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We introduce and study a new system of generalized nonlinear quasi-variational-like inclusions with 𝐻(⋅, ⋅)-cocoercive operator
in Hilbert spaces. We suggest and analyze a class of iterative algorithms for solving the system of generalized nonlinear quasi-
variational-like inclusions. An existence theorem of solutions for the system of generalized nonlinear quasi-variational-like
inclusions is proved under suitable assumptions which show that the approximate solutions obtained by proposed algorithms
converge to the exact solutions.

1. Introduction

Variational inclusion problems are important generalization
of classical variational inequalities and havewide applications
to many fields including mechanics, physics, optimization
and control, nonlinear programming, economics, and engi-
neering sciences; see, for example, [1]. For these reasons,
various variational inclusions have been intensively studied
in recent years. Many efficient ways have been studied to find
solutions for variational inclusions. Those methods include
the projection method and its various forms, linear approx-
imation, descent and Newton’s method, and the method
based on auxiliary principle technique. The method based
on the resolvent operator technique is a generalization of
the projection method and has been widely used to solve
variational inclusions. For details, we refer to see [2–19].

Recently, Fang and Huang, Kazmi and Khan, and Lan
et al. investigated several resolvent operators for general-
ized operators such as 𝐻-monotone [3, 17], 𝐻-accretive
[4], 𝐴-maximal relaxed accretive [14], (𝐻, 𝜂)-monotone [5],
(𝐴, 𝜂)-accretive [13], (𝑃, 𝜂)-proximal point [8], and (𝑃, 𝜂)-
accretive [9] operators. Very recently, Zou and Huang [19]
introduced and studied 𝐻(⋅, ⋅)-accretive operators, Kazmi
et al. [10–12] introduced and studied generalized 𝐻(⋅, ⋅)-
accretive operators and 𝐻(⋅, ⋅)-𝜂-proximal point mapping,

and Xu and Wang [18] introduced and studied (𝐻(⋅, ⋅), 𝜂)-
monotone operators. Ahmad et al. [2, 8] introduced and
studied𝐻(⋅, ⋅)-cocoercive operators, showed some properties
of the resolvent operator for the𝐻(⋅, ⋅)-cocoercive operators,
and obtained an application for solving variational inclusions
in Hilbert spaces. They also gave some examples to illustrate
their results.

Inspired and motivated by the researches going on in this
area, we introduce and discuss a new system of generalized
nonlinear quasi-variational-like inclusions involving 𝐻(⋅, ⋅)-
cocoercive operators in Hilbert spaces. By using the resolvent
operators associated with𝐻(⋅, ⋅)-cocoercive operators due to
Ahmad et al. [2], we prove that the approximate solutions
obtained by the iterative algorithms converge to the exact
solutions of our system of generalized nonlinear quasi-
variational-like inclusions. Our results can be viewed as an
extension and generalization of some known results in the
literature.

2. Preliminaries

Throughout this paper, we suppose that 𝑋 is a real Hilbert
space endowed with a norm ‖ ⋅ ‖ and an inner product ⟨⋅, ⋅⟩,
𝑑 is the metric induced by the norm ‖ ⋅ ‖, 2𝑋 (resp., 𝐶𝐵(𝑋)) is
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the family of all the nonempty (resp., closed and bounded)
subsets of 𝑋 and D(⋅, ⋅) is the Hausdorff metric on 𝐶𝐵(𝑋)

defined by

D (𝑃, 𝑄) = max{sup
𝑥∈𝑃

𝑑 (𝑥, 𝑄) , sup
𝑦∈𝑃

𝑑 (𝑃, 𝑦)} ,

∀𝑃, 𝑄 ∈ 𝐶𝐵 (𝑋) ,

(1)

where 𝑑(𝑥, 𝑄) = inf
𝑦∈𝑄

‖𝑥 − 𝑦‖ and 𝑑(𝑃, 𝑦) = inf
𝑥∈𝑃

‖𝑥 − 𝑦‖.
In the sequel, let us recall some concepts.

Definition 1 (see [20]). A mapping 𝑔 : 𝑋 → 𝑋 is said to be

(i) monotone if

⟨𝑔 (𝑥) − 𝑔 (𝑦) , 𝑥 − 𝑦⟩ ≥ 0, ∀𝑥, 𝑦 ∈ 𝑋; (2)

(ii) 𝜉-strongly monotone if there exists a constant 𝜉 > 0

such that

⟨𝑔 (𝑥) − 𝑔 (𝑦) , 𝑥 − 𝑦⟩ ≥ 𝜉
𝑥 − 𝑦



2
, ∀𝑥, 𝑦 ∈ 𝑋; (3)

(iii) 𝜇-cocoercive if there exists a constant 𝜇 > 0 such that

⟨𝑔 (𝑥) − 𝑔 (𝑦) , 𝑥 − 𝑦⟩ ≥ 𝜇
𝑔 (𝑥) − 𝑔 (𝑦)



2
, ∀𝑥, 𝑦 ∈ 𝑋;

(4)

(iv) 𝛾-relaxed cocoercive if there exists a constant 𝛾 > 0

such that

⟨𝑔 (𝑥) − 𝑔 (𝑦) , 𝑥 − 𝑦⟩ ≥ (−𝛾)
𝑔 (𝑥) − 𝑔 (𝑦)



2
, ∀𝑥, 𝑦 ∈ 𝑋;

(5)

(v) 𝜆
𝑔
-Lipschitz continuous if there exists a constant

𝜆
𝑔
> 0 such that

𝑔 (𝑥) − 𝑔 (𝑦)
 ≤ 𝜆
𝑔

𝑥 − 𝑦
 , ∀𝑥, 𝑦 ∈ 𝑋; (6)

(vi) 𝛼-expansive if there exists a constant 𝛼 > 0 such that
𝑔 (𝑥) − 𝑔 (𝑦)

 ≥ 𝛼
𝑥 − 𝑦

 , ∀𝑥, 𝑦 ∈ 𝑋; (7)

if 𝛼 = 1, then it is expansive.

Definition 2. Let𝑀 : 𝑋 → 2
𝑋 be set-valued mapping.Then,

𝑀 is said to be 𝜇-cocoercive if there exists a constant 𝜇 > 0

such that

⟨𝑢 − V, 𝜂 (𝑥, 𝑦)⟩ ≥ 𝜇

‖𝑢 − V‖2,

∀𝑥, 𝑦 ∈ 𝑋, 𝑢 ∈ 𝑀 (𝑥) , V ∈ 𝑀(𝑦) .

