𝑥̌(𝑘) ∈ R𝑛, 𝑧̂(𝑘) ∈ R𝑞, and 𝑧̌(𝑘) ∈ R𝑞.
𝐴
𝑓
, 𝐴
𝑓
, 𝐵
𝑓
, 𝐵
𝑓
, 𝐶
𝑓
, and 𝐶

𝑓
are filtering parameters.
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First, the lower-bounding case is considered. Set 𝑥̌
𝑒
(𝑘) =

𝑥(𝑘) − 𝑥̌(𝑘), 𝜉̌(𝑘) = [𝑥
𝑇
(𝑘), 𝑥̌

𝑇

𝑒
(𝑘)]
𝑇

, and ̌𝑒(𝑘) = 𝑧(𝑘) −

𝑧̌(𝑘). From (1) and (6), the augmented system is described as
follows:

𝜉̌ (𝑘 + 1) = 𝐴
𝜉
𝜉̌ (𝑘) + 𝐵

𝜉
𝑤 (𝑘) ,

̌𝑒 (𝑘) = 𝐶
𝜉
𝜉̌ (𝑘) ,

(8)

where

𝐴
𝜉
= [

𝐴 0

𝐴 − 𝐵
𝑓
𝐶 − 𝐴

𝑓
𝐴
𝑓

] ,

𝐵
𝜉
= [

𝐵

𝐵 − 𝐵
𝑓
𝐷
] ,

𝐶
𝜉
= [𝐿 − 𝐶

𝑓
𝐶
𝑓] .

(9)

Since, the lower-bounding filter (6) is designed to approx-
imate 𝑧(𝑘) with 𝑧̌(𝑘), it is natural to require that the estimate
𝑧̌(𝑘) is also positive, which means that the filter (6) should
be a positive system. From Lemma 2, it can be seen that
𝐴
𝑓

≥ 0, 𝐵
𝑓

≥ 0, and 𝐶
𝑓

≥ 0 are required. Based on
the above discussion, the positive lower-bounding filtering
(PLBF) problem is formulated as folows.

Positive Lower-Bounding Filtering (PLBF). Given a stable
positive system (1), find a positive filter (6) with𝐴

𝑓
≥ 0, 𝐵

𝑓
≥

0, and 𝐶
𝑓
≥ 0 that ensures that the filtering error system (8)

is positive, asymptotically stable, with performance ‖ ̌𝑒‖
ℓ
1

<

𝛾
𝑙
‖𝑤‖
ℓ
1

under zero initial conditions.

Similarly, the second filtering error system can be
obtained by defining 𝑥̂

𝑒
(𝑘) = 𝑥̂(𝑘) − 𝑥(𝑘), 𝜉̂(𝑘) =

[𝑥
𝑇
(𝑘), 𝑥̂

𝑇

𝑒
(𝑘)]
𝑇

, and 𝑒̂(𝑘) = 𝑧̂(𝑘)−𝑧(𝑘), and it can be formu-
lated as follows:

𝜉̂ (𝑘 + 1) = 𝐴
𝜉
𝜉̂ (𝑘) + 𝐵

𝜉
𝑤 (𝑘) ,

𝑒̂ (𝑘) = 𝐶
𝜉
𝜉̂ (𝑘) ,

(10)

where

𝐴
𝜉
= [

𝐴 0

𝐴
𝑓
+ 𝐵
𝑓
𝐶 − 𝐴 𝐴

𝑓

] ,

𝐵
𝜉
= [

𝐵

𝐵
𝑓
𝐷 − 𝐵

] ,

𝐶
𝜉
= [𝐶
𝑓
− 𝐿 𝐶

𝑓
] .

(11)

Then, the positive upper-bounding filtering (PUBF) problem
is proposed below.

Positive Upper-Bounding Filtering (PUBF). Given a stable
positive system (1), find a positive filter (7) with𝐴

𝑓
≥ 0, 𝐵

𝑓
≥

0, and 𝐶
𝑓
≥ 0 that ensures that the filtering error system (10)

is positive, asymptotically stable, with performance ‖𝑒̂‖
ℓ
1

<

𝛾
𝑢
‖𝑤‖
ℓ
1

under zero initial conditions.

3. Main Results

In this section, a pair of positive error-bounding filters is
obtainedwhich can bound the signal 𝑧(𝑘) at all times with the
ℓ
1
-induced performance satisfied. Necessary and sufficient

conditions in terms of linear programming are presented to
design a lower-bounding filter, which is followed by parallel
results obtained for the upper-bounding case.

Now, we are in a position to provide conditions to
design the desired lower-bounding filter for system (1) in the
following theorem.