(8)

Definition 3 (see [2]). Let𝐻 : 𝑋×𝑋 → 𝑋 and𝐴, 𝐵 : 𝑋 → 𝑋

be the single-valued mappings. Then,

(i) 𝐻(𝐴, ⋅) is said to be 𝜇-cocoercive with respect to 𝐴 if
there exists a constant 𝜇 > 0 such that

⟨𝐻 (𝐴𝑥, 𝑢) − 𝐻 (𝐴𝑦, 𝑢) , 𝑥 − 𝑦⟩ ≥ 𝜇
𝐴𝑥 − 𝐴𝑦



2
,

∀𝑥, 𝑦 ∈ 𝑋;

(9)

(ii) 𝐻(⋅, 𝐵) is said to be 𝛾-relaxed cocoercive with respect
to 𝐵 if there exists a constant 𝛾 > 0 such that

⟨𝐻 (𝑢, 𝐵𝑥) − 𝐻 (𝑢, 𝐵𝑦) , 𝑥 − 𝑦⟩ ≥ (−𝛾)
𝐵𝑥 − 𝐵𝑦



2
,

∀𝑥, 𝑦 ∈ 𝑋;

(10)

(iii) 𝐻(𝐴, ⋅) is said to be 𝑟
1
-Lipschitz continuous with

respect to 𝐴 if there exists a constant 𝑟
1
> 0 such that

𝐻 (𝐴𝑥, ⋅) − 𝐻 (𝐴𝑦, ⋅)
 ≤ 𝑟
1

𝑥 − 𝑦
 , ∀𝑥, 𝑦 ∈ 𝑋; (11)

(iv) 𝐻(⋅, 𝐵) is said to be 𝑟
2
-Lipschitz continuous with

respect to 𝐵 if there exists a constant 𝑟
2
> 0 such that

𝐻 (⋅, 𝐵𝑥) − 𝐻 (⋅, 𝐵𝑦)
 ≤ 𝑟
2

𝑥 − 𝑦
 , ∀𝑥, 𝑦 ∈ 𝑋. (12)

Definition 4 (see [2]). Let 𝐻 : 𝑋 × 𝑋 → 𝑋 and𝐴, 𝐵 :

𝑋 → 𝑋 be the single-valued mappings.Then, the set-valued
mapping 𝑀 : 𝑋 → 2

𝑋 is said to be 𝐻(⋅, ⋅)-cocoercive with
respect to𝐴 and𝐵 (or simply𝐻(⋅, ⋅)-cocoercive in the sequel),
if

(i) 𝑀 is cocoercive;
(ii) (𝐻(𝐴, 𝐵) + 𝜆𝑀)(𝑋) = 𝑋, for every 𝜆 > 0.

Example 5. Let 𝑋 = R2 with the usual inner product. Let
𝐴, 𝐵 : R2 → R2 be defined by

𝐴𝑥 = (2𝑥
1
− 2𝑥
2
, −2𝑥
1
+ 4𝑥
2
) ,

𝐵𝑦 = (−𝑦
1
+ 𝑦
2
, −𝑦
2
) , ∀𝑥, 𝑦 ∈ R

2
.

(13)

Suppose that𝐻(𝐴, 𝐵) : R2 ×R2 → R2 is defined by

𝐻(𝐴𝑥, 𝐵𝑦) = 𝐴𝑥 + 𝐵𝑦, ∀𝑥, 𝑦 ∈ R
2
. (14)

Then, it is easy to check that 𝐻(𝐴, 𝐵) is 1/6-cocoercive with
respect to 𝐴 and 1/2-relaxed cocoercive with respect to 𝐵.

Let 𝑀 = 𝐼, where 𝐼 is the identity mapping. Then, 𝑀 is
𝐻(⋅, ⋅)-cocoercive mapping with respect to 𝐴 and 𝐵.

Example 6. Let 𝑋 = S2, where S2 denotes the space of all
2×2 real symmetric matrices. Let𝐻(𝐴𝑥, 𝐵𝑦) = 𝑥

2
−𝑦, for all

𝑥, 𝑦 ∈ S2 and𝑀 = 𝐼. Then, for 𝜆 = 1, we have

(𝐻 (𝐴, 𝐵) +𝑀) (𝑥) = 𝑥
2
− 𝑥 + 𝑥 = 𝑥

2
, (15)

but

[
0 0

0 −1
] ∉ (𝐻 (𝐴, 𝐵) +𝑀) (S

2
) , (16)

because [ 0 0
0 −1

] is not the square of any 2 × 2 real symmetric
matrix. Hence,𝑀 is not 𝐻(⋅, ⋅)-cocoercive with respect to 𝐴
and 𝐵.

Proposition 7 (see [2]). Let 𝐻(𝐴, 𝐵) be 𝜇-cocoercive with
respect to 𝐴 and 𝛾-relaxed cocoercive with respect to 𝐵; 𝐴 is
𝛼-expansive, 𝐵 is 𝛽-Lipschitz continuous, and 𝜇 > 𝛾, 𝛼 > 𝛽.
Let 𝑀 : 𝑋 → 2

𝑋 be an 𝐻(⋅, ⋅)-cocoercive operator. If the
inequality

⟨𝑢 − V, 𝑥 − 𝑦⟩ ≥ 0 (17)
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holds for all (𝑦, V) ∈ 𝐺𝑟𝑎𝑝ℎ(𝑀), then 𝑢 ∈ 𝑀𝑥, where

𝐺𝑟𝑎𝑝ℎ (𝑀) = {(𝑢, 𝑥) ∈ 𝑋 × 𝑋 : 𝑥 ∈ 𝑀 (𝑢)} . (18)

Theorem 8 (see [2]). Let𝐻(𝐴, 𝐵) be 𝜇-cocoercive with respect
to 𝐴 and 𝛾-relaxed cocoercive with respect to 𝐵; 𝐴 is 𝛼-
expansive, 𝐵 is 𝛽-Lipschitz continuous, and 𝜇 > 𝛾 and 𝛼 > 𝛽.
Let M be an 𝐻(⋅, ⋅)-cocoercive operator with respect to 𝐴 and
𝐵. Then, the operator (𝐻(𝐴, 𝐵) + 𝜆𝑀)

−1 is single-valued.

Definition 9 (see [2]). Let 𝐻(𝐴, 𝐵) be 𝜇-cocoercive with
respect to 𝐴 and 𝛾-relaxed cocoercive with respect to 𝐵; 𝐴 is
𝛼-expansive, 𝐵 is 𝛽-Lipschitz continuous, and 𝜇 > 𝛾, 𝛼 > 𝛽.
Let𝑀 be an𝐻(⋅, ⋅)-cocoercive operator with respect to𝐴 and
𝐵. The resolvent operator 𝑅𝐻(⋅,⋅)

𝜆,𝑀
: 𝑋 → 𝑋 is defined by

𝑅
𝐻(⋅,⋅)

𝜆,𝑀
(𝑢) = (𝐻 (𝐴, 𝐵) + 𝜆𝑀)

−1
(𝑢) , ∀𝑢 ∈ 𝑋. (19)

Theorem 10 (see [2]). Let 𝐻(𝐴, 𝐵) be 𝜇-cocoercive with
respect to 𝐴 and 𝛾-relaxed cocoercive with respect to 𝐵, 𝐴 is
𝛼-expansive, 𝐵 is 𝛽-Lipschitz continuous, and 𝜇 > 𝛾, 𝛼 > 𝛽

with 𝑟 = 𝜇𝛼
2
− 𝛾𝛽
2. Let 𝑀 be an 𝐻(⋅, ⋅)-cocoercive operator

with respect to 𝐴 and 𝐵. Then, the resolvent operator 𝑅𝐻(⋅,⋅)
𝜆,𝑀

:

𝑋 → 𝑋 is 1/(𝜇𝛼2 − 𝛾𝛽2)-Lipschitz continuous; that is,


𝑅
𝐻(⋅,⋅)

𝜆,𝑀
(𝑢) − 𝑅

𝐻(⋅,⋅)

𝜆,𝑀
(V)


≤

1

𝜇𝛼2 − 𝛾𝛽2
‖𝑢 − V‖ , ∀𝑢, V ∈ 𝑋.

(20)

3. The System of Generalized Nonlinear
Quasi-Variational-Like Inclusions and
Iterative Algorithm

Let𝑋
1
and𝑋

2
be real Hilbert spaces. Let 𝑃 : 𝑋

1
×𝑋
2
→ 𝑋
1
,

𝑄 : 𝑋
1
×𝑋
2
→ 𝑋
2
, 𝑔, 𝐴, 𝐵 : 𝑋

1
→ 𝑋
1
, ℎ, 𝐶,𝐷 : 𝑋

2
→ 𝑋
2
,

𝐺 : 𝑋
1
× 𝑋
1
→ 𝑋
1
, and𝐻 : 𝑋

2
× 𝑋
2
→ 𝑋
2
be the single-

valued mappings. Let 𝑆 : 𝑋
1
→ 𝐶𝐵(𝑋

1
) and 𝑇 : 𝑋

2
→

𝐶𝐵(𝑋
2
) be the set-valued mappings, let𝑀 : 𝑋

1
× 𝑋
1
→ 2
𝑋
1

be a set-valued mapping such that, for each 𝑎 ∈ 𝑋
1
, 𝑀(⋅, 𝑎)

is a 𝐺(⋅, ⋅)-cocoercive operator with respect to 𝐴 and 𝐵, and
let 𝑁 : 𝑋

2
× 𝑋
2
→ 2
𝑋
2 be a set-valued mapping such that,

for each 𝑏 ∈ 𝑋
2
,𝑁(⋅, 𝑏) is an𝐻(⋅, ⋅)-cocoercive operator with

respect to 𝐶 and 𝐷. Assume that 𝑔(𝑋
1
) ∩ dom(𝑀(⋅, 𝑎)) ̸= 0

for each 𝑎 ∈ 𝑋
1
, and ℎ(𝑋

2
) ∩ dom(𝑁(⋅, 𝑏)) ̸= 0 for each 𝑏 ∈

𝑋
2
. Then, we consider the following system of generalized

nonlinear quasi-variational-like inclusions.
Find (𝑎, 𝑏) ∈ 𝑋

1
× 𝑋
2
with 𝑝 ∈ 𝑆(𝑎), 𝑞 ∈ 𝑇(𝑏) such that

0 ∈ 𝑃 (𝑝, 𝑞) +𝑀(𝑔 (𝑎) , 𝑎) ,

0 ∈ 𝑄 (𝑝, 𝑞) + 𝑁 (ℎ (𝑏) , 𝑏) .

(21)

Next are some special cases of problem (21).

(1) Let 𝑆, 𝑇 be identity mappings, for each (𝑎, 𝑏) ∈ 𝑋
1
×

𝑋
2
, 𝑀(𝑔(𝑎), 𝑎) = 𝑀(𝑥) and 𝑁(ℎ(𝑏), 𝑏) = 𝑁(𝑥);

then problem (21) reduces to the following problem
considered in [15]:

0 ∈ 𝑃 (𝑝, 𝑞) +𝑀 (𝑎) ,

0 ∈ 𝑄 (𝑝, 𝑞) + 𝑁 (𝑏) .

(22)

(2) 𝑋
1
= 𝑋
2
, 𝑎 = 𝑏, 𝑆 = 𝑇 is an identity mapping, 𝑔 = ℎ,

𝑃(𝑝, 𝑞) = 𝑄(𝑝, 𝑞) = 𝑃(⋅), for each (𝑎, 𝑏) ∈ 𝑋
1
× 𝑋
2
,

𝑀(𝑔(𝑎), 𝑎) = 𝑁(ℎ(𝑏), 𝑏) = 𝑀(𝑔(𝑥)); then problem
(21) reduces to the following problem considered in
[16]:

0 ∈ 𝑃 (𝑥) +𝑀(𝑔 (𝑎)) . (23)

For a suitable choice of the mappings 𝑔, ℎ, 𝑃, 𝑄, 𝐺, 𝐻,
𝐴, 𝐵, 𝐶, 𝐷, 𝑆, 𝑇 and the space 𝑋

1
= 𝑋
2
, a number of

known systems of quasi-variational inequalities, systems of
variational inequalities, systems of quasi-variational inclu-
sions, and variational inclusions can be obtained as special
cases of the generalized nonlinear quasi-variational inclusion
problem (21). We would like to mention that the problem of
finding zero of the sum of two maximal monotone operators
is also a special case of problem (21). Furthermore, these types
of variational inclusion enable us to study many important
problems arising in mathematical, physical, and engineering
science in a general and unified framework.