Theorem 5. Given a stable discrete-time positive system (1),
a lower-bounding filter (6) exists such that the filtering error
system (8) is positive, asymptotically stable with ‖ ̌𝑒‖

ℓ
1

< 𝛾
𝑙
‖𝑤‖
ℓ
1

if and only if there exist vectors 𝑝
1
≥ 0, 𝑝

2
≥ 0 and matrices

𝑀
𝐴
𝑓

,𝑀
𝐵
𝑓

, 𝐶
𝑓
≥ 0 such that the following LMIs are feasible:

[𝑀𝐴
𝑓
]
𝑔V

≥ 0, (12)

[𝑀𝐵
𝑓
]
𝑔𝑠

≥ 0, (13)

𝐿 − 𝐶
𝑓
≥ 0, (14)

𝑝
𝑇

2𝑔
[𝐴]
𝑔V − [𝑀𝐵

𝑓
]
𝑟,𝑔

[𝐶]
𝑐,V − [𝑀𝐴

𝑓
]
𝑔V

≥ 0, (15)

𝑝
𝑇

2𝑔
[𝐵]
𝑔𝑠

− [𝑀𝐵
𝑓
]
𝑟,𝑔

[𝐷]
𝑐,𝑠

≥ 0, (16)

1𝑇 (𝐿 − 𝐶
𝑓
) + 𝑝
𝑇

1
𝐴 + 𝑝

𝑇

2
𝐴 −

𝑛

∑

𝑔=1

[𝑀𝐵
𝑓
]
𝑟,𝑔

𝐶

−

𝑛

∑

𝑔=1

[𝑀𝐴
𝑓
]
𝑟,𝑔

− 𝑝
𝑇

1
≪ 0,

(17)

1𝑇𝐶
𝑓
+

𝑛

∑

𝑔=1

[𝑀𝐴
𝑓
]
𝑟,𝑔

− 𝑝
𝑇

2
≪ 0, (18)

𝑝
𝑇

1
𝐵 + 𝑝
𝑇

2
𝐵 −

𝑛

∑

𝑔=1

[𝑀𝐵
𝑓
]
𝑟,𝑔

𝐷 − 𝛾
𝑙
1𝑇 ≪ 0, (19)

where 𝑔, V = 1, . . . , 𝑛; 𝑠 = 1, . . . , 𝑚. Then, a possible choice for
𝐴
𝑓
and 𝐵

𝑓
is given by

[𝐴𝑓]
𝑔V

= 𝑝
−1

2𝑔
[𝑀𝐴

𝑓
]
𝑔V ,

[𝐵𝑓]
𝑔𝑠

= 𝑝
−1

2𝑔
[𝑀𝐵

𝑓
]
𝑔𝑠
.

(20)

Proof .

Sufficiency. From 𝑝
2

≥ 0, (12), (13), and (20), we have that
𝐴
𝑓
≥ 0 and 𝐵

𝑓
≥ 0, which together with 𝐶

𝑓
≥ 0 guarantees

that the lower-bounding filter (6) is a positive system.
Together with (20) and 𝑝

2
≥ 0, (15)-(16) imply

[𝐴]
𝑔V − [𝐵𝑓]

𝑟,𝑔
[𝐶]
𝑐,V − [𝐴𝑓]

𝑔V
≥ 0,

[𝐵]
𝑔𝑠

− [𝐵𝑓]
𝑟,𝑔

[𝐷]
𝑐,𝑠

≥ 0,

(21)
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and we have that
𝐴 − 𝐵

𝑓
𝐶 − 𝐴

𝑓
≥ 0,

𝐵 − 𝐵
𝑓
𝐷 ≥ 0.

(22)

From (10), 𝐴
𝑓
≥ 0, 𝐵

𝑓
≥ 0, 𝐶

𝑓
≥ 0, and (14), it can be easily

seen that the filtering error system (8) is positive.
Moreover, from (20), we obtain that

𝑛

∑

𝑔=1

[𝑀𝐴
𝑓
]
𝑟,𝑔

= 𝑝
𝑇

2
𝐴
𝑓
,

𝑛

∑

𝑔=1

[𝑀𝐵
𝑓
]
𝑟,𝑔

= 𝑝
𝑇

2
𝐵
𝑓
.

(23)

Inequalities (17)–(19) together with (23) imply that

1𝑇 (𝐿 − 𝐶
𝑓
) + 𝑝
𝑇

1
𝐴 + 𝑝

𝑇

2
𝐴 − 𝑝

𝑇

2
𝐵
𝑓
𝐶 − 𝑝

𝑇

2
𝐴
𝑓
− 𝑝
𝑇

1

≪ 0,

1𝑇𝐶
𝑓
+ 𝑝
𝑇

2
𝐴
𝑓
− 𝑝
𝑇

2
≪ 0,

𝑝
𝑇

1
𝐵 + 𝑝
𝑇

2
𝐵 − 𝑝
𝑇

2
𝐵
𝑓
𝐷 − 𝛾
𝑙
1𝑇 ≪ 0,

(24)

and we have

1𝑇 [𝐿 − 𝐶
𝑓

𝐶
𝑓] + 𝑝

𝑇
[

𝐴 0

𝐴 − 𝐵
𝑓
𝐶 − 𝐴

𝑓
𝐴
𝑓

] − 𝑝
𝑇

≪ 0,

𝑝
𝑇
[

𝐵

𝐵 − 𝐵
𝑓
𝐷
] − 𝛾
𝑙
1𝑇 ≪ 0,

(25)

where 𝑝𝑇 = [𝑝
𝑇

1
𝑝
𝑇

2
].

By Lemma 4, the filtering error system (8) is asymptoti-
cally stable with ‖ ̌𝑒‖

ℓ
1

< 𝛾
𝑙
‖𝑤‖
ℓ
1

.

Necessity. By Lemma 4, we can conclude that there exists 𝑝 ≥

0 such that inequality (25) holds. Set 𝑝𝑇 ≜ [𝑝
𝑇

1
𝑝
𝑇

2
]. We can

deduce that the following inequalities hold:

1𝑇 (𝐿 − 𝐶
𝑓
) + 𝑝
𝑇

1
𝐴 + 𝑝

𝑇

2
𝐴 − 𝑝

𝑇

2
𝐵
𝑓
𝐶 − 𝑝

𝑇

2
𝐴
𝑓
− 𝑝
𝑇

1

≪ 0,

1𝑇𝐶
𝑓
+ 𝑝
𝑇

2
𝐴
𝑓
− 𝑝
𝑇

2
≪ 0,

𝑝
𝑇

1
𝐵 + 𝑝
𝑇

2
𝐵 − 𝑝
𝑇

2
𝐵
𝑓
𝐷 − 𝛾
𝑙
1𝑇 ≪ 0.

(26)

From 𝑝
𝑇

2
𝐴
𝑓
= ∑
𝑛

𝑖=1
𝑝
2𝑔

[𝐴𝑓]
𝑟,𝑔

and 𝑝
𝑇

2
𝐵
𝑓
= ∑
𝑛

𝑖=1
𝑝
2𝑔

[𝐵𝑓]
𝑟,𝑔
,

it follows that the change of variables

[𝑀𝐴
𝑓
]
𝑔V

= 𝑝
2𝑔

[𝐴𝑓]
𝑔V

,

[𝑀𝐵
𝑓
]
𝑔𝑠

= 𝑝
2𝑔

[𝐵𝑓]
𝑔𝑠

(27)

makes the problem linear and yields (17)–(20).

Next, the lower-bounding filter (6) is positive andwe have
𝐴
𝑓

≥ 0, 𝐵
𝑓

≥ 0, and 𝐶
𝑓

≥ 0. Because of (27) and 𝑝
2
≥ 0,

𝐴
𝑓
≥ 0 and 𝐵

𝑓
≥ 0 imply𝑀

𝐴
𝑓

≥ 0 and𝑀
𝐵
𝑓

≥ 0.
Moreover, if the filtering error system (8) is positive, the

following inequalities hold:

𝐿 − 𝐶
𝑓
≥ 0,

[𝐴]
𝑔V − [𝐵𝑓]

𝑟,𝑔
[𝐶]
𝑐,V − [𝐴𝑓]

𝑔V
≥ 0,

[𝐵]
𝑔𝑠

− [𝐵𝑓]
𝑟,𝑔

[𝐷]
𝑐,𝑠

≥ 0,

(28)

and this implies (14)–(16).The whole proof is completed.

The parallel result is presented in the following for the
upper-bounding case. We propose the following theorem to
design the upper-bounding filter for positive systems. The
proof is similar to the lower-bounding case and thus is
omitted here.

Theorem6. Given a stable discrete-time positive system (1), an
upper-bounding filter (7) exists such that the closed-loop system
(10) is positive, asymptotically stable with ‖𝑒̂‖

ℓ
1

< 𝛾
𝑢
‖𝑤‖
ℓ
1

if
and only if there exist vectors 𝑝

1
≥ 0, 𝑝

2
≥ 0 and matrices

𝑀
𝐴
𝑓

,𝑀
𝐵
𝑓

, 𝐶
𝑓
≥ 0 such that the following LMIs are feasible:

[𝑀𝐴
𝑓
]
𝑔V

≥ 0,

[𝑀𝐵
𝑓
]
𝑔𝑠

≥ 0,

𝐶
𝑓
− 𝐿 ≥ 0,

[𝑀𝐴
𝑓
]
𝑔V

+ [𝑀𝐵
𝑓
]
𝑟,𝑔

[𝐶]
𝑐,V − 𝑝

𝑇

2𝑔
[𝐴]
𝑔V ≥ 0,

[𝑀𝐵
𝑓
]
𝑟,𝑔

[𝐷]
𝑐,𝑠

− 𝑝
𝑇

2𝑔
[𝐵]
𝑔𝑠

≥ 0,

1𝑇 (𝐶
𝑓
− 𝐿) + 𝑝

𝑇

1
𝐴 − 𝑝

𝑇

2
𝐴 +

𝑛

∑

𝑔=1

[𝑀𝐵
𝑓
]
𝑟,𝑔

𝐶

+

𝑛

∑

𝑔=1

[𝑀𝐴
𝑓
]
𝑟,𝑔

− 𝑝
𝑇

1
≪ 0,

1𝑇𝐶
𝑓
+

𝑛

∑

𝑔=1

[𝑀𝐴
𝑓
]
𝑟,𝑔

− 𝑝
𝑇

2
≪ 0,

𝑝
𝑇

1
𝐵 − 𝑝
𝑇

2
𝐵 +

𝑛

∑

𝑔=1

[𝑀𝐵
𝑓
]
𝑟,𝑔

𝐷 − 𝛾
𝑢
1𝑇 ≪ 0,

(29)

where 𝑔, V = 1, . . . , 𝑛; 𝑠 = 1, . . . , 𝑚. Then, a possible choice for
𝐴
𝑓
and 𝐵

𝑓
is given by

[𝐴
𝑓
]
𝑔V

= 𝑝
−1

2𝑔
[𝑀𝐴

𝑓
]
𝑔V

,

[𝐵
𝑓
]
𝑔𝑠

= 𝑝
−1

2𝑔
[𝑀𝐵

𝑓
]
𝑔𝑠
.

(30)
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Remark 7. Conditions obtained in Theorems 5 and 6 can be
easily solved by linear programming. Moreover, it is noted
that the ℓ

1
-induced error-bounding filters can be designed by

combiningTheorems 5 and 6.

4. Illustrative Example

In this section, an illustrative example is given to illustrate the
effectiveness of the theoretical results.

Consider system (1) with system matrices given by

𝐴 = [

0.05 0.5

0.35 0.15
] ,

𝐵 = [

0.1

0.2
] ,

𝐶 = [0.2 0.5] ,

𝐷 = 0.8,

𝐿 = [0.2 0.1] .

(31)

For 𝛾
𝑙

= 0.5, by implementing the linear program in
Theorem 5, we obtain the feasible solution

𝑝
1
= [1.0152 1.0167]

𝑇

,

𝑝
2
= [1.3744 1.3168]

𝑇

,

(32)

which yields

𝐴
𝑓
= [

0.0023 0.4206

0.2381 0.0254
] ,

𝐵
𝑓
= [

0.0796

0.1965

] ,

𝐶
𝑓
= [0.0578 0.0078] .

(33)

Moreover, for 𝛾
𝑢

= 0.5, by implementing the linear
program described in Theorem 6, we obtain the feasible
solution

𝑝
1
= [1.3264 1.7831]

𝑇

,

𝑝
2
= [1.6229 1.7213]

𝑇

,

(34)

which further yields

𝐴
𝑓
= [

0.0722 0.3832

0.2673 0.0639

] ,

𝐵
𝑓
= [

0.1625

0.2633

] ,

𝐶
𝑓
= [0.1625 0.0263] .

(35)

Output z(k)
Upper estimate ẑ(k)

Lower estimate ž(k)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

5 10 15 200
Time k

Figure 1: Output 𝑧(𝑘) and its estimates.

Next, the following disturbance is used in this example:

𝑤 (𝑘) =

{

{

{

0.4, 5 ≤ 𝑘 ≤ 10,

0, otherwise.
(36)

Figure 1 shows the lower estimate 𝑧̌(𝑘), the output 𝑧(𝑘),
and the upper estimate 𝑧̂(𝑘). From Figure 1, we see that the
signal 𝑧(𝑘) can be encapsulated at all times with the lower-
bounding estimate 𝑧̌(𝑘) and the upper-bounding one 𝑧̂(𝑘). In
other words, by the filters designed through Theorem 6 and
Theorem 5, the output of the original positive system can be
estimated at all times.

5. Conclusion

This paper has addressed the problem of positive filtering
for positive systems under ℓ

1
performance. Based on linear

programming, we have established a novel performance char-
acterization of the filtering error system.Moreover, necessary
and sufficient conditions have been developed such that the
error-bounding system is positive, asymptotically stable with
ℓ
1
performance. Finally, a numerical example is presented to

verify the theoretical findings. As a future research direction,
it would be of interest to consider the filtering problem for
positive systems with time-varying or distributed delays.
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