Lemma 11. Let 𝑋
1
and 𝑋

2
be real Hilbert spaces. Let 𝑃 :

𝑋
1
× 𝑋
2
→ 𝑋

1
, 𝑄 : 𝑋

1
× 𝑋
2
→ 𝑋

2
, 𝑔, 𝐴, 𝐵 : 𝑋

1
→

𝑋
1
,ℎ, 𝐶, 𝐷 : 𝑋

2
→ 𝑋

2
be the single-valued mappings.

Let 𝐺 : 𝑋
1
× 𝑋
1

→ 𝑋
1
be a single-valued mapping such

that 𝐺(𝐴, 𝐵) is 𝜇
1
-cocoercive with respect to 𝐴 and 𝛾

1
-relaxed

cocoercive with respect to𝐵;𝐴 is𝛼
1
-expansive,𝐵 is𝛽

1
-Lipschitz

continuous, and 𝜇
1
> 𝛾
1
, 𝛼
1
> 𝛽
1
. Let 𝐻 : 𝑋

2
× 𝑋
2
→ 𝑋

2

be a single-valued mapping such that𝐻(𝐶,𝐷) is 𝜇
2
-cocoercive

with respect to 𝐶 and 𝛾
2
-relaxed cocoercive with respect to 𝐷;

𝐶 is 𝛼
2
-expansive, 𝐷 is 𝛽

2
-Lipschitz continuous, and 𝜇

2
> 𝛾
2
,

𝛼
2
> 𝛽
2
. Let 𝑆 : 𝑋

1
→ 𝐶𝐵(𝑋

1
) and 𝑇 : 𝑋

2
→ 𝐶𝐵(𝑋

2
) be

the set-valued mappings, let 𝑀 : 𝑋
1
× 𝑋
1
→ 2
𝑋
1 be a set-

valued mapping such that, for each 𝑎 ∈ 𝑋
1
,𝑀(⋅, 𝑎 is a 𝐺(⋅, ⋅)-

cocoercive operator, and let 𝑁 : 𝑋
2
× 𝑋
2
→ 2
𝑋
2 be a set-

valuedmapping such that, for each 𝑏 ∈ 𝑋
2
,𝑁(⋅, 𝑏) is an𝐻(⋅, ⋅)-

cocoercive operator. Assume that 𝑔(𝑋
1
) ∩dom(𝑀(⋅, 𝑎)) ̸= 0 for

each 𝑎 ∈ 𝑋
1
, and ℎ(𝑋

2
) ∩ dom(𝑁(⋅, 𝑏)) ̸= 0 for each 𝑏 ∈ 𝑋

2
.

Then, for any (𝑎, 𝑏) ∈ 𝑋
1
× 𝑋
2
with 𝑝 ∈ 𝑆(𝑎), 𝑞 ∈ 𝑇(𝑏) is a

solution of the problem (21), if and only if

𝑔 (𝑎) = 𝑅
𝐺(⋅,⋅)

𝜆
1
,𝑀(⋅,𝑎)

[𝐺 (𝐴 (𝑔 (𝑎)) , 𝐵 (𝑔 (𝑎))) − 𝜆1𝑃 (𝑝, 𝑞)] ,

ℎ (𝑏) = 𝑅
𝐻(⋅,⋅)

𝜆
2
,𝑁(⋅,𝑏)

[𝐻 (𝐶 (ℎ (𝑏)) , 𝐷 (ℎ (𝑏))) − 𝜆2𝑄 (𝑝, 𝑞)] ,

(24)

where 𝑅
𝐺(⋅,⋅)

𝜆
1
,𝑀(⋅,𝑎)

= (𝐺(⋅, ⋅) + 𝜆
1
𝑀(⋅, 𝑎))

−1, 𝑅
𝐻(⋅,⋅)

𝜆
2
,𝑁(⋅,𝑏)

=

(𝐻(⋅, ⋅) + 𝜆
2
𝑁(⋅, 𝑏))

−1, and 𝜆
1
, 𝜆
2
> 0 are constants.

Proof. By using the definitions of the resolvent operators
𝑅
𝐺(⋅,⋅)

𝜆
1
,𝑀(⋅,𝑎)

and 𝑅𝐻(⋅,⋅)
𝜆
2
,𝑁(⋅,𝑏)

, the conclusion follows directly.
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The preceding lemma allows us to suggest the following
iterative algorithm for problem (21).

Algorithm 12. For (𝑎
0
, 𝑏
0
) ∈ 𝑋
1
×𝑋
2
with𝑝 ∈ 𝑆(𝑎), 𝑞 ∈ 𝑇(𝑏),

compute the sequences {𝑎
𝑛
}, {𝑏
𝑛
}, {𝑝
𝑛
}, {𝑞
𝑛
} as follows:

𝑔 (𝑎
𝑛+1

) = 𝑅
𝐺(⋅,⋅)

𝜆
1
,𝑀(⋅,𝑎)

[𝐺 (𝐴 (𝑔 (𝑎
𝑛
)) , 𝐵 (𝑔 (𝑎

𝑛
)))

− 𝜆
1
𝑃 (𝑝
𝑛
, 𝑞
𝑛
) ] , 𝜆

1
> 0,

ℎ (𝑏
𝑛+1

) = 𝑅
𝐻(⋅,⋅)

𝜆
2
,𝑁(⋅,𝑏)

[𝐻 (𝐶 (ℎ (𝑏
𝑛
)) , 𝐷 (ℎ (𝑏

𝑛
)))

− 𝜆
2
𝑄 (𝑝
𝑛
, 𝑞
𝑛
) ] , 𝜆

2
> 0,

𝑝
𝑛
∈ 𝑆 (𝑎

𝑛
) ,

𝑝𝑛 − 𝑝𝑛+1
 ≤ (1 +

1

𝑛 + 1
)

×D (𝑆 (𝑎
𝑛
) , 𝑆 (𝑎

𝑛+1
)) ,

𝑞
𝑛
∈ 𝑇 (𝑏

𝑛
) ,

𝑞𝑛 − 𝑞𝑛+1
 ≤ (1 +

1

𝑛 + 1
)

×D (𝑇 (𝑏
𝑛
) , 𝑇 (𝑏

𝑛+1
)) ,

(25)

for all 𝑛 = 0, 1, 2,. . ., and 𝜆
1
and 𝜆

2
are constants.

Definition 13. Let 𝑆 : 𝑋
1
→ 𝐶𝐵(𝑋

1
) and 𝑇 : 𝑋

2
→ 𝐶𝐵(𝑋

2
)

be two set-valued mappings. A single-valued mapping 𝑃 :

𝑋
1
× 𝑋
2
→ 𝑋
1
is said to be

(i) 𝜖
1
-Lipschitz continuous in the first argument with

respect to 𝑆, if there exists a constant 𝜖
1
> 0 such that

𝑃 (𝑝1, ⋅) − 𝑃 (𝑝2, ⋅)
 ≤ 𝜖
1

𝑝1 − 𝑝2
 ,

∀𝑝
1
∈ 𝑆 (𝑎

1
) , 𝑝
2
∈ 𝑆 (𝑎

2
) , 𝑎
1
, 𝑎
2
∈ 𝑋
1
;

(26)

(ii) 𝜖
2
-Lipschitz continuous in the second argument with

respect to 𝑇, if there exists a constant 𝜖
2
> 0 such that

𝑃 (⋅, 𝑞1) − 𝑃 (⋅, 𝑞2)
 ≤ 𝜖
2

𝑞1 − 𝑞2
 ,

∀𝑞
1
∈ 𝑇 (𝑏

1
) , 𝑞
2
∈ 𝑇 (𝑏

2
) , 𝑏
1
, 𝑏
2
∈ 𝑋
2
.

(27)

Definition 14. Let 𝑆 : 𝑋
1
→ 𝐶𝐵(𝑋

1
) and 𝑇 : 𝑋

2
→ 𝐶𝐵(𝑋

2
)

be two set-valued mappings. A single-valued mapping 𝑄 :

𝑋
1
× 𝑋
2
→ 𝑋
2
is said to be

(i) 𝛿
1
-Lipschitz continuous in the first argument with

respect to 𝑆, if there exists a constant 𝛿
1
> 0 such that

𝑄 (𝑝
1
, ⋅) − 𝑄 (𝑝

2
, ⋅)
 ≤ 𝛿
1

𝑝1 − 𝑝2
 ,

∀𝑝
1
∈ 𝑆 (𝑎

1
) , 𝑝
2
∈ 𝑆 (𝑎

2
) , 𝑎
1
, 𝑎
2
∈ 𝑋
1
;

(28)

(ii) 𝛿
2
-Lipschitz continuous in the second argument with

respect to 𝑇, if there exists a constant 𝛿
2
> 0 such that

𝑄 (⋅, 𝑞
1
) − 𝑄 (⋅, 𝑞

2
)
 ≤ 𝛿
2

𝑞1 − 𝑞2
 ,

∀𝑞
1
∈ 𝑇 (𝑏

1
) , 𝑞
2
∈ 𝑇 (𝑏

2
) , 𝑏
1
, 𝑏
2
∈ 𝑋
2
.

(29)

Definition 15. A set-valuedmapping 𝐴 : 𝑋 → 𝐶𝐵(𝑋) is said
to beD-Lipschitz continuous, if there exists a constant 𝜌 > 0

such that

D (𝐴 (𝑥) , 𝐴 (𝑦)) ≤ 𝜌
𝑥 − 𝑦

 , ∀𝑥, 𝑦 ∈ 𝑋. (30)

Theorem 16. Let 𝑋
1
and 𝑋

2
be real Hilbert spaces. Let 𝑃 :

𝑋
1
× 𝑋
2
→ 𝑋
1
, 𝑄 : 𝑋

1
× 𝑋
2
→ 𝑋
2
, 𝑔, 𝐴, 𝐵 : 𝑋

1
→ 𝑋
1
,

ℎ, 𝐶, 𝐷 : 𝑋
2

→ 𝑋
2
, 𝐺 : 𝑋

1
× 𝑋
1

→ 𝑋
1
, and 𝐻 :

𝑋
2
× 𝑋
2
→ 𝑋
2
be the single-valuedmappings. Let 𝑆 : 𝑋

1
→

𝐶𝐵(𝑋
1
) and 𝑇 : 𝑋

2
→ 𝐶𝐵(𝑋

2
) be the set-valued mappings,

let 𝑀 : 𝑋
1
× 𝑋
1

→ 2
𝑋
1 be a set-valued mapping such

that, for each 𝑎 ∈ 𝑋
1
, 𝑀(⋅, 𝑎) is a 𝐺(⋅, ⋅)-cocoercive operator

with respect to 𝐴 and 𝐵, and let 𝑁 : 𝑋
2
× 𝑋
2
→ 2
𝑋
2 be a

set-valued mapping such that for each 𝑏 ∈ 𝑋
2
, 𝑁(⋅, 𝑏) is an

𝐻(⋅, ⋅)-cocoercive operator with respect to 𝐶 and 𝐷. Assume
that 𝑔(𝑋

1
) ∩ dom(𝑀(⋅, 𝑎)) ̸= 0 for each 𝑎 ∈ 𝑋

1
, and ℎ(𝑋

2
) ∩

dom(𝑁(⋅, 𝑏)) ̸= 0 for each 𝑏 ∈ 𝑋
2
. Assume that

(i) 𝑆, 𝑇 are 𝜌, 𝜏-Lipschitz continuous in the Hausdorff
metricD(⋅, ⋅), respectively;

(ii) 𝐺(𝐴, 𝐵) is 𝜇
1
-cocoercive with respect to 𝐴 and 𝛾

1
-

relaxed cocoercive with respect to 𝐵;

(iii) 𝐻(𝐶,𝐷) is 𝜇
2
-cocoercive with respect to 𝐶 and 𝛾

2
-

relaxed cocoercive with respect to𝐷;

(iv) 𝐴, 𝐶 is 𝛼
1
, 𝛼
2
-expansive, respectively;

(v) 𝐵,𝐷 𝑖𝑠 𝛽
1
, 𝛽
2
-Lipschitz continuous, respectively;

(vi) 𝑔 is𝜆
𝑔
-Lipschitz continuous and 𝜉

1
-stronglymonotone;

(vii) ℎ is 𝜆
ℎ
-Lipschitz continuous and 𝜉

2
-stronglymonotone;

(viii) 𝐺(𝐴, 𝐵) is 𝑟
1
-Lipschitz continuouswith respect to𝐴 and

𝑟
2
-Lipschitz continuous with respect to 𝐵;

(ix) H(𝐶,𝐷) is 𝑠
1
-Lipschitz continuous with respect to 𝐶

and 𝑠
2
-Lipschitz continuous with respect to𝐷;

(x) 𝑃(⋅, ⋅) is 𝜖
1
-Lipschitz continuous in the first argument

and 𝜖
2
-Lipschitz continuous in the second argument;

(xi) 𝑄(⋅, ⋅) is 𝛿
1
-Lipschitz continuous in the first argument

and 𝛿
2
-Lipschitz continuous in the second argument;

(xii)

0 <

(𝑟
1
+ 𝑟
2
) 𝜆
𝑔
+ 𝜆
1
𝜖
1
𝜌

𝜉
1
(𝜇
1
𝛼
2

1
− 𝛾
1
𝛽
2

1
)

+
𝜆
2
𝛿
1 (1 + 1/𝑛) 𝜌

𝜉
2
(𝜇
2
𝛼
2

2
− 𝛾
2
𝛽
2

2
)
< 1,

0 <
(𝑠
1
+ 𝑠
2
) 𝜆
ℎ
+ 𝜆
2
𝛿
2
𝜏

𝜉
2
(𝜇
2
𝛼
2

2
− 𝛾
2
𝛽
2

2
)

+
𝜆
1
𝜖
2 (1 + 1/𝑛) 𝜏

𝜉
1
(𝜇
1
𝛼
2

1
− 𝛾
1
𝛽
2

1
)
< 1.

(31)

Then, the iterative sequences {𝑎
𝑛
}, {𝑏
𝑛
}, {𝑝
𝑛
}, and {𝑞

𝑛
},

generated by Algorithm 12, converge strongly to 𝑎, 𝑏, 𝑝,and 𝑞,
respectively, and (𝑎, 𝑏, 𝑝, 𝑞) is a solution of problem (21).
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Proof. Since 𝑆, 𝑇 are Lipschitz continuous with constants 𝜌,
𝜏, respectively, it follows from Algorithm 12 that

𝑝𝑛 − 𝑝𝑛+1
 ≤ (1 +

1

𝑛
)D (𝑆 (𝑎

𝑛
) , 𝑆 (𝑎

𝑛+1
))

≤ (1 +
1

𝑛
) 𝜌

𝑎𝑛 − 𝑎𝑛+1
 ,

𝑞𝑛 − 𝑞𝑛+1
 ≤ (1 +

1

𝑛
)D (𝑇 (𝑏

𝑛
) , 𝑇 (𝑏

𝑛+1
))

≤ (1 +
1

𝑛
) 𝜏

𝑏𝑛 − 𝑏𝑛+1
 ,

(32)

for all 𝑛 = 0, 1, 2, . . . .

Using the 𝜉-strong monotonicity of 𝑔, we have
𝑔 (𝑎𝑛+1) − 𝑔 (𝑎𝑛)



𝑎𝑛+1 − 𝑎𝑛


≥ ⟨𝑔 (𝑎
𝑛+1

) − 𝑔 (𝑎
𝑛
) , 𝑎
𝑛+1

− 𝑎
𝑛
⟩

≥ 𝜉
1

𝑎𝑛+1 − 𝑎𝑛


2
,

(33)

which implies that

𝑎𝑛+1 − 𝑎𝑛
 ≤

1

𝜉
1

𝑔 (𝑎𝑛+1) − 𝑔 (𝑎𝑛)
 . (34)

Nowwe estimate ‖𝑔(𝑎
𝑛+1

)−𝑔(𝑎
𝑛
)‖ by usingAlgorithm 12 and

the Lipschitz continuity of 𝑅𝐺(⋅,⋅)
𝜆
1
,𝑀(⋅,𝑎)

as follows:
𝑔 (𝑎𝑛+1) − 𝑔 (𝑎𝑛)



=

𝑅
𝐺(⋅,⋅)

𝜆
1
,𝑀(⋅,𝑎)

[𝐺 (𝐴 (𝑔 (𝑎
𝑛
)) , 𝐵 (𝑔 (𝑎

𝑛
))) − 𝜆

1
𝑃 (𝑝
𝑛
, 𝑞
𝑛
)]

− [𝑅
𝐺(⋅,⋅)

𝜆
1
,𝑀(⋅,𝑎)

{𝐺 (𝐴 (𝑔 (𝑎
𝑛−1

)) , 𝐵 (𝑔 (𝑎
𝑛−1

)))

− 𝜆
1
𝑃 (𝑝
𝑛−1

, 𝑞
𝑛−1

) } ]


≤
1

𝜇
1
𝛼
2

1
− 𝛾
1
𝛽
2

1

𝐺 (𝐴 (𝑔 (𝑎
𝑛
)) , 𝐵 (𝑔 (𝑎

𝑛
)))

− 𝐺 (𝐴 (𝑔 (𝑎
𝑛−1

)) , 𝐵 (𝑔 (𝑎
𝑛−1

)))


+
𝜆
1

𝜇
1
𝛼
2

1
− 𝛾
1
𝛽
2

1

𝑃 (𝑝𝑛, 𝑞𝑛) − 𝑃 (𝑝𝑛−1, 𝑞𝑛−1)


≤
1

𝜇
1
𝛼
2

1
− 𝛾
1
𝛽
2

1

𝐺 (𝐴 (𝑔 (𝑎
𝑛
)) , 𝐵 (𝑔 (𝑎

𝑛
)))

− 𝐺 (𝐴 (𝑔 (𝑎
𝑛−1

)) , 𝐵 (𝑔 (𝑎
𝑛
)))



+
1

𝜇
1
𝛼
2

1
− 𝛾
1
𝛽
2

1

𝐺 (𝐴 (𝑔 (𝑎
𝑛−1

)) , 𝐵 (𝑔 (𝑎
𝑛
)))

− 𝐺 (𝐴 (𝑔 (𝑎
𝑛−1

)) , 𝐵 (𝑔 (𝑎
𝑛−1

)))


+
𝜆
1

𝜇
1
𝛼
2

1
− 𝛾
1
𝛽
2

1

𝑃 (𝑝𝑛, 𝑞𝑛) − 𝑃 (𝑝𝑛−1, 𝑞𝑛)


+
𝜆
1

𝜇
1
𝛼
2

1
− 𝛾
1
𝛽
2

1

𝑃 (𝑝𝑛−1, 𝑞𝑛) − 𝑃 (𝑝𝑛−1, 𝑞𝑛−1)
 .

(35)

Since𝐺(𝐴, 𝐵) is 𝑟
1
-Lipschitz continuouswith respect to𝐴 and

𝑟
2
-Lipschitz continuous with respect to 𝐵, 𝑃 is 𝜖

1
-Lipschitz

continuous in the first argument and 𝜖
2
-Lipschitz continuous

in the second argument. 𝑔 is 𝜆
𝑔
-Lipschitz continuous and

using (32), (34), and (35) it becomes

𝑔 (𝑎𝑛+1) − 𝑔 (𝑎𝑛)
 ≤

(𝑟
1
+ 𝑟
2
) 𝜆
𝑔

𝜇
1
𝛼
2

1
− 𝛾
1
𝛽
2

1

𝑎𝑛 − 𝑎𝑛−1


+
𝜆
1
𝜖
1

𝜇
1
𝛼
2

1
− 𝛾
1
𝛽
2

1

𝑝𝑛 − 𝑝𝑛−1


+
𝜆
1
𝜖
2

𝜇
1
𝛼
2

1
− 𝛾
1
𝛽
2

1

𝑞𝑛 − 𝑞𝑛−1


≤

(𝑟
1
+ 𝑟
2
) 𝜆
𝑔

𝜇
1
𝛼
2

1
− 𝛾
1
𝛽
2

1

𝑎𝑛 − 𝑎𝑛−1


+
𝜆
1
𝜖
1

𝜇
1
𝛼
2

1
− 𝛾
1
𝛽
2

1

(1 +
1

𝑛
) 𝜌

𝑎𝑛 − 𝑎𝑛−1


+
𝜆
1
𝜖
2

𝜇
1
𝛼
2

1
− 𝛾
1
𝛽
2

1

(1 +
1

𝑛
) 𝜏

𝑏𝑛 − 𝑏𝑛−1
 ,

𝑎𝑛+1 − 𝑎𝑛
 ≤

(𝑟
1
+ 𝑟
2
) 𝜆
𝑔
+ 𝜆
1
𝜖
1 (1 + 1/𝑛) 𝜌

𝜉
1
(𝜇
1
𝛼
2

1
− 𝛾
1
𝛽
2

1
)

𝑎𝑛 − 𝑎𝑛−1


+
𝜆
1
𝜖
2 (1 + 1/𝑛) 𝜏

𝜉
1
(𝜇
1
𝛼
2

1
− 𝛾
1
𝛽
2

1
)

𝑏𝑛 − 𝑏𝑛−1
 .

(36)

Let

𝑎𝑛+1 − 𝑎𝑛
 ≤ 𝜃
1𝑛

𝑎𝑛 − 𝑎𝑛−1
 + 𝜃2𝑛

𝑏𝑛 − 𝑏𝑛−1
 , (37)

where

𝜃
1𝑛
=

(𝑟
1
+ 𝑟
2
) 𝜆
𝑔
+ 𝜆
1
𝜖
1 (1 + 1/𝑛) 𝜌

𝜉
1
(𝜇
1
𝛼
2

1
− 𝛾
1
𝛽
2

1
)

,

𝜃
2𝑛
=

𝜆
1
𝜖
2 (1 + 1/𝑛) 𝜏

𝜉
1
(𝜇
1
𝛼
2

1
− 𝛾
1
𝛽
2

1
)
.

(38)

Now we estimate ‖ℎ(𝑏
𝑛
) − ℎ(𝑏

𝑛−1
)‖ by using Algorithm 12 and

the Lipschitz continuity of 𝑅𝐻(⋅,⋅)
𝜆
2
,𝑁(⋅,𝑏)

as follows:

ℎ (𝑏𝑛+1) − ℎ (𝑏𝑛)


=

𝑅
𝐻(⋅,⋅)

𝜆
2
,𝑁(⋅,𝑏)

[𝐻 (𝐶 (ℎ (𝑏
𝑛
)) , 𝐷 (ℎ (𝑏

𝑛
))) − 𝜆

2
𝑄 (𝑝
𝑛
, 𝑞
𝑛
)]
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− 𝑅
𝐻(⋅,⋅)

𝜆
2
,𝑁(⋅,𝑏)

[𝐻 (𝐶 (ℎ (𝑏
𝑛−1

)) , 𝐷 (ℎ (𝑏
𝑛−1

)))

− 𝜆
2
𝑄 (𝑝
𝑛−1

, 𝑞
𝑛−1

) ]


≤
1

𝜇
2
𝛼
2

2
− 𝛾
2
𝛽
2

2

𝐻 (𝐶 (ℎ (𝑏
𝑛
)) , 𝐷 (ℎ (𝑏

𝑛
)))

− 𝐻 (𝐶 (ℎ (𝑏
𝑛−1

)) , 𝐷 (ℎ (𝑏
𝑛−1

)))


+
𝜆
2

𝜇
2
𝛼
2

2
− 𝛾
2
𝛽
2

2

𝑄 (𝑝
𝑛
, 𝑞
𝑛
) − 𝑄 (𝑝

𝑛−1
, 𝑞
𝑛−1

)


≤
1

𝜇
2
𝛼
2

2
− 𝛾
2
𝛽
2

2

𝐻 (𝐶 (ℎ (𝑏
𝑛
)) , 𝐷 (ℎ (𝑏

𝑛
)))

− 𝐻 (𝐶 (ℎ (𝑏
𝑛−1

)) , 𝐷 (ℎ (𝑏
𝑛
)))



+
1

𝜇
2
𝛼
2

2
− 𝛾
2
𝛽
2

2

𝐻 (𝐶 (ℎ (𝑏
𝑛−1

)) , 𝐷 (ℎ (𝑏
𝑛
)))

− 𝐻 (𝐶 (ℎ (𝑏
𝑛−1

)) , 𝐷 (ℎ (𝑏
𝑛−1

)))


+
𝜆
2

𝜇
2
𝛼
2

2
− 𝛾
2
𝛽
2

2

𝑄 (𝑝
𝑛
, 𝑞
𝑛
) − 𝑄 (𝑝

𝑛−1
, 𝑞
𝑛
)


+
𝜆
2

𝜇
2
𝛼
2

2
− 𝛾
2
𝛽
2

2

𝑄 (𝑝
𝑛−1

, 𝑞
𝑛
) − 𝑄 (𝑝

𝑛−1
, 𝑞
𝑛−1

)
 .

(39)

Since 𝐻(𝐶,𝐷) is 𝑠
1
-Lipschitz continuous with respect to

𝐶 and 𝑠
2
-Lipschitz continuous with respect to 𝐷, 𝑄 is 𝛿

1
-

Lipschitz continuous in the first argument and 𝛿
2
-Lipschitz

continuous in the second argument. ℎ is 𝜆
ℎ
-Lipschitz contin-

uous and using (32), (34), and (39) it becomes

ℎ (𝑏𝑛+1) − ℎ (𝑏𝑛)
 ≤

(𝑠
1
+ 𝑠
2
) 𝜆
ℎ

𝜇
2
𝛼
2

2
− 𝛾
2
𝛽
2

2

𝑏𝑛 − 𝑏𝑛−1


+
𝜆
2
𝛿
1

𝜇
2
𝛼
2

2
− 𝛾
2
𝛽
2

2

(1 +
1

𝑛
) 𝜌

𝑎𝑛 − 𝑎𝑛−1


+
𝜆
2
𝛿
2

𝜇
2
𝛼
2

2
− 𝛾
2
𝛽
2

2

(1 +
1

𝑛
) 𝜏

𝑏𝑛 − 𝑏𝑛−1
 .

(40)

In the light of (34), we have

𝑏𝑛+1 − 𝑏𝑛
 ≤

(𝑠
1
+ 𝑠
2
) 𝜆
ℎ
+ 𝜆
2
𝛿
2 (1 + 1/𝑛) 𝜏

𝜉
2
(𝜇
2
𝛼
2

2
− 𝛾
2
𝛽
2

2
)

𝑏𝑛 − 𝑏𝑛−1


+
𝜆
2
𝛿
1

𝜉
2
(𝜇
2
𝛼
2

2
− 𝛾
2
𝛽
2

2
)
(1 +

1

𝑛
) 𝜌

𝑎𝑛 − 𝑎𝑛−1
 .

(41)

Let

𝑏𝑛+1 − 𝑏𝑛
 ≤ 𝜃
3𝑛

𝑎𝑛 − 𝑎𝑛−1
 + 𝜃4𝑛

𝑏𝑛 − 𝑏𝑛−1
 , (42)

where

𝜃
3𝑛
=

𝜆
2
𝛿
1 (1 + 1/𝑛) 𝜌

𝜉
2
(𝜇
2
𝛼
2

2
− 𝛾
2
𝛽
2

2
)
,

𝜃
4𝑛
=
(𝑠
1
+ 𝑠
2
) 𝜆
ℎ
+ 𝜆
2
𝛿
2 (1 + 1/𝑛) 𝜏

𝜉
2
(𝜇
2
𝛼
2

2
− 𝛾
2
𝛽
2

2
)

.

(43)

From adding (37) and (42), we get

𝑎𝑛+1 − 𝑎𝑛
 +

𝑏𝑛+1 − 𝑏𝑛
 ≤ (𝜃

1𝑛
+ 𝜃
3𝑛
)
𝑎𝑛 − 𝑎𝑛−1



+ (𝜃
2𝑛
+ 𝜃
4𝑛
)
𝑏𝑛 − 𝑏𝑛−1



≤ Θ
𝑛
{
𝑎𝑛 − 𝑎𝑛−1

 +
𝑏𝑛 − 𝑏𝑛−1

} ,

(44)

where Θ
𝑛
= max{(𝜃

1𝑛
+ 𝜃
3𝑛
), (𝜃
2𝑛
+ 𝜃
4𝑛
)}.

Letting 𝑛 → ∞, we obtain Θ
𝑛
→ 𝜃, where

𝜃 = max {(𝜃
1
+ 𝜃
3
) , (𝜃
2
+ 𝜃
4
)} ,

𝜃
1
=

(𝑟
1
+ 𝑟
2
) 𝜆
𝑔
+ 𝜆
1
𝜖
1
𝜌

𝜉
1
(𝜇
1
𝛼
2

1
− 𝛾
1
𝛽
2

1
)

,

𝜃
2
=

𝜆
1
𝜖
2
𝜏

𝜉
1
(𝜇
1
𝛼
2

1
− 𝛾
1
𝛽
2

1
)
,

𝜃
3
=

𝜆
2
𝛿
1
𝜌

𝜉
2
(𝜇
2
𝛼
2

2
− 𝛾
2
𝛽
2

2
)
,

𝜃
4
=
(𝑠
1
+ 𝑠
2
) 𝜆
ℎ
+ 𝜆
2
𝛿
2
𝜏

𝜉
2
(𝜇
2
𝛼
2

2
− 𝛾
2
𝛽
2

2
)

.

(45)

By (31), 𝜃 ∈ (0, 1), and (44) {𝑎
𝑛
} and {𝑏

𝑛
} both are Cauchy

sequences.Thus, there exists (𝑎, 𝑏) ∈ 𝑋
1
×𝑋
2
such that 𝑎

𝑛
→

𝑎, 𝑏
𝑛
→ 𝑏, as 𝑛 → ∞. From the Lipschitz continuity of 𝑆

and𝑇 and (32), {𝑝
𝑛
},{𝑞
𝑛
} are also Cauchy sequences, and thus

there exists (𝑝, 𝑞) ∈ 𝑋
1
× 𝑋
2
such that 𝑝

𝑛
→ 𝑝, 𝑞

𝑛
→ 𝑞, as

𝑛 → ∞.
Now, we prove that 𝑝 ∈ 𝑆(𝑎) and 𝑞 ∈ 𝑇(𝑏). In fact, since

𝑝
𝑛
∈ 𝑆(𝑎
𝑛
) and 𝑞

𝑛
∈ 𝑇(𝑏
𝑛
), we have

𝑑 (𝑝, 𝑆 (𝑎)) ≤
𝑝 − 𝑝𝑛

 + 𝑑 (𝑝𝑛, 𝑆 (𝑎)) ,

𝑑 (𝑝, 𝑆 (𝑎)) ≤
𝑝 − 𝑝𝑛

 +D (𝑆 (𝑎
𝑛
) , 𝑆 (𝑎)) ,

𝑑 (𝑝, 𝑆 (𝑎)) ≤
𝑝 − 𝑝𝑛

 + 𝜌
𝑎𝑛 − 𝑎

 → 0, as 𝑛 → ∞,

(46)

which implies that 𝑑(𝑝, 𝑆(𝑎)) = 0. Since 𝑆(𝑎) ∈ 𝐶𝐵(𝑋
1
),

it follows that 𝑝 ∈ 𝑆(𝑎). Similarly, we have 𝑞 𝜖 𝑇(𝑏). By
Lemma 11, it follows that 𝑎, 𝑏, 𝑝, 𝑞 is a solution of problem
(21), and this completes the proof.
